电机学重点内容
- 格式:doc
- 大小:20.00 KB
- 文档页数:2
电机学的知识点电机学是研究电动机原理、结构、性能及其控制的学科,是电工学、电子学等学科中重要的一门基础学科。
在生产生活中,电动机被广泛应用于机械、化工、石油、交通、房地产、家居等领域,电机技术得到了广泛的应用和推广。
下面就来简单了解一下电机学的知识点。
一、电动机原理电动机是将电能转换为机械能的电气设备。
电动机实现电能转化的基本原理是根据是安培定则和法拉第电磁感应定律。
通俗地说,电流在磁场中会受到作用力,导致电动机的匀速或变速运动。
电动机主要由定子、转子、轴承、支轴、散热器、连接线、端盖、控制器等组成,其中定子内部铺设绕组,绕组决定了电机的转矩和速度。
二、电动机的分类根据不同的工作原理、结构和用途,电动机有很多类别,常见的电动机有直流电机、交流电机、异步电机、同步电机、直线电机、永磁电机、步进电机、伺服电机等。
其中,直流电机的优点是结构简单、转矩平稳、响应速度快,适用范围广。
交流电机的种类繁多,涵盖了异步、同步、感应、电容、永磁等不同类型电机,使用广泛,能够满足不同领域不同需求。
三、电动机的参数电机学几乎覆盖了所有电动机的工作原理和技术细节。
电动机参数以电机功率、电流、电压、效率和转速等参数为主要参数。
功率是电机的输出能力,取决于负载扭矩、输出转速和效率。
电流、电压、效率和转速影响电动机的应用范围和使用效果。
同时,转动惯量、轴承阻力、轴承轴向力和机械特性等参数也是电动机的重要指标。
四、电动机控制电动机通过更改定子绕组与转子磁通的相对状态,从而改变转矩和转速,实现电动机的控制。
电动机控制一般使用电器制动控制、电流控制、速度控制等技术。
现代智能电机控制技术随着各种自动化控制技术的发展,如PLC控制、PID控制、Fuzzy控制等,已经成为电动机控制的主要方式,为电动机的应用高效可控、安全可靠提供了有力保证。
五、发展趋势到目前为止,电机学发展一直在继续,电动机制造商和用户都需要摆脱传统的电机设计,研究新技术,创新新产品。
电机学总复习要点大全资料1.电机分类:-直流电机:按励磁方式分为永磁直流电机和电梯直流电机。
-交流电机:按形状分为异步电机和同步电机。
异步电机包括感应电动机和异步永磁电动机;同步电机包括同步感应电动机和永磁同步电动机。
2.电机工作原理:-直流电动机:利用安培力和洛伦兹力的相互作用实现电能与机械能的转换。
-交流电动机:利用磁场旋转和感应原理实现电能与机械能的转换。
3.直流电机的构造:-励磁系统:提供磁场,分为永磁励磁和电梯励磁。
-转子系统:可以是铁芯或者铁心绕组。
-定子系统:通常由定子绕组、定子铁芯和机壳组成。
4.直流电机的性能参数:-额定功率:在额定工作条件下,电机所能提供的机械功率。
-额定电压:在额定工作条件下,电机所需的电压。
-额定电流:在额定工作条件下,电机所需的电流。
-额定转速:在额定工作条件下,电机的转速。
-效率:电机所输出的有用功率与输入的电能之比。
5.交流电机的构造:-感应电动机:由定子和转子组成,定子绕组通常为三相绕组,转子可以是鳄鱼绕组或者铜条短路绕组。
-同步电动机:由定子和转子组成,转子一般为永磁体,定子绕组可以是三相绕组或者单相绕组。
6.交流电机的性能参数:-引入功率:电机所需的电能。
-输出功率:电机输出的机械功率。
-功率因数:引入功率与输出功率的比值。
-正弦波方程:描述电机的电压和电流之间的关系。
7.电机的运行和控制方法:-直流电机的运行和控制方法:电流控制和电势控制。
-交流电机的运行和控制方法:-异步电动机:变频调速技术,通过改变电源频率改变电机的转速。
-同步电动机:电势控制和电流控制。
8.电机的应用:-家用电器:洗衣机、冰箱、风扇等。
-工业机械:泵、风机、压缩机等。
-车辆和交通:电动汽车、铁路车辆等。
-可再生能源:风力发电、太阳能发电等。
电机学主要知识点复习提纲一、直流电机 A. 主要概念1. 换向器、电刷、电枢接触压降2∆U b2. 极数和极对数3. 主磁极、励磁绕组4. 电枢、电枢铁心、电枢绕组5. 额定值6. 元件7. 单叠、单波绕组8. 第1节距、第2节距、合成节距、换向器节距 9. 并联支路对数a 10. 绕组展开图 11. 励磁与励磁方式12. 空载磁场、主磁通、漏磁通、磁化曲线、每级磁通 13. 电枢磁场14. (交轴、直轴)电枢反应及其性质、几何中性线、物理中性线、移刷 15. 反电势常数C E 、转矩常数C T 16. 电磁功率 P em 电枢铜耗 p Cua 励磁铜耗 p Cuf 电机铁耗 p Fe 机械损耗 p mec 附加损耗 p ad 输出机械功率 P 2可变损耗、不变损耗、空载损耗 17. 直流电动机(DM )的工作特性 18. 串励电动机的“飞速”或“飞车”19. 电动机的机械特性、自然机械特性、人工机械特性、硬特性、软特性 20. 