高中物理-10卫星变轨和能量问题
- 格式:doc
- 大小:117.50 KB
- 文档页数:6
热点10卫星变轨和能量问题(建议用时:20分钟)1. (2020·皖南八校4月联考)2019年12月27日,在海南文昌航天发射场,中国运载能力最强的“长征5号”运载火箭成功发射,将“实践二十号”卫星送入地球同步轨道,变轨过程简化如图所示,轨道Ⅰ是超同步转移轨道,轨道Ⅲ是地球同步轨道,轨道Ⅱ是过渡轨道(椭圆的一部分),轨道Ⅱ、轨道Ⅰ的远地点切于M点,轨道Ⅱ的近地点与轨道Ⅲ切于N点,下列说法正确的是()A.卫星在轨道Ⅰ上运行时速度大小不变B.从轨道Ⅰ进入轨道Ⅱ,卫星在M点需要减速C.从轨道Ⅱ进入轨道Ⅲ,卫星在N点需要减速D.在轨道Ⅱ上,卫星受到地球的引力对卫星做功为零2.(2020·威海市下学期模拟)1970年4月24日,我国第一颗人造地球卫星“东方红一号”发射成功,拉开了中国人探索宇宙奥秘、和平利用太空、造福人类的序幕,自2016年起,每年4月24日定为“中国航天日”。
已知“东方红一号”的运行轨道为椭圆轨道,其近地点M和远地点N的高度分别为439 km和2 384 km。
则()A.“东方红一号”的发射速度介于第一宇宙速度和第二宇宙速度之间B.“东方红一号”在近地点的角速度小于远地点的角速度C.“东方红一号”运行周期大于24 hD.“东方红一号”从M运动到N的过程中机械能增加3. (多选)(2020·华中师大第一附中期中)2019年8月17日,“捷龙一号”首飞成功,标志着中国“龙”系列商业运载火箭从此登上历史舞台。
“捷龙一号”在发射卫星时,首先将该卫星发射到低空圆轨道1,待测试正常后通过变轨进入高空圆轨道2.假设卫星的质量不变,在两轨道上运行时的速率之比v1∶v2=3∶2,则()A.卫星在两轨道运行时的向心加速度大小之比a1∶a2=81∶16B.卫星在两轨道运行时的角速度大小之比ω1∶ω2=25∶4C.卫星在两轨道运行的周期之比T1∶T2=4∶27D.卫星在两轨道运行时的动能之比E k1∶E k2=9∶44. (2020·宜宾市上学期一诊)如图所示,一航天飞机从地面升空,完成对哈勃空间望远镜的维修任务。
一.必备知识1.卫星变轨的基本原理当卫星开启发动机,或者受空气阻力作用时,万有引力不再等于卫星所需向心力,卫星的轨道将发生变化。
如图所示。
(1)当卫星的速度增加时,G Mm r 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,如果速度增加很缓慢,卫星每转一周均可看成做匀速圆周运动,经过一段时间,轨道半径变大,当卫星进入新的轨道运行时,由v = GM r 可知其运行速度比在原轨道时小。
(2)当卫星的速度减小时,G Mm r 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,如果速度减小很缓慢,卫星每转一周均可看成做匀速圆周运动,经过一段时间,轨道半径变小,当卫星进入新的轨道运行时,由v = GMr 可知其运行速度比在原轨道时大。
例如,人造卫星受到高空稀薄大气的摩擦力,轨道高度不断降低。
离心F <引减小2.卫星的发射与回收原理卫星轨道的突变:由于技术上的需要,有时要在适当的位置短时间内启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道。
如图所示,发射同步卫星时,可以分多过程完成:(1)先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1。
(2)变轨时在P 点点火加速,短时间内将速率由v 1增加到v 2,这时GMm r 2<m v 2r ,卫星脱离原轨道做离心运动,进入椭圆形的转移轨道Ⅱ。
