基于半导体制冷片TEC的温度控制器完整版
- 格式:docx
- 大小:23.09 KB
- 文档页数:3
TEC-10A智能PID半导体TEC加热制冷模式自适应驱动源图1 控制器实物图一特性描述TEC-10A是一款高功率密度的TEC温度控制器,额定工作负载5A,峰值电流可达10A。
此温度控制器可以连接专用调试器来进行参数的调节,参数调节完毕并保存后,撤去调试器,此温度控制器仍可以独立工作。
可以通过专用RS232调试线和电脑进行通讯,以进行参数设置和温度监视,以及进行温度程控。
二控制器指标输入:DC12V输出:-12V到+12V额定电流:5A控制温度范围:-55°~125°控制器主板尺寸:64mm*40mm定位孔尺寸:M3图2 TEC控制主板尺寸及接口定义三接线图图3 TEC-10A应用接线图TEC-10A接线端子为6芯连接器,图3所示。
接线时首先连接电源线和DS18B20,并且将GND端和DS18B20的GND端接到一起,等到接通电源后,最后接入TEC。
接线时,保证12V电源线界面大于0.5mm*mm。
接通电源后,LED1指示灯常亮,LED2指示灯指示当前控制板的工作状态。
1.0版本软件为加热时候,LED2亮,制冷时候,LED2灭。
1.1版本为当温度控制范围在设定温度的0.625度范围内时亮起,超 过这个范围时,LED2熄灭。
四 操作流程调试TEC 控制器,需要将TEC 控制器调试器通过排线和主控制板连接,显示屏幕显示如图所示波形。
图4 调试器液晶显示屏操作步骤第一步:温度设置。
切换按键“Choose ”键,使“#”在SV:xx.xxx 的后面;通过“UP ”键,向上调节设定温度,通过“DOWN ”向下调节设定温度,步进量为0.0625度,但不保存;第二步: PID 参数设置。
切换按键“Choose ”, 使“#”在Pxxx#的后面,按“UP ”键或“DOWN ”键,可以设置P ,依次设置I 和D ; 第三步:确认设定参数,点击“ENTER ”。
此时,调试器将参数发送到主控制板,然后存储于主控制板内部。
0-10A智能PID半导体TEC加热制冷模式自适应驱动源型号:TEC-10A一. 特性描述TEC-10A是一款高功率密度的TEC温度控制器,额定工作负载12V10A,峰值可达12V15A。
此温度控制器可以连接专用调试器来进行参数的调节,参数调节完毕并保存后,撤去调试器,此温度控制器仍可以独立工作。
可以通过专用RS232调试线和电脑进行通讯,以进行参数设置和温度监视,以及进行温度程控。
输入: 9VDC ~15VDC输出:电压自动适应TEC(额定电流小于10A)。
效率:>95%电流过冲:<0.1A二.驱动源原理框图控制器的工作原理图如下图所示图2 TEC驱动源的内部结构框图驱动源的核心是PID智能控制器,他分别控制MOS管驱动器、温度传感器以及和调试器通讯口和外接通讯。
原理图中,Q1和Q3组成同步整流桥臂,Q4和Q2组成同步整流桥臂,通过导通的占空比实现TEC两端电压的自动控制,然后分别控制下桥臂Q3和Q4的导通来控制TEC的加热制冷模式切换。
电路中采用了两组L-C的滤波网络结构,消除了开关过程中大电流对TEC寿命的影响,为了确保电路的可靠性,这里采用10mOHM的电流取样电阻进行电流采集,当出现过流情况时,自动采取限制电压的措施。
三. 连接示意图为了设定当前需要设定的参数,驱动源连接调试器,在调试屏上可以直接修改设定温度,P,I,D参数。
图3.1 四片TEC调试模式连接示意图图3.2 二片TEC调试模式连接示意图图3.3 一片TEC 调试模式连接示意图调试模式接线图,本驱动器可以连接4片TEC 制冷片,制冷片串并联,如图3.1所示,输入电压为15V 。
本驱动器可以连接2片TEC 制冷片,制冷片串并联,如图3.2所示,输入电压为12V 。