稳定性21. DM 的启动方法:直接启动、电枢回路串电阻启动、降压启动;启动电流 22. DM 的调速方法:电枢串电阻、调励磁、调端电压 23. DM 的制动方法:能耗制动、反接制动、回馈制动 B. 主要公式:发电机:P N =U N I N (输出电功率) 电动机:P N =U N I N ηN (输出机械功率) 反电势:60E a E E C n pN C aΦ==电磁转矩:em a2T a T T C I pN C aΦπ==直流电动机(DM )电势平衡方程:a a E a a U E I R C Φn I R =+=+ DM 的输入电功率P 1 :12()()a f a f a a a fa a a f em Cua Cuf P UI U I I UI UI E I R I UI EI I R UI P p p ==+=+=++=++=++12em Cua Cuf em Fe mec adP P p p P P p p p =++=+++DM 的转矩方程:20d d em T T T JtΩ--= DM 的效率:21112100%100%(1)100%P P p pP P P p η-∑∑=⨯=⨯=-⨯+∑ 他励DM 的转速调整率: 0N N100%n nn n -∆=⨯DM 的机械特性:em2T j a j a a )(T ΦC C R R ΦC U ΦC R R I U n E E E +-=+-= . 并联DM 的理想空载转速n 0:二、变压器 A. 主要概念1. 单相、三相;变压器组、心式变压器;电力变压器、互感器;干式、油浸式变压器2. 铁心柱、轭部3. 额定容量、一次侧、二次侧4. 高压绕组、低压绕组5. 空载运行,主磁通Φ、漏磁通Φ1σ及其区别,主磁路、漏磁路 空载电流、主磁通、反电动势间的相位关系,铁耗角6. Φ、i 、e 正方向的规定。
一、主要内容磁场、磁感应强度,磁场强度、磁导率,全电流定律,磁性材料的B-H 曲线,铁心损耗与磁场储能,电感,电磁感应定律,电磁力与电磁转矩。
二、基本要求牢固掌握以上概念对本课程学习是必须的。
三、注意点1、欧姆定律:作用于磁路上的磁动势等于磁阻乘以磁通m F Φ=Λ,1m m S R l μΛ==2、2222m SfN S N l X L N l μμωωπω==Λ== 3、随着铁心磁路饱和的增加,铁心磁导率µFe 减小,相应的磁导、电抗也要减小。
一、主要内容额定值,感应电动势、电压变比,励磁电流,电路方程、等效电路、相量图,绕组归算,标幺值,空载实验、短路实验及参数计算,电压变化率与效率。
三相变压器的联接组判别。
三相变压器绕组的联接法和磁路系统对相电势波形的影响。
二、基本要求熟练掌握变压器的基本电磁关系,变压器的各种平衡关系。
三种分析手段:基本方程式、等效电路和相量图。
正方向确定,基本方程式、相量图和等效电路间的一致性。
理解变压器绕组的归算原理与计算。
熟练掌握标幺值的计算及数量关系。
熟悉变压器参数的测量方法,运行特性分析方法与计算。
掌握三相变压器的联接组表示与确定。
三、注意点1、变压器的额定值对三相变压器来说电压、电流均为线值,功率是三相视在功率,计算时一定要注意。
三相变压器参数计算时,必须换成单相数值,最后结果再换成三相值。
2、励磁阻抗的物理意义,与频率和铁心饱和度的关系。
3、变压器的电势平衡、磁势平衡和功率平衡(功率流程图)。
4、变压器参数计算(空载试验一般在低压侧做,短路实验一般在高压侧做。
在哪侧做实验,测出来的就是哪侧的数值,注意折算!)5、变压器的电压调整率和效率的计算(负载因数1I β*=)。
6、单相变压器中励磁电流、主磁通和感应电势的波形关系,三相变压器的铁心结构和电势波形。
7、联接组别的判别。
8、变压器负载与二次侧接线方式要一致,若不一致,必须将负载∆-Y 变换。
直流电机一、主要内容直流电机的励磁方式,直流电机绕组参数与特点,空载磁场,负载时的直轴和交轴电枢反应分析,电枢绕组的感应电动势,电压和功率平衡,电枢绕组的电磁转矩,转矩平衡。
电机学知识点总结电机是一种将电能转化为机械能的设备,广泛应用于各种工业和家用设备中。
本文将对电机学知识进行总结,包括电机的分类、工作原理、性能参数、调速控制等方面的内容。
一、电机的分类根据电机的工作原理和结构特点,电机可以分为直流电机和交流电机两大类。
1. 直流电机:直流电机是利用直流电源供电的电动机,其工作原理是利用磁场和电流的相互作用产生转矩,将电能转化为机械能。
直流电机具有简单的结构、良好的速度调节性能和较高的启动转矩,广泛用于需要精密调速和大启动转矩的场合,如印刷设备、纺织设备、混凝土搅拌机等。
2. 交流电机:交流电机是利用交流电源供电的电动机,其工作原理是利用交流电流在磁场中产生旋转磁动力,从而驱动转子旋转。
交流电机具有结构简单、成本低、维护方便等优点,广泛应用于家用电器、工业生产线、汽车空调压缩机等领域。
二、电机的工作原理电机是利用电流通过导体时所产生的磁场力来实现能量转换的装置。