(3)卫星运行到远地点Q 时的速率为v 3,此时进行第二次点火加速,在短时间内将速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。
飞船和空间站的对接过程与此类似。
卫星的回收过程和飞船的返回则是相反的过程,通过突然减速,GMm r 2>m v 2r ,变轨到低轨道,最后在椭圆轨道的近地点处返回地面。
发射或回收示意图如下:空间站对接示意图如下:3.卫星变轨时三类物理量的定性比较(1)速度:设卫星在圆轨道Ⅰ、Ⅲ上运行时的速率分别为v 1、v 4,在轨道Ⅱ上过P 、Q 点时的速率分别为v 2、v 3,在P 点加速,则v 2>v 1;在Q 点加速,则v 4>v 3。
专题强化七卫星运动的三类问题学习目标 1.会分析卫星的变轨过程及各物理量的变化。
2.掌握双星或多星模型的特点。
3.会分析卫星的追及与相遇问题。
考点一卫星的变轨和能量问题1.变轨原理(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示。
(2)在A 点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅲ。
2.变轨过程各物理量比较速度关系在A 点加速:v ⅡA >v Ⅰ,在B 点加速:v Ⅲ>v ⅡB ,即v ⅡA >v Ⅰ>v Ⅲ>v ⅡB(向心)加速度关系a Ⅲ=a ⅡB a ⅡA =a Ⅰ周期关系T Ⅰ<T Ⅱ<T Ⅲ机械能E Ⅰ<E Ⅱ<E Ⅲ例1(2023·江苏南京模拟)2020年我国实施“天问一号”计划,通过一次发射,实现“环绕、降落、巡视”三大任务。
如图1所示,探测器经历椭圆轨道Ⅰ→椭圆轨道Ⅱ→圆轨道Ⅲ的变轨过程。
Q 为轨道Ⅰ远火点,P 为轨道Ⅰ近火点,探测器在三个轨道运行时都经过P 点。
则探测器()图1A.沿轨道Ⅰ运行至P点速度大于运行至Q点速度B.沿轨道Ⅱ运行至P点的加速度小于沿轨道Ⅲ运行至P点的加速度C.沿轨道Ⅰ运行的周期小于沿轨道Ⅱ运行的周期D.与火星连线在相等时间内,沿轨道Ⅰ运行与沿轨道Ⅱ运行扫过面积相等答案A解析根据开普勒第二定律可知,沿轨道Ⅰ运行至近火点P的速度大于运行至远火点Q的速度,选项A正确;根据a=GMr2可知,沿轨道Ⅱ运行至P点的加速度等于沿轨道Ⅲ运行至P点的加速度,选项B错误;根据开普勒第三定律r3T2=k,可知沿轨道Ⅰ运行的半长轴大于沿轨道Ⅱ运行的半长轴,则沿轨道Ⅰ运行的周期大于沿轨道Ⅱ运行的周期,选项C错误;根据开普勒第二定律可知,沿同一轨道运动时在相等的时间内与火星的连线扫过的面积相等,而在相等时间内,沿轨道Ⅰ运行与沿轨道Ⅱ运行扫过面积一定不相等,选项D错误。
35 卫星变轨及能量问题[方法点拨] (1)卫星在运行中的变轨有两种情况,即离心运动和向心运动:①当v 增大时,所需向心力mv2r增大,卫星将做离心运动,轨道半径变大,由v = GMr知其运行速度要减小,但重力势能、机械能均增加;②当v 减小时,所需向心力mv2r减小,因此卫星将做向心运动,轨道半径变小,由v =GMr知其运行速度将增大,但重力势能、机械能均减少.(2)低轨道的卫星追高轨道的卫星需要加速,同一轨道后面的卫星追赶前面的卫星需要先减速后加速.1.(2020·北京房山区模拟)我国的“神舟十一号”载人飞船已于2020年10月17日发射升空,入轨两天后,与“天宫二号”成功对接,顺利完成任务.假定对接前,“天宫二号”在如图1所示的轨道3上绕地球做匀速圆周运动,而“神舟十一号”在图中轨道1上绕地球做匀速圆周运动,两者都在图示平面内顺时针运转.若“神舟十一号”在轨道1上的P 点瞬间改变其速度的大小,使其运行的轨道变为椭圆轨道2,并在轨道2和轨道3的切点Q 与“天宫二号”进行对接,图中P 、Q 、K 三点位于同一直线上,则( )图1A .“神舟十一号”应在P 点瞬间加速才能使其运动轨道由1变为2B .“神舟十一号”沿椭圆轨道2从Q 点飞向P 点过程中,万有引力做负功C .