本驱动器可以连接1片TEC 制冷片,制冷片串并联,如图3.2所示,输入电压为12V 。
该模块在工作时,工作温度不宜超过60°,在正常使用中,应该有自然风通过该驱动源,实现风冷。
如何控制和补偿半导体制冷器摘要在很多需要精密温度控制的设备中经常可以看到半导体制冷器。
对温度及其敏感的组件往往与TEC和温度监视器集成到一个单一热工程模块。
半导体制冷器也可以通过翻转电流而制热。
TEC非常小的体积为精密控制单个组件(例如,光纤激光器驱动器,高精度的参考电压或任何温度敏感型设备)的温度提供了可能。
此应用手册简要讨论TEC设计的起源和历史,然后概述了TEC基本操作。
随后又说明了TEC的控制和补偿问题。
该文最后详细分析了TEC控制的优化以及优化方程。
关键字:PID、DWDM、SFF、SFP、光纤、激光模块、热电冷却器,热电偶、TEC,温度控制,热循环热敏电阻简介1821年托马斯·塞贝克发现,两个不同的材料的导体连在一起,并且两个材料各自的温度不同的时候,这个环路内就会有电流流过。
十二年后,皮尔贴(J.C.Peltier)发现了与这一现象相反的效果:通过削减环路中的一个导体,使外部电流流经环路,然后就可以发现两个连接点之间有温度差出现,这一现象后来被称作皮尔贴效应。
由于那时的材料所限,皮尔贴效应中材料之间的温度差有大部分都是大电流流过材料所产生的电阻热。
随着近来材料学的不断进步,这些连接点制热或制冷的效应越加变得实用化,它可以作为热电泵,使用起来和基于氟碳蒸气压缩的制冷方式并没有太大的差别。
虽然TEC仍然不如氟碳蒸发循环设备更加实用,但是它没有移动部件和工作流体,这就为制冷设备小型化提供了可能。
基本工作原理由于皮尔贴效应可以通过电流线性控制,半导体制冷器(TEC)已经在涉及精密温度控制的设备中得到了大量的应用。
温度敏感型器件、TEC、温度传感器被集成到一个单一的模块中。
TEC控制需要一个电平可以翻转的电源以提供正电压和负电压。
要想在单电源设备中做到这一点,那么完全可以使用H桥电路。
线性稳压电源总会有纹波,同时它的效率非常低,需要大体积的元件并且还要做好热隔离防止调整管发出的热量加载到制冷器上。
半导体制冷片温控器
图1 控制器实物图
一特性描述
TEC-10A是一款高功率密度的TEC温度控制器,额定工作负载5A,峰值电流可达10A。
此温度控制器可以连接专用调试器来进行参数的调节,参数调节完毕并保存后,撤去调试器,此温度控制器仍可以独立工作。
可以通过专用RS232调试线和电脑进行通讯,以进行参数设置和温度监视,以及进行温度程控。
性价比高,体积小安装省体积,无大电流脉冲工作,使得TEC工作寿命比普通开关工作时的寿命大大提高等优点。
二控制器指标
输入:DC12V
输出:近-12V到近+12V
额定电流:5A
控制温度范围:-55°~125°
控制器主板尺寸:64mm*40mm
定位孔尺寸:M3
三接线图
图3 TEC-10A应用接线图
这款温度控制模块可以制冷、加热两种功能,充分使用了TEC的全部特性。
广泛应用于实验、测试、生命、光电、材料、检测等领域,体积小,可靠性高。
采用半导体制冷片的温控系统的设计半导体制冷片的温控系统是一种常见的用来控制温度的技术,它利用半导体物质的特性,通过通过电流的通过来实现温度的控制。
首先,我们需要了解半导体制冷片的工作原理。
半导体制冷片是一种基于Peltier效应的制冷技术。
当电流通过半导体材料时,热量会从一个一端吸收,然后从另一端释放。
这样就可以实现温度的调控。
在设计温控系统时,我们需要考虑以下几个方面:1.温度传感器:温度传感器用于感知当前的温度值并将其传递给控制器。
常用的温度传感器有热电偶和热敏电阻等。
2.控制器:控制器是整个系统的核心,它会根据传感器得到的温度值来判断是否需要制冷或制热。
根据温度变化的速度和幅度来调整半导体制冷片的电流,以实现精确的温度控制。