其主要工作原理包括磁动力原理和电磁感应原理。
1. 磁动力原理:磁动力原理是指在磁场中的导体内产生电流或者在电流中的导体内产生磁场时,力的作用。
根据此原理,电机内部的磁场和电流相互作用,从而产生力矩,驱动转子旋转。
2. 电磁感应原理:电磁感应原理是指导体在磁场中运动时会产生感应电动势,而感应电动势又会产生感应电流。
根据此原理,电机内部的磁场和感应电动势相互作用,从而产生转矩,驱动转子旋转。
三、电机的性能参数电机的性能参数是衡量其工作性能的重要指标,主要包括额定功率、转速、效率、启动转矩、额定电流等。
1. 额定功率:电机在额定工作条件下所能输出的功率,通常用单位千瓦(kW)或者马力(HP)来表示。
2. 转速:电机在额定工作条件下的输出转速,通常用单位转每分钟(r/min)来表示。
3. 效率:电机在额定工作条件下所能输出的功率与其输入的功率之比,通常用百分比来表示。
4. 启动转矩:电机在启动时所能输出的最大转矩,通常用单位牛顿·米(N·m)来表示。
电机学笔记
电机学是一门非常重要的工程学科,主要研究电动机的原理、结构、性能,以及其应用于各种实际工程中的运用。
以下是电机学的一
些笔记:
1.电动机的分类:电动机按照不同的标准可以分为很多种类,比
如按照能量传递方式可分为直流电机和交流电机,按照电源形式可分
为单相电机和三相电机,按照转子类型可分为异步电机和同步电机等。
2.电动机的主要构造:电动机由定子和转子两部分组成,其中定
子是由绕组和铁心组成的,绕组中笆分为定子绕组和励磁绕组;转子
则是由导体和铁心组成,其中导体又可以分为串联转子、并联转子和
环形转子等。
3.电动机的工作原理:电动机的工作原理是利用电磁感应的原理,能量从电源输入到电动机中,经过一系列的电流变化和磁通变化,最
终使得转子转动,从而实现电动机的工作。
4.电动机的运用:电动机在工业领域中得到了广泛的运用,比如
风力发电机、水力发电机、液压泵站、电梯、风扇、电动汽车等等,
电动机的发展对于现代工业的发展起到了很大的推动作用。
5.电机性能的测试:在电机的使用过程中,对于其性能的测试也
很重要,比如需要测试电机的高速性能、额定电压下的工作性能、过
载保护能力等等,以保证电机在使用过程中的可靠性和稳定性。
以上是电机学的一些笔记,希望对大家有所帮助。
1第三章:1、直流电机的电枢反应(柴兆森说是重点)2、交轴电枢的去磁(参考p83—p84)3、并励发电机的自励条件(p92),直流发电机的并励的外特性的特点(p93最上面一段).4、串励电动机的运行特性(1、串励电动机的特点:转速随着负载的增加而迅速下降2、串励电动机不允许空载运行)5、直流电机的计算指标(他励发电机的额定电压调整率(p90最下面一段)、并励电动机的转速调整率(p95),并励直流电机的电磁转矩(p85—p86),电枢绕组的感应电动势(p84—p85))6、熟悉直流电机的基本方程。
7、分清直流电动机中U>Ea (U=Ea+Ia*Ra)、Te=T0+T2,电磁转矩是驱动转矩;直流发电机中Ea>U(Ea=U+Ia*Ra)、T1=T0+Te,此时电磁转矩是制动转矩。
8、发电机的额定功率是指输出的电功率,电动机的额定功率是指输出的机械功率。
典型例题;课后习题3—6、3—9、3—12、3—17、3—18、例题3—1;计算题都是类似于做过的课后习题的类型;第四章:1、整距线圈及短距线圈电动势(书上4.3节)、磁动势(课本4.5节和4.6节)的计算;2、每极每相下槽数的计算q=Q/2p*m1(Q:总槽数,m1:相数)3、节距因数的含义(p121),以及基波节距因数(p123)、基波分布因数(p123)、节距因数三者的不同);典型例题:课后习题4—3、4—11、4—13、4—16、4—17、4—21;画图题有一道三相双层叠绕组的画法,如P138习题4-3,画图的时候自己还要会计算q、y1等;不考高次谐波的有关知识;第四章我记得不是特别全,大家可以去找侯俊杰、薛金华、或者王鹏坤再去问一下具体要考的;。
电机学知识点总结电机,作为现代工业和日常生活中不可或缺的设备,其背后的电机学知识体系庞大而复杂。
下面我们来对电机学的重要知识点进行一番梳理。
首先,电机的分类是我们需要了解的基础。
电机主要分为直流电机和交流电机两大类。
直流电机结构相对简单,调速性能好,常用于对调速要求较高的场合,比如早期的电车和一些工业生产中的调速系统。
交流电机则又包括异步电机和同步电机。
异步电机结构简单、价格低廉、运行可靠,在工农业生产中应用广泛,像常见的风机、水泵大多采用异步电机驱动。
同步电机的转速与电源频率严格同步,具有功率因数可调等优点,常用于大型发电厂以及需要高精度转速控制的场合。
电机的工作原理是电机学的核心内容之一。
直流电机是依靠通电导体在磁场中受到电磁力的作用而转动。
其电磁转矩的大小与电枢电流和磁通成正比。