“神舟十一号”沿椭圆轨道2从P 点飞向Q 点过程中机械能不断增大D .“天宫二号”在轨道3上经过Q 点时的速度与“神舟十一号”在轨道2上经过Q 点时的速度相等 2.(多选)(2020·山东淄博一模)“嫦娥三号”从距月面高度为100 km 的环月圆轨道Ⅰ上的P 点实施变轨,进入近月点为15 km 的椭圆轨道Ⅱ,从近月点Q 成功落月,如图2所示.关于“嫦娥三号”,下列说法正确的是( )图2A .沿轨道Ⅱ运行的周期大于沿轨道Ⅰ运行的周期B .沿轨道Ⅰ运行至P 点时,需制动减速才能进入轨道ⅡC .沿轨道Ⅱ运行时,在P 点的加速度大小等于在Q 点的加速度大小D .在轨道Ⅱ上由P 点运行到Q 点的过程中,万有引力对其做正功,它的动能增加,机械能不变3.(2020·江西省六校3月联考)2020年10月23日早上,天宫二号空间实验室上搭载的一颗小卫星(伴星)在太空中成功释放,并且对天宫二号和神舟十一号组合体进行了第一次拍照.“伴星”经调整后,和“天宫二号”一样绕地球做匀速圆周运动.但比“天宫二号”离地面稍高一些,那么( ) A .“伴星”的运行周期比“天宫二号”稍小一些B .从地球上发射一颗到“伴星”轨道运动的卫星,发射速度要大于11.2 km/sC .在同一轨道上,若后面的卫星一旦加速,将与前面的卫星相碰撞D .若伴星失去动力且受阻力作用,轨道半径将变小,则有可能与“天宫二号”相碰撞4.(多选)(2020·湖北黄冈模拟)2020年12月10日,我国成功将中星1C 卫星发射升空,卫星顺利进入预定转移轨道.如图3所示是某卫星沿椭圆轨道绕地球运动的示意图,已知地球半径为R ,地球表面的重力加速度为g ,卫星远地点P 距地心O 的距离为3R.则( )图3A .卫星在远地点的速度大于3gR 3B .卫星经过远地点时速度最小C .卫星经过远地点时的加速度大小为g9D .卫星经过远地点时加速,卫星将不能再次经过远地点5.有研究表明,目前月球远离地球的速度是每年3.82±0.07 cm.则10亿年后月球与现在相比( ) A .绕地球做圆周运动的周期变小 B .绕地球做圆周运动的加速度变大 C .绕地球做圆周运动的线速度变小 D .地月之间的引力势能变小6.(2020·四川成都第七中学月考)“天宫一号”目标飞行器在离地面343 km 的圆形轨道上运行,其轨道所处的空间存在极其稀薄的大气.下列说法正确的是( ) A .如不加干预,“天宫一号”围绕地球的运动周期将会变小 B .如不加干预,“天宫一号”围绕地球的运动动能将会变小 C .“天宫一号”的加速度大于地球表面的重力加速度D .航天员在“天宫一号”中处于完全失重状态,说明航天员不受地球引力作用答案精析 1.A 2.BD3.D [根据万有引力提供向心力,有G Mm r 2=m 4π2T2r ,得T =4π2r3GM,“伴星”比“天宫二号”的轨道半径稍大一些,所以“伴星”的运行周期比“天宫二号”稍大一些,故A 错误;如果发射速度大于11.2 km/s ,卫星将脱离地球引力的束缚,不可能成为“伴星”轨道的卫星,故B 错误;在同一轨道上,若后面的卫星一旦加速,将做离心运动到更高的轨道上,不会与前面的卫星碰撞,故C 错误;若“伴星”失去动力且受阻力作用,在原轨道上速度减小,万有引力大于所需要的向心力,轨道半径将变小,则有可能与“天宫二号”相碰撞,故D 正确.] 4.BC [对地球表面的物体有GMm 0R 2=m 0g ,得GM =gR 2,若卫星沿半径为3R 的圆周轨道运行时有GMm (3R )2=m v23R ,运行速度为v = GM 3R =3gR 3,从椭圆轨道的远地点进入圆轨道需加速,因此,卫星在远地点的速度小于3gR3,A 错误;卫星由近地点到远地点的过程中,万有引力做负功,速度减小,所以卫星经过远地点时速度最小,B 正确;卫星经过远地点时的加速度a =GM (3R )2=g9,C 正确;卫星经过远地点时加速,可能变轨到轨道半径为3R 的圆轨道上,所以卫星还可能再次经过远地点,D 错误.] 5.C [对月球进行分析,根据万有引力提供向心力有:GMm r 2=m(2πT)2r ,得:T =4π2r3GM,由于轨道半径变大,故周期变大,A 项错误;根据GMm r 2=ma ,有:a =GMr 2,由于轨道半径变大,故加速度变小,B 项错误;根据GMm r 2=m v2r,则:v =GMr,由于轨道半径变大,故线速度变小,C 项正确;由于月球远离地球,万有引力做负功,故引力势能变大,D 项错误.]6.A [根据万有引力提供向心力有GMm r 2=m 4π2rT 2,解得:T =4π2r3GM,由于摩擦阻力作用,卫星轨道高度将降低,则周期减小,A 项正确;根据GMm r 2=m v2r,解得:v =GMr,轨道高度降低,卫星的线速度增大,故动能将增大,B 项错误;根据GMm r 2=ma ,得a =GMr 2,“天宫一号”的轨道半径大于地球半径,则加速度小于地球表面的重力加速度,C 项错误;完全失重状态说明航天员对悬绳的拉力或对支持物体的压力为0,而地球对他的万有引力提供他随“天宫一号”围绕地球做圆周运动的向心力,D 项错误.]高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
卫星变轨的能量变化卫星由低轨道进入高轨道后,重力势能升高,动能降低,机械能升高;反之,正好反过来,即卫星由高轨道进入低轨道后,重力势能降低,动能升高,机械能降低.势能Ep与卫星到地心的距离r的关系mg=GMm/r^2mgr=GMm/r令当卫星在无穷远处时,其势能为零,则Ep=—GMm/r,因此,距离r越大,势能Ep越大。
动能Ek与卫星到地心的距离r的关系GMm/r^2=mv^2/rEk=mv^2/2=GMm/2r因此,距离r越大,动能Ek越小。
势能Ep和动能Ek之间的关系万有引力公式与向心力公式联立,GMm/r^2=mv^2/rrv^2=GM,即卫星在空中,rv^2是一个不变的常量.r=GM/v^2Ep=—GMm/r=-GMm/(GM/v^2)=—mv^2Ek=GMm/2r=mv^2/2Ek=—Ep/2机械能E与卫星到地心的距离r的关系E=Ep+Ek=-GMm/r+GMm/2r=-GMm/2r因此,距离r越大,机械能E越大。
卫星的变轨过程人造卫星由低轨道升至高轨道的过程中,重力势能升高,动能降低,且重力势能增加值大于动能减少值,总的机械能还是升高。
也就是说,人造卫星由低轨道升至高轨道的过程中,除动能转化为势能外,还需要消耗发动机的能量,以增加卫星的势能。
卫星由低轨道进入高轨道,卫星的速度要减小。
减小卫星的速度可以有两种方法,一是通过施加与反向的作用力来实现,但这个过程比较慢。
二是借助变轨推进器使卫星快速到达大圆轨道,在到达预定的大圆轨道之前再做减速,使其满足GM=v²r,这样卫星就能在大圆轨道上稳定运行.卫星由高轨道进入低轨道,卫星的速度要增大。
增大卫星的速度只能通过加速运动做到。
近地轨道的加速运动可以通过调整线速度角度、充分利用引力来作用实现。
卫星变轨中,椭圆轨道是小圆轨道和大圆轨道间的过渡,当然它们也可以一直做椭圆轨道运动,但这一般不符合我们的需要。
在椭圆轨道的近地点,卫星线速度最大;在椭圆轨道的远地点,卫星线速度最小。
卫星的变轨问题、天体追及相遇问题一、卫星的变轨、对接问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如右图所示。
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道 Ⅰ上。
(2)在A 点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅰ。
