第三节-两个样本平均数差异显著性检验
- 格式:docx
- 大小:38.69 KB
- 文档页数:2
显著性检验1、什么是显著性检验显著性检验就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(原假设)是否合理,即判断总体的真实情况与原假设是否显著地有差异。
或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。
显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。
抽样实验会产生抽样误差,对实验资料进行比较分析时,不能仅凭两个结果(平均数或率)的不同就作出结论,而是要进行统计学分析,鉴别出两者差异是抽样误差引起的,还是由特定的实验处理引起的。
2、显著性检验的含义显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。
常把一个要检验的假设记作H0,称为原假设(或零假设)(null hypothesis) ,与H0对立的假设记作H1,称为备择假设(alternative hypothesis) 。
⑴在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α;⑵在原假设不真时,决定接受原假设,称为第二类错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。
这样的假设检验又称为显著性检验,概率α称为显著性水平。
最常用的α值为0.01、0.05、0.10等。
一般情况下,根据研究的问题,如果放弃真错误损失大,为减少这类错误,α取值小些,反之,α取值大些。
3、显著性检验的原理一、无效假设显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的机率(P)水平的选择。
所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。
经统计学分析后,如发现两组间差异系抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。
食品试验设计与统计分析课后答案【篇一:食品试验设计与统计分析复习题】xt>一、名词解释1.总体:具有共同性质的个体所组成的集团。
2.样本:从总体中随机抽取一定数量,并且能代表总体的单元组成的这类资料称为样本。
4.统计数:有样本里全部观察值算得说明样本特征的数据。
包括样本平局数,标准差s,样本方差s2.5.准确性:试验结果真是结果相接近的程序。
6.精确性:在相对相同的条件下,重复进行同一试验,其结果相接近的程度。
7.系统误差:认为因素造成的差异。
8.随机误差:各种偶然的或人为无法控制的因素造成的差异。
9.数量性状的资料:能够称量、测量和计数的方法所表示出来的资料。
可分连续性.数量性状的资料和间断.数量性状的资料。
10.连续性资料:用计量的方法得到的数据性资料。
11.间断性资料:用计数的方法得到的数据性资料。
12.质量性状的资料:只能观察、分类或用文字表述而不能测量的一类资料。
13.两尾检验:具有两个否定域的假设试验。
14.一尾检验:具有单个否定域的月统计假设试验。
15.参数估计:又叫抽样估计,是样本统计数估计总体参数的一种方法。
16.点估计:用样本统计数直接估计相应总体参数的方法。
17.区间估计:在一定的概率保证下,用样本统计参数去估计相应总体参数所在范围。
18.置信区间:估计出参数可能出现的一个区间,使绝大多数该参数的点估计值都包含在这个区间内,所给出的这个区间称为置信区间。
降低显著水平)。
科学的试验设计,提高样本容量)。
21.置信度:保证参数出现在置信区间内的概率称为置信度。
22.直线回归:研究x、y变量间因果依存的方法。
23.直线相关:研究两个变量间直线关系的相关分析。
24.试验指标:根据研究的目的而选定的用来衡量或考核试验效果的质量特性。
25.试验因素:试验中所研究的试验指标的因素。
26.因素水平:试验因素所处的某种特定状态或数量等级。
27.试验处理:事先设计好的实施在试验单位上的一种具体措施或项目称为试验处理。
第三节-两个样本平均数差异显著性检验
第三节-两个样本平均数差异显著性检验
两个样本平均数差异显著性检验是用于比较两个独立样本的平均数是否存在显著差异的统计方法。
该方法可以帮助我们确定两个样本是否来自于同一个总体,或者两个样本之间是否存在显著差异。
显著性检验的步骤如下:
1. 确定原假设和备择假设:
- 原假设(H0):两个样本的平均数相等(μ1 = μ2)
- 备择假设(H1):两个样本的平均数不相等(μ1 ≠ μ2)
2. 选择适当的显著性水平(α):
- 显著性水平是指我们在做统计推断时所能接受的错误发生的概率。
通常选择0.05作为显著性水平。
3. 计算样本均值和标准差:
- 分别计算两个样本的均值(x1 和x2)和标准差(s1 和
s2)。
4. 计算 t 统计量:
- 使用以下公式计算 t 统计量:
- t = (x1 - x2) / √((s1^2 / n1) + (s2^2 / n2))
- 其中,x1 和x2 分别为两个样本的均值,s1 和 s2 分别为两个样本的标准差,n1 和 n2 分别为两个样本的样本大小。
5. 确定临界值:
- 根据样本大小和显著性水平查找 t 分布表,确定临界值。
6. 判断检验结果:
- 如果计算得到的 t 统计量大于临界值,则拒绝原假设,认
为两个样本的平均数差异显著;
- 如果计算得到的 t 统计量小于临界值,则接受原假设,认
为两个样本的平均数差异不显著。
在进行两个样本平均数差异显著性检验时,需要确认数据满足以下假设:
- 数据是从一个总体或两个独立总体中随机选取的;
- 数据符合正态分布或样本大小足够大(通常要求每个样本的
样本大小大于30);
- 两个样本是独立的,即一个观测值对应一个样本。
如果数据不满足这些假设,则可能需要采用其他的非参数方法进行统计推断。
通过两个样本平均数差异显著性检验,可以帮助我们确