对于交流电机,异步电机是基于电磁感应原理工作的,定子绕组中通以三相交流电产生旋转磁场,转子绕组中的导体在旋转磁场的作用下产生感应电流,从而受到电磁力使转子转动。
同步电机则是通过转子磁场与定子旋转磁场的相互作用实现同步运行。
在电机的结构方面,无论是直流电机还是交流电机,都由定子和转子两大部分组成。
定子是电机的固定部分,主要包括定子铁芯、定子绕组等。
转子是电机的旋转部分,其结构形式则因电机类型的不同而有所差异。
例如,直流电机的转子有电枢铁芯、电枢绕组和换向器等;异步电机的转子有鼠笼式和绕线式两种,鼠笼式转子结构简单,绕线式转子则可以通过外接电阻来调节转速。
电机的参数也是非常重要的知识点。
比如,直流电机的主要参数有电枢电阻、电枢电感、励磁电阻和励磁电感等。
这些参数对于分析电机的性能和设计控制系统都有着至关重要的作用。
交流电机的参数则包括定子电阻、定子电感、转子电阻、转子电感以及互感等。
电机的运行特性是我们关注的重点之一。
直流电机的运行特性包括转速特性、转矩特性和效率特性等。
通过对这些特性的分析,可以了解电机在不同负载下的性能表现。
电机学知识点总结电机学知识点总结电机学课程是高等学校电气类专业的一门重要技术基础课课程的特点是理论性强、概念抽象、专业性特征明显它涉及的基础理论和知识面较广牵涉电、磁、热、机械等综合知识。
下面请看小编带来的电机学知识点总结。
电机学知识点总结直流电动机知识点1、直流电动机主要结构是定子和转子;定子主要包括定子铁心、励磁绕组、电刷。
转子主要包括转子铁心、电枢绕组、换向器。
2、直流电动机通过电刷与换向器与外电路相连接。
3、直流电动机的工作原理:通过电刷与换向器之间的切换,导体内的电流随着导体所处的磁极性的改变而同时改变其方向,从而使电磁转矩的方向始终不变。
4、通过电刷和换向器将外部通入的直流电变成线圈内的交变电流的过程叫做“逆变”。
5、励磁方式分为他励式和自励式;自励式包括并励式、串励式和复励式。
(只考他励式和并励式,掌握他励式和并励式的图形)6、直流电机的额定值:①额定功率PN 对于发电机额定功率指线端输出的电功率;对于电动机额定功率指轴上输出的机械功率。
②额定电压、额定电流均指额定状态下电机的线电压线电流。
7、磁极数=电刷数=支路数(2p=电刷数=2a,p为极对数,a为支路对数)8、空载时电极内的磁场由励磁绕组的磁动势单独作用产生,分为主磁通和漏磁通两部分。
9、电枢反应:负载时电枢磁动势对气隙主磁场的影响。
10、电刷位置是电枢表面电流分布的分界线。
11、交轴电枢反应的影响:①使气隙磁场发生畸变;②物理中线偏离几何中线;③饱和时具有一定的去磁作用。
12、电刷偏离几何中线时,出现直轴。
13、Ea=CeΦn Te=CTΦIa CT=9.55Ce14、发电机 Ea=U+IaRa电动机 U=Ea+IaRa15、他励发电机的特性(主要掌握外特性U=f(I))曲线向下倾斜原因①U=Ea‐IaRa;随着负载电流I增大,电枢电阻压降 IaRa随之增大,所以U减小。
②交轴电枢反应产生一定的去磁作用;随着负载的增加,气隙磁通Φ和电枢电动势Ea将减小,再加上IaRa的.增大使电压的下降程度增大。
知识点第一章:(以填空题、判断题、简答题为主)p13,p17,p30电机的定义(广义、侠义)电机的任务基本电磁定律(全电流定律、电磁感应定律、电磁力定律)铁磁材料特点,磁滞损耗、涡流损耗的产生机理、影响因素,产生条件磁路基本定律(磁路欧姆定律、磁路基尔霍夫第一/第二定律),定性分析交流磁路特点,磁化曲线分析(磁通与励磁电流的波形)变压器电动势产生原因与磁通之间的相位关系铁磁材料磁导率特点,磁饱和特性闭合磁路磁饱和时主磁通和励磁电流间的波形关系软硬磁材料区别,磁滞回线剩磁矫顽力磁导率铁耗,涡流损耗和磁滞损耗,产生原因及应对措施第二章:(以填空题、判断题、简答题为主)直流电机电枢绕组线圈感应电动势的交变性,直流电动势产生机理;直流电机电枢绕组虚槽数、换向片数、元件数、线圈数关系;第一节距、第二节距、合成节距、换向器节距含义;单叠绕组、单波绕组线圈绕制原则、支路数;电枢反应;感应电动势、电磁转矩的定义及计算;直流发电机、直流电动机的功率流;各种直流电机的特性曲线分析;直流电力拖动机组稳定运行条件;直流电动机的启动、调速与制动;直流电机转子线圈感应电动势的交变性及直流电动势产生机理空载磁场的产生原因及方向并励直流发电机自励条件及临界点电阻随转速的变化关系并励直流发电机,并励直流电动机等效电路及电磁功率计算直流电力传动系统稳定运行条件直流电机电枢反应定义,分类,产生条件及影响并励直流发电机和他励直流发电机外特性比较,拐弯现象解释第三章:(以填空题、判断题、简答题、计算大题为主)变压器的额定值定义;变压器的变比定义;变压器空载电流与励磁电流的关系;变压器的绕组折算方法、条件、折算前后物理量的对应关系;变压器等效电路图及各参数的含义;变压器参数测定(空载实验、短路实验);标幺值的含义、各物理量的基值、标幺值的计算及相关物理量标幺值的等值关系;负载系数的含义;变压