(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅰ。
2.卫星的对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.二、变轨前、后各物理量的比较1.航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v =GM r判断。
(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。
(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。
2.卫星变轨的实质 两类变轨离心运动 近心运动 变轨起因卫星速度突然增大 卫星速度突然减小 受力分析 G Mm r 2<m v 2rG Mm r 2>m v 2r 变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动 3.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v 1、v 3,在轨道Ⅰ上过A 点和B 点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.三、卫星的追及与相遇问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA-ωB)t=2nπ(n=1,2,3,…)。
人造卫星的发射过程要经过多次变轨方可到达预定轨道,在赤道上顺着地球自转方向发射卫星到圆点点火加速,速度变大,进入椭圆轨道Ⅱ再次点火加速进入圆轨道Ⅲ卫星变轨问题分析方法速度大小的分析方法.①卫星做匀速圆周运动经过某一点时,其速度满足以此为依据可分析卫星在两个不同圆轨道上的②卫星做椭圆运动经过近地点时,卫星做离心运动,m v2.以此为依据可分析卫星沿椭圆轨r道和沿圆轨道通过近地点时的速度大小(即加速离心.发射“嫦娥三号”的速度必须达到第三宇宙速度.在绕月圆轨道上,卫星周期与卫星质量有关.卫星受月球的引力与它到月球中心距离的平方成反比.在绕月轨道上,卫星受地球的引力大于受月球的引力明白第三宇宙速度是指被发射物体能够脱离太阳系的最小发射速度,而“嫦娥三号”没有脱离太阳的引力范要熟记万有引力的表达式并清楚是万有引力提供卫星做圆如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆,到达远地点Q时再次变轨,进入同步卫星轨设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道点的速率为v2,沿转移轨道刚到达远地点,在同步卫星轨道上的速率为v4,则下列说法正确的是点变轨时需要加速,Q点变轨时要减速点变轨时需要减速,Q点变轨时要加速D.v2>v1>v4>v3练2发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示,卫星分别在1、2、3轨道上正常运行时,以下说法正确的是()A.卫星在轨道3上的运行速率大于在轨道1上的运行速率B.卫星在轨道3上的角速度大于在轨道1上的角速度C.卫星在轨道1上运动一周的时间大于它在轨道2上运动一周的时间D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度反思总结卫星变轨问题关键词转化二、有关宇宙航行的几个问题辨析辨析1.发射速度与运行速度的比较(1)发射速度在地面以某一速度发射一个物体,发射后不再对物体提供动力,在地面离开发射装置时的速度称为发射速度,三个宇宙速度都是指发射速度.