3.电源:半导体制冷片需要一个特定的电源来提供工作电流。
一般情况下,我们会使用可调电源来提供合适的电流给制冷片。
4.散热器:半导体制冷片在工作过程中会产生大量的热量,为了保持制冷系统的稳定性,我们需要使用散热器将多余的热量散发出去。
在实际的应用中1.常规型:常规型温控系统使用一个PID控制器或者其他类似的控制算法来实现温度的调控。
PID控制算法根据当前的温度误差、误差的变化速度和误差的累积值来调整半导体制冷片的工作电流,以达到温度的稳定控制。
2.自适应型:自适应型温控系统则是根据实际的温度变化情况来自动地选择合适的控制策略。
例如,系统可以根据当前的温度变化速度和幅度来自动调整控制算法的参数,使得温度的控制更为精确。
在设计半导体制冷片的温控系统时,我们需要根据具体的应用需求来选择合适的温控策略,并进行相应的硬件和软件设计。
同时,我们还需要对温控系统进行充分的测试和验证,以确保系统的稳定性和可靠性。
总结而言,半导体制冷片的温控系统是一种实现温度控制的重要技术,它可以广泛应用于各种需要精确温度控制的领域。
在设计温控系统时,我们需要考虑传感器、控制器、电源和散热器等关键因素,并选择合适的控制算法来实现稳定的温度调控。
基于半导体制冷片T E C 的温度控制器
集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]
一、原理
半导体制冷片也叫热电制冷片,其原理是Peltier效应,
它既可制冷又可加热,通过改变直流电流的极性来决定在
同一制冷片上实现制冷或加热,这个效果的产生就是通过
热电的原理来实现的。
其实在原理上半导体制冷器只是一
个热传递的工具。
其优缺点:
1、不需要任何,可连续工作。
2、半导体制冷片具有两种功能,既能制冷,又能加热,制冷效率一般不高,但制热效率很高,永远大于1。
因此使用一个片件就可以代替分立的加热系统和制冷。
3、半导体制冷片是电流换能型片件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,,便于组成自动控制系统。
4、半导体制冷片热惯性非常小,制冷制热时间很快,在热端散热良好冷端空载的情况下,通电不到一分钟,制冷片就能达到最大温差。
5、半导体制冷片的温差范围,从正温90℃到负温度130℃都可以实现。
二、使用说明:
正确的安装、组装方法:1、制冷片一面安装散热片,一面安装导冷系统,安装表面平面度不大于0.03mm,要除去毛刺、污物。
2、制冷片与散热片和导冷块接触良好,接触面须涂有一薄层导热脂。
3、固定制冷片时既要使制冷片受力均匀,又要注意切勿过度,以防止瓷片压裂。
正确的使用条件:1、使用直流电源电压不得超过额定电压,电源波纹系数小于1 0%。
2、电流不得超过组件的额定电流。
3、制冷片正在工作时不得瞬间通反向(须在5分钟之后)。
4、制冷片内部不得进水。
5、制冷片周围湿度不得超过80%。
三、半导体制冷器的驱动电路设计
半导体制冷片根据流过半导体的电流方向和大小来决定其工作状态的(电流的方向决定制冷或者制热,电流的大小决定制冷或者制热的程度和效果)。
为了使半导体制冷片能够自动的进行恒温控制,就必须设计好其驱动电路和控制电路。
PID控制系统是目前精度较高的技术,可以用来对半导体制冷片的电流进行控制,以实现高精度的控温效果。
(一)、总体框图:
(二)、驱动电路:
基于H桥的驱动电路:
当设置OUT3为高、OUT4为低电平,OUT2为低、OUT1为高电平时,Q3和Q4断开,Q1和Q2导通,电流由TEC左至右;反之OUT3为低、OUT4为高电平,OUT2为高、O UT1为低电平时,Q3和Q4导通,Q1和Q2断开,电流由右至左。
通过单片机PID控制设置OUT1或者OUT4的PWM占空比,控制Q1或者Q4的导通时间来控制TEC的工作时间,从而达到控温的效果。