器电压变化率的计算;变压器效率的计算及其取最大值的条件;三相变压器的连接组判断;绕组连接法及磁路系统对空载电动势波形的影响;变压器并联运行的条件,并联时的容量计算;自偶变压器的容量;电压互感器、电流互感器的作用及其使用注意事项;变压器二次测额定电压定义变比计算变压器绕组折算后一二次侧感应电动势大小关系主磁通漏磁通区别和等效电路空载或短路实验测得损耗对应关系及参数求取并联运行理想条件和实际条件电压互感器电流互感器单项变压器外加电压与励磁电流波形关系连接组别判断3.49电压变化率,最大效率求解3.46并联变压器容量分配,最打输出容量计算3.52第四章:(以填空题、判断题、简答题为主)交流绕组感应电动势与励磁磁动势间时空变化规律;交流绕组槽距角、槽距电角、相带、极距、极相组的概念;单层绕组、双层绕组每相最大并联支路数;导体电动势、匝电动势、线圈电动势、线圈组电动势、相电动势的概念及计算;消弱谐波电动势的方法(短距绕组);单相绕组磁动势、三相绕组基波合成磁动势性质;谐波磁动势的次数、转速;单相绕组通单相交流电,三相绕组通三相对称交流电产生的磁动势三相绕组基波磁动势转向与电流向序关系对称绕组消除3n次谐波短路绕组消除或削弱谐波时第一节距选择第五章:(以填空题、判断题、简答题、计算大题为主)异步电机的转子结构;同步转速、转差率的计算;异步电机的三种运行状态;异步电机额定值;异步电机工作原理;定子磁场和转子磁场相对静止关系;异步电机的绕组折算;转子绕组中感应电动势及电流的频率计算;异步电机的频率折算及其含义;异步电机的等效电路;异步电机的参数测定(空载实验、短路实现);异步电机的功率流及相关功率之间的关系;异步电机的电磁功率计算(最大转矩、起动转矩);异步电机电磁转矩的三种表达式;异步电机特性曲线分析;异步电机的启动特点;异步电机启动方法及相关计算;异步电机的制动及调速;异步电机定子磁场和转子磁场同步,转子和磁场异步异步电机三种运行状态及各种状态下功率流程异步电机铁耗的主要产生原因频率折算和绕组折算共同条件鼠笼型异步电机转子相数降压启动特点变频调速时保证磁通不变的方法异步电机功率流程,转子转速,转差率,转子频率,电磁转矩,效率,定子电流,Y三角形启动转矩或启动电流计算第六章:(以填空题、判断题、简答题、计算大题为主)同步电机的特点;同步转速的计算;同步电机的额定值;同步电机的运行原理;同步电机的电枢反应;隐极机、凸极机在磁路不饱和、饱和状态下的电磁关系(方程式、向量图)及相关计算;同步发电机的运行特性(空载特性、短路特性、零功率因数特性、外特性、调整特性)分析;保梯电抗、短路比的概念及对电机性能的影响;同步发电机的并联运行条件及方法;同步电机功率和转矩平衡方程;同步电机电磁功率的计算及含义;同步电机交轴电枢反应对机电能量转换的意义;同步电机静态稳定的条件;同步电机无功功率的调节和V形曲线分析;同步电动机无功调节及V性曲线;同步电动机的起动和调速;调相机的作用、机理和运行状态;步进电动机工作原理及步距角计算。
电机学基础必学知识点1. 电磁感应原理:根据法拉第电磁感应定律,导线在磁场中运动时会产生感应电动势。
2. 磁场的产生:磁场可以由磁铁或电流产生。
3. 左手定则:用于确定电流通过导线时的磁场方向。
将拇指指向电流方向,其他手指弯曲的方向即为磁场方向。
4. 电机运动方向的确定:根据洛伦兹力定律,当电流通过导线时,会受到磁场力的作用,方向由右手定则确定。
5. 电动势和电流的关系:根据欧姆定律,电动势等于电流乘以电阻。
6. 磁化曲线和磁滞回线:用于描述磁场强度与磁化力的关系。
7. 磁感应强度和磁场强度:磁感应强度是磁场中的磁感线的密度,而磁场强度表示一个点的磁场强度大小。
8. 电磁铁:由线圈和铁芯构成,通电时能够产生强磁场。
9. 电感和感应电动势:当电流变化时,会产生感应电动势,这种现象称为自感。
10. 洛伦兹力:电流通过导线时,在磁场中会受到力的作用,该力称为洛伦兹力。
11. 感应电动势的大小:根据法拉第电磁感应定律,感应电动势的大小等于磁通量的变化率。
12. 动能定理:将电能转换成机械能的定律,表征电机的工作原理。
13. 电机的功率和效率:电机的功率等于输入功率减去损耗功率,效率等于输出功率除以输入功率。
14. 直流电机:根据电流方向和磁场方向的关系,直流电机分为永磁直流电机和励磁直流电机。
15. 交流电机:根据电流的形式,交流电机分为异步交流电机和同步交流电机。
16. 电机的控制方法:电机的控制方法包括电压控制、电流控制和频率控制等。
17. 电机故障检测和维护:电机故障检测和维护包括温度检测、振动检测、绝缘检测等。
18. 电机的选型和应用:根据具体的应用需求选择合适的电机类型和规格进行设计和应用。
《电机学》课程复习要点课程名称:《电机学》适用专业:电气工程及其自动辅导教材:《电机学》(第5 版)汤蕴璆主编第一章绪论内容:了解本课程的主要内容和电机在国民经济各行各业中的作用,明确《电机学》课程在自动化专业中的地位,从而明确学习目的;了解本课程的性质、任务、特点和电机理论的一般分析方法,了解电机的分类、主要作用。