(2)运行速度运行速度是指做圆周运动的人造卫星稳定飞行时的线速度,对于人造地球卫星,轨道半径越大,则运行速度越小.(3)有的同学这样认为:沿轨道半径较大的圆轨道运行的卫星的发射速度大,发射较为困难;而轨道半径较小的卫星发射速度小,发射较为容易.这种观点是片面的.因为高轨卫星的发射难易程度与发射速度没有多大关系,如果我们在地面上以7.9km/s 的速度水平发射一个物体,则这个物体可以贴着地面做圆周运动而不落到地面;如果速度增大,则会沿一个椭圆轨道运动.速度越大,椭圆轨道的半长轴就越大;如果这个速度达到11.2km/s,则这个物体可以摆脱地球的引力.可见,无论以多大速度发射一个物体或卫星,都不会使之成为沿较大的圆轨道做圆周运动的人造卫星,高轨卫星的发射过程是一个不断加速变轨的过程,并不是在地面上给一个发射速度就可以的.【典例2】(多选)如图所示,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则()A.该卫星的发射速度必定大于11.2km/sB.卫星在同步轨道Ⅱ上的运行速度大于7.9km/sC.在椭圆轨道上,卫星在P点的速度大于在Q点的速度D.卫星在Q点通过加速实现由轨道Ⅰ进入轨道Ⅱ辨析2.分清三个不同(1)重力和万有引力的向心加速度等于重力加速度g 的运动周期有可能是20小时如图所示,地球赤道上的山丘e,近地资源卫星均在赤道平面上绕地心做匀速圆周运动.设、v3,向心加速度分别为v2<v33<a2已知地球赤道上的物体随地球自转的线速度大小为近地卫星线速度大小为,地球同步卫星线速度大小为设近地卫星距地面高度不计,同步卫星距地面高度约为地倍.则下列结论正确的是(。
人造卫星变轨问题专题一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
轨道半径r 确定后,与之对GM、周期T 2r 3、向心加速度 a GM应的卫星线速度 v 也都是确定的。
如果卫星r 2rGM的质量也确定,一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。
同理,只要上述物理量之一发生变化,另外几个也必将随之变化。
在高中物理中,会涉及到人造卫星的两种变轨问题。
二、渐变由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小) ,由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。
解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。
如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。
如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。
由于这种变轨的起因是阻力,阻力对卫星做负功, 使卫星速度减小, 所需要的向心力m v 2减r小了,而万有引力大小GMm没有变,因此卫星将做向心运动,即半径r 将减小。
r 2由㈠中结论可知:卫星线速度 v 将增大,周期 T 将减小,向心加速度三、突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的目标。
如:发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1,第一次在 P 点点火加速,在短时间内将速率由 v 1 增加到 v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点 Q 时的速率为 v 3,此时进行第二次点火加速, 在短时间内将速率由 v 3 增加到 v 4,使卫星进入同步轨道Ⅲ, 绕地球做匀速圆周运动。
a 将增大。