矚慫润厲钐瘗睞枥庑赖賃軔朧。
要求:熟练掌握电机理论中常用的基本电磁定律;铁磁材料的特性。
第二章变压器内容:单相变压器运行原理、三相变压器连接法和联结组别、标幺值概念及用标幺值进行各种运算要求:了解三相变压器磁路系统、三相变压器绕组接法和磁路系统对电动势波形的影响;理解单相变压器空载运行物理现象及电势、电流分析;变压器工作特性;掌握变压器基本工作原理结构,原理图各量参考方向的规定;额定值;单相变压器负载;熟练掌握单相变压器空载及负载运行时基本方程式、等效电路、相量图、功率关系及相关运算、标幺值概念及用标幺值进行上述各种运算。
聞創沟燴鐺險爱氇谴净祸測樅。
第三章直流电机内容:直流电机磁场及电枢反应、电机的可逆原理、直流电机的基本工作原理和结构、直流电机单叠绕组。
要求:理解直流电机空载和负载时的磁场及电枢反应、电机的可逆原理;掌握直流电机的基本工作原理和结构、直流电机单叠绕组;熟练掌握直流电机电枢电动势、电磁转矩和电磁功率、直流电动机的运行原理、电动机惯例、基本方程式、机械特性、工作特性及相关运算。
残骛楼諍锩瀨濟溆塹籟婭骒東。
第四章交流电机共同问题内容:交流电机的电枢绕组、交流绕组的绕制方法、交流绕组感应电动势、交流绕组建立的磁动势。
要求:了解交流电机的电枢绕组、理解交流绕组的绕制方法、掌握交流绕组感应电动势及交流绕组建立的磁动势。
第五章感应电机内容:感应电机的结构、基本工作原理、额定值、三相感应电机磁动势、磁场、工作特性及运行原理。
要求:了解感应电机的结构、基本工作原理、额定值;理解三相感应电机磁动势、磁场和工作特性;掌握三相感应电动机堵转时运行特性、转子转动时运行特性、频率折算和转子绕组折算、三相感应电动机参数测定;熟练掌握感应电动机基本方程式组、等值电路、功率与转矩平衡关系及相关运算。
电机学知识点总汇(二)引言概述:电机学是电工学科的一个重要分支,研究电动机的原理、结构、控制等知识。
本文是《电机学知识点总汇(二)》的文档,旨在介绍关于电机学的一些重要知识点。
本文将从五个大点展开,分别是电动机的分类、电动机的工作原理、电动机的结构组成、电动机的控制方式以及电动机的维护与故障排除。
希望通过对这些知识点的介绍,能够帮助读者对电机学有更全面的了解。
一、电动机的分类:1. 直流电机2. 交流电机3. 三相异步电机4. 三相同步电机5. 混合动力电机二、电动机的工作原理:1. 磁场与电流的相互作用2. 洛伦兹力定律3. 共生现象与磁场转动定律4. 等效电路模型5. 磁场势能与转动功率计算三、电动机的结构组成:1. 定子与转子2. 绕组与励磁源3. 机械部分:轴承、风扇等4. 制动与冷却系统5. 附件:传感器、编码器等四、电动机的控制方式:1. 直接启动a. 单方向启动b. 双方向启动2. 变压器启动a. 自耦变压器启动b. 间接变压器启动3. 阻抗启动4. 变频控制5. 损耗最小化控制五、电动机的维护与故障排除:1. 维护周期与内容2. 温升检测3. 异常振动分析4. 取样与检测方法5. 常见故障排除与修复方法总结:本文从电动机的分类、工作原理、结构组成、控制方式到维护与故障排除等方面进行了详细的介绍。
通过学习这些重要的知识点,读者可以对电机学有一个更全面的认识,并且在实际应用中能够更好地理解和操作电动机。
同时,良好的维护和故障排除方法也可以保证电动机的高效运行和延长使用寿命。
希望本文对读者的学习和实践有所帮助。
电机学知识点总结电机学是电气工程领域的重要学科,研究电能转换的原理和方法。
在现代社会中,电机广泛应用于各行各业,推动着社会的发展。
本文将对电机学的相关知识点进行总结,包括电机的分类、基本原理及应用等内容。
一、电机的分类电机根据其工作原理和结构特点可以分为直流电机和交流电机两大类。
1. 直流电机直流电机是最早发展的一种电机,其工作原理基于洛伦兹力。
直流电机按照其励磁方式可以分为永磁直流电机和电磁励磁直流电机。
永磁直流电机:其励磁方式采用永磁体产生磁场,具有结构简单、使用方便等优点。
常见的家用电器中常用永磁直流电机。
电磁励磁直流电机:其励磁方式采用外部电源提供磁场,具有磁场可调性的特点。
在工业领域中,电磁励磁直流电机更为常见。
2. 交流电机交流电机是现代工业中最常见的一种电机,根据其转子结构和工作原理可分为异步电机和同步电机。
异步电机:其转子的转速永远低于定子的旋转频率,适用于大多数家用电器和工业设备。
同步电机:其转子的转速与定子的旋转频率同步,精度高。
同步电机在高精度的控制系统中得到广泛应用。
二、电机的基本原理电机的工作原理是基于电磁感应的。
1. 动磁场与定子相互作用电机中,转子通过外部电源的电流产生动磁场,而定子的绕组周围由于交变电流的存在而产生定磁场。
转子的磁场与定子的磁场相互作用,产生转矩使转子运动。
2. 转矩与功率输出电机的转矩与转子的磁场强度以及转子与定子之间的相对位置有关。
转矩越大,功率输出越高。
3. 动转子与同步转子的区别动转子的磁极是通过电流流过线圈产生的,转子的转速取决于电源频率。
而同步转子的磁极是通过外部励磁产生的,转子的转速与电源频率同步。
三、电机的应用电机作为一种能量转换设备,在各个领域都有广泛的应用。
1. 工业应用电机在工业领域中应用广泛,常见于工厂的生产线、机械设备、自动化控制系统等。
不同类型的电机可以满足不同的工艺要求。
2. 家用电器家用电器中也广泛使用电机,如空调、洗衣机、电风扇等。
第 1 页/共 6 页一、主要内容磁场、磁感应强度,磁场强度、磁导率,全电流定律,磁性材料的B-H 曲线,铁心损耗与磁场储能,电感,电磁感应定律,电磁力与电磁转矩。
二、基本要求结实控制以上概念对本课程学习是必须的。
三、注重点1、欧姆定律:作用于磁路上的磁动势等于磁阻乘以磁通m F Φ=Λ,1m m S R lμΛ== 2、2222m SfN SN l X L N l μμωωπω==Λ==3、随着铁心磁路饱和的增强,铁心磁导率µFe 减小,相应的磁导、电抗也要减小。
一、主要内容额定值,感应电动势、电压变比,励磁电流,电路方程、等效电路、相量图,绕组归算,标幺值,空载实验、短路实验及参数计算,电压变化率与效率。
三相变压器的联接组判别。
三相变压器绕组的联接法和磁路系统对相电势波形的影响。
二、基本要求熟练控制变压器的基本电磁关系,变压器的各种平衡关系。
三种分析手段:基本方程式、等效电路和相量图。
正方向决定,基本方程式、相量图和等效电路间的一致性。
理解变压器绕组的归算原理与计算。
熟练控制标幺值的计算及数量关系。
认识变压器参数的测量主意,运行特性分析主意与计算。
控制三相变压器的联接组表示与决定。
三、注重点1、变压器的额定值对三相变压器来说电压、电流均为线值,功率是三相视在功率,计算时一定要注重。
三相变压器参数计算时,必须换成单相数值,最后结果再换成三相值。
2、励磁阻抗的物理意义,与频率和铁心饱和度的关系。
3、变压器的电势平衡、磁势平衡和功率平衡(功率流程图)。
4、变压器参数计算(空载实验普通在低压侧做,短路实验普通在高压侧做。
在哪侧做实验,测出来的就是哪侧的数值,注重折算!)5、变压器的电压调节率和效率的计算(负载因数1I β*=)。
6、单相变压器中励磁电流、主磁通和感应电势的波形关系,三相变压器的铁心结构和电势波形。
7、联接组别的判别。
8、变压器负载与二次侧接线方式要一致,若不一致,必须将负载∆-Y 变换。
《电机学》要求掌握的重点内容
一、基本概念和基本原理
1 . 单相变压器空载时的电流与主磁通不同相位,存在一个相位角度差αFe,因为存在铁耗电流。
空载电流是尖顶波形,因为其中有较大的三次谐波。
2 . 直流电机电枢绕组中流动的也是交流电流。
但其励磁绕组中流的是直流电流。
直流电动机的励磁方式有他励、并励、串励、复励等。
3 . 直流电机的反电势表达式为E =C E Φ n;而电磁转矩表达式则为T em =C T ΦI。
4 . 直流电机的并联支路数总是成对的。
而交流绕组的并联支路数则不一定。
5 . 在直流电机中,单叠绕组的元件是以一个叠在另外一个之上的方式,串联而成的。
无论是单波绕组、还是单叠绕组,换向片将所有元件串联在一起、构成了一个单一的闭合回路。
6 . 异步电机又称感应电机,因为异步电机的转子电流是通过电磁感应而产生的。
7 . 异步电动机降压起动时,起动转矩减小,起动转矩和绕组的起动电流的平方成正比地减小。
8 . 一次侧电压的幅值、频率不变时,变压器的铁心的饱和程度是基本不变的,励磁电抗也基本不变。
9 . 同步发电机的短路特性是一条直线,三相对称短路时磁路是不饱和的;三相对称稳态短路时,短路电路为纯去磁的直轴分量。
10 . 同步电机励磁绕组中的电流是直流电流,励磁方式主要有励磁发电机励磁、静止整流器励磁、旋转整流器励磁等。
11 . 三相合成磁动势中没有偶次谐波;对称三相绕组通对称三相电流,其合成磁动势中没有3的倍数磁谐波。
12 . 三相变压器一般都希望有某一侧是三角形连接或者有某一侧中点接地。
因为三相变压器的绕组联结都希望有三次谐波电流的通路。
13 . 对称三相绕组通对称三相电流时,其合成磁动势中的5次谐波是反转的;7次谐波是正转的。
14 . 串励直流电动机的机械特性比较软。
他励直流电动机的机械特性比较硬。
15 . 变压器短路试验可以测量变压器绕组的漏阻抗;而空载试验则可以测量绕组的励磁阻抗参数。
16 . 变压器的变比等于一次侧绕组与二次侧绕组的匝数比。
而单相变压器的变比则还可以表示成一、二次侧的额定电压之比。
17 . 正常励磁时,同步发电机的功率因数等于1;保持输出有功不变,使励磁电流小于正常励磁(欠励)时,则直轴电枢反应的性质是助磁的;保持输出有功不变,使励磁电流大于正常励磁(过励)时,则直轴电枢反应的性质是去磁的。