v 3ⅢQ v 4v 1 Ⅱ Ⅰ Pv 2第一次加速:卫星需要的向心力mv 2 增大了,但万有引力 GMm 没变,因此卫星将开始做rr 2离心运动,进入椭圆形的转移轨道Ⅱ。
10.卫星变轨和能量问题
1.(2021·东北三省四市教研联合体3月模拟)2020年11月24日“嫦娥五号”月球探测器发射,12月1日成功着陆月球正面预选区。
着陆月球前,探测器先在圆轨道Ⅰ上环月飞行;然后在A 点实施变轨,使运行轨道变为环月椭圆轨道Ⅱ;最后在近月点P 实施制动下降,降落到月球上。
设“嫦娥五号”在轨道Ⅰ和Ⅱ上运动时,仅受到月球的万有引力作用。
已知引力常量为G ,以下说法正确的是
( )
图1
A.若已知探测器在轨道Ⅰ运动的半径和周期,则可求出月球的质量
B.在轨道Ⅱ上A 点的加速度大于在轨道Ⅰ上A 点的加速度
C.在轨道Ⅱ运行经过A 点时的速度等于沿轨道Ⅰ运行经过A 点时的速度
D.沿轨道Ⅱ运行的周期大于沿轨道Ⅰ运行的周期
答案 A
解析 根据牛顿第二定律得G Mm r 2=m 4π2T 2r ,解得M =4π2GT 2r 3,A 正确;探测器在
轨道Ⅱ上A 点与在轨道Ⅰ上A 点受到的万有引力一样,所以加速度相等,B 错误;探测器由轨道Ⅱ变轨到轨道Ⅰ需要加速,所以在轨道Ⅱ运行经过A 点时的速度小于沿轨道Ⅰ运行经过A 点时的速度,C 错误;根据开普勒三定律,因为轨道Ⅱ的半长轴小于轨道Ⅰ的半径,所以沿轨道Ⅱ运行的周期小于沿轨道Ⅰ运行的周期,D 错误。
2.(2021·广东省选择考适应性测试)2020年12月17日,“嫦娥五号”成功返回地球,创造了我国到月球取土的伟大历史。
如图2所示,“嫦娥五号”取土后,在P 处由圆形轨道Ⅰ变轨到椭圆轨道Ⅱ,以便返回地球。
下列说法正确的是( )
图2
A.“嫦娥五号”在轨道Ⅰ和Ⅱ运行时均超重
B.“嫦娥五号”在轨道Ⅰ和Ⅱ运行时机械能相等
C.“嫦娥五号”在轨道Ⅰ和Ⅱ运行至P处时速率相等
D.“嫦娥五号”在轨道Ⅰ和Ⅱ运行至P处时加速度大小相等
答案 D
解析“嫦娥五号”在轨道Ⅰ和Ⅱ运行时均处于失重状态,故A错误;“嫦娥五号”在轨道Ⅰ上经过P点时经加速后进入轨道Ⅱ运行,故“嫦娥五号”在轨道Ⅰ上P处的速率小于在轨道Ⅱ运行至P处时速率;加速后势能不变,动能增
大,则机械能增大,故B、C错误;根据G Mm
r2=ma,得a=GM
r2
,可知“嫦娥五
号”在轨道Ⅰ和Ⅱ运行至P处时加速度大小相等,故D正确。
3.(多选) (2021·湖南岳阳市教学质检)“天问一号”火星探测器于2020年7月23日,在中国文昌航天发射场由“长征五号”遥四运载火箭发射升空,如图3所示,设地球半径为R,地球表面的重力加速度为g0,“天问”一号在半径为R的近地圆形轨道Ⅰ上运动,到达轨道的A点时点火变轨进入椭圆轨道Ⅱ,到达轨道Ⅱ的远地点B时,再次点火进入轨道半径为4R的圆形轨道Ⅲ,绕地球做圆周运动,设“天问”一号质量保持不变。
则()
图3
A.“天问”一号在轨道Ⅰ、Ⅲ上运行的周期之比为1∶8
B.“天问”一号在轨道Ⅲ的运行速率大于g 0R
C.“天问”一号在轨道Ⅰ上的加速度小于在轨道Ⅲ上的加速度
D.“天问”一号在轨道Ⅰ上的机械能小于在轨道Ⅲ上的机械能
答案 AD
解析 由开普勒第三定律得R 3T 21=(4R )3
T 22,解得T 1T 2=18,故A 正确;“天问”一号在轨道Ⅲ运行时,由万有引力提供向心力得G Mm (4R )2
=m v 24R ,又GM =g 0R 2,联立解得v =g 0R 2,故B 错误;根据公式GMm r 2=ma 可知,半径越大加速度越小,
则“天问”一号在轨道Ⅰ上的加速度大于在轨道Ⅲ上的加速度,故C 错误;探测器在A 、B 点进入高轨道时,都进行了点火加速,机械能增加。
则“天问”一号在轨道Ⅰ上的机械能小于在轨道Ⅲ上的机械能,故D 正确。
4.(多选) (2021·广东潮州市第一次教学质检)观看科幻电影《流浪地球》后,某同学设想地球仅在木星引力作用下沿椭圆轨道通过木星的情景,如图4所示,轨道上P 点距木星最近(距木星表面的高度可忽略),则( )
图4
A.地球靠近木星的过程中运行加速度增大
B.地球远离木星的过程中机械能减小
C.地球远离木星的过程中动能减小
D.地球在P 点的运行速度等于木星第一宇宙速度
答案 AC
解析 地球在轨道上运行时,万有引力提供加速度,则有a =GM r 2,地球靠近木
星的过程中,r 减小,所以加速度增大,故A 正确;地球远离木星的过程中,只
有万有引力做负功,因此机械能守恒,故B 错误;地球绕木星做椭圆运动,根据开普勒第二定律可得,远木点的速度小,近木点的速度大,故地球远离木星的过程中,运行速度减小,动能减小,故C 正确;若地球在P 点绕木星做匀速圆周运动,则速度等于木星的第一宇宙速度,即v 1=GM R ,而地球过P 点后做
离心运动,万有引力小于需要的向心力,则有GMm R 2<m v 2P R ,即v P >
GM
R =v 1,即地球在P 点的运行速度大于木星的第一宇宙速度,故D 错误。
5. (2021·贵州省新高考联盟质量监测)2020年11月24日4时30分,我国在海南文昌发射场用“长征五号”运载火箭成功发射“嫦娥五号”月球探测器,并实现区域软着陆,此次“挖土”成功,并成功带回月球土壤,引起了国际极大的反响。
如图5所示,探测器发射到月球上要经过多次变轨,最终降落到月球表面上,其中轨道Ⅰ为圆形轨道,到月心的距离为r ,运行周期为T ;轨道Ⅱ为椭圆轨道。
下列说法正确的是( )
图5
A.“嫦娥五号”的发射速度必定大于11.2 km/s
B.可以求出“嫦娥五号”在轨道Ⅰ上的运行速度
C.“嫦娥五号”绕轨道Ⅱ运行的周期大于绕轨道Ⅰ运行的周期
D.“嫦娥五号”绕轨道Ⅰ无动力运行,从远月点到近月点,“嫦娥五号”与月球球心的连线在相等的时间内扫过的面积越来越小
答案 B
解析 “嫦娥五号”发射时先绕地球做近地圆轨道运动,然后经过多次变轨进入较高的轨道运行,因此发射速度只要大于7.9 km/s 即可,选项A 错误;根据v
=2πr T 可以求出“嫦娥五号”在轨道Ⅰ上的运行速度,选项B 正确;由开普勒第
三定律r 3T 2=k 可知轨道Ⅱ的半长轴小于轨道Ⅰ的半径,所以“嫦娥五号”绕轨道Ⅱ运行的周期小于绕轨道Ⅰ运行的周期,选项C 错误;“嫦娥五号”绕轨道Ⅰ无动力运行,从远月点到近月点,根据开普勒第三定律可知“嫦娥五号”与月球球心的连线在相等的时间内扫过的面积相等,选项D 错误。
6.(2021·山西晋中市适应性调研)我国发射的“天问一号”探测器预计2021年5月到达火星表面,已知地球半径约为火星半径的2倍,地球质量约为火星质量的10倍,地球表面的重力加速度大小为g ,地球半径R ,将一个质量为m 的小球以初速度v 0分别从地球和火星表面相同高度h 处水平抛出,不计空气阻力,以下说法正确的是( )
A.小球在火星表面的落地时间为2h
5g
B.小球在火星表面落地瞬间的动能为25mgh
C.火星的第一宇宙速度为gR 5
D.圆周运动的近火卫星周期为近地卫星周期的52倍
答案 D
解析 地球与火星质量分别为M 1和M 2,半径R 1和R 2,由黄金代换GM =gR 2,
可得火星表面重力加速度g 2=M 2M 1⎝ ⎛⎭
⎪⎫R 1R 22g =110×22×g =25g ,火星表面下落时间t 2=2h
g 2=5h g ,故A 错误;小球在火星落地瞬间的动能为E k =mg 2h +12m v 20=25
mgh +12m v 20,故B 错误;星球表面mg =m v 2R ,可得火星表面第一宇宙速度v 2=g 2R 2=gR 5,故C 错误;由GMm R 2=m 4π2R
T 2,可得T =4π2R 3
GM ,结合黄金代换,可得
T 2=52T 1,故D 正确。