18 . 在直流电机中,铁耗主要存在于转子铁心(电枢铁心)中,因为定子铁心磁场基本不变。
19 . 在直流电机中,第一节距y1等于元件第1边与第2边之间相差的槽数。
合成节距y等于相串联的两元件的上元件边之间相差的槽数。
20 . 在直流电机中,当不考虑饱和时,交轴电枢反应的特点是使磁场为零的位置偏移,但每极磁通不变。
当电刷位于几何中性线上时,电枢反应是交磁性质的。
21 . 在直流电动机中,将外部的直流电变换成内部的交流电的部件是换向器。
换向器的作用是将直流转换成交流(或相反)。
22 . 在同步电机中,当定子绕组交链的励磁磁通Φ0为最大值时,反电势E0达到最小值,当Φ0达到零时,E0达到最大值,Φ0和E0这两者之间的相位关系为Φ0超前E0 90º。
且E0和Φ0之间的关系表达式为:E0 = 4.44 f N k N1Φ0。
23 . 在电机中,漏磁通是指仅交链绕组自身的磁通,其产生的反电动势往往可以用一个漏电抗压降(或负电抗压降)来等效。
24 . 异步电机的转子有:鼠笼式、绕线式等两种。
25 . 异步电机的转差率s定义为:同步转速与转子转速之差与同步转速的比值。
异步电机工作于电动机状
态时,其转差率s的范围是1>s>0。
26 . 异步电动机的电磁转矩T em与转差率s的关系T em-s曲线有三个关键点,分别是起动点(s = 1)、最大电磁转矩点(s=s m)、同步点(s=0)。
当异步电机的转子电阻改变时,其最大电磁转矩T em的大小、转差率s m的特点是:大小不变,s位置变化。
27 . 异步电动机必须从电网吸收滞后性质的无功,用于激磁。
28 . 一个线圈组通上交流电,其磁动势随着时间的变化具有脉振性质。
单个线圈通交流电,其磁动势随着时间的变化也具有脉振性质。
29 . 同步发电机并网时,要求其三相端电压同电网三相电压具有相同的:频率、幅值、波形、相序(和相位)等。
30 . 同步电机的转子有隐极式和凸极式两种。
31 . 鼠笼转子的等效相数等于其槽数,而每相的等效匝数则为1/2。
32 . 三相对称交流绕组,通对称三相交流电流,其基波合成磁动势是一个圆形旋转的磁动势,其旋转的方向是从超前相绕组轴线转向滞后相轴线,再到下一个滞后相的轴线。
33 . 三相变压器的三相绕组之间有星形和三角形等两种连接方法;磁路则有组式和心式等两种结构。
34 . 三相变压器的6个奇数联结组号为1、3、5、7、9、11。
而6个偶数联结组号则为0、2、4、6、8、10。
35 . 交流绕组中,每极每相槽数q =q = Z/2p/m(假定槽数为Z,极对数为p,相数为m)。
. 在交流绕组中,既有采用120º相带的,也有采用60º相带的。
其中60º相带的基波绕组系数、反电动势较高。
36 . 对称分量法可用于分析变压器、同步电机的不对称运行,其应用的前提是系统为线性的,因而可以应用叠加原理,将不对称的三相电量系统,分解为正序、负序、零序等三组对称的三相系统。
37 . 短距系数的计算公式是k y1 = sin(π/2×y1/τ),其物理意义是短距导致反电势(或磁动势)与整距相比所打的折扣(或减小的系数)。
而分布系数的计算公式则是k q1 = sin(qα1 /2 ) / q / sin(α1 / 2),其物理意义是q 个线圈依次相差α1电角度时,反电势(或磁动势)相对集中的情况所减小的系数(或打的折扣)。
38 . 电流互感器是用来测量电流,其二次侧不能开路。
而电压互感器则是用来测量电压,其二次侧不能短路。
39 . 电机是将机械能转换为电能(或相反),或者将一种交流电压等级改变为另外一种交流电压等级的装置。
从能量转换角度看,电机可以分为变压器、电动机、发电机等三类。
40 . 槽距电角度α1的计算公式为α1 = p×360º/Z。
可见槽距电角度α1等于槽距机械角度αm的p倍。
41 . 变压器绕组归算的原则是:在归算前后,保证绕组的磁动势不变,以及保证绕组的有功和无功不变。
42 . 变压器的效率特性曲线的特点是存在一个最大值,即当可变损耗等于不变损耗时达到最大值。
43 . 变压器的空载试验通常在低压侧加电压和进行测量。
变压器的短路试验通常在高压侧加电压和进行测量。
44 . 变压器并联运行时,空载无环流的条件是:变比相同以及联结组号相同。
45 . 变压器并联运行时,负载分配原则是:变压器负载电流的标幺值与短路阻抗的标幺值成反比。
并联运行时变压器的容量能够得到充分利用的条件是:短路阻抗的标幺值要相等,且它们的阻抗角也要相等。
二、基本方程、数学模型、等效电路、相量图
1. 并励直流电动机的等效电路、电枢回路电压方程式。
2. 单相(三相)交流绕组通交流电流时,基波脉振(或旋转)磁动势振幅最大值的表达式;
3. 变压器的T型等效电路、绕组折算后的变压器方程式组。
4. 转子旋转时,经过频率和绕组折算后的异步电动机方程式组、T型等效电路。
5. 隐极(及凸极)同步发电机的电压方程式、相量图(不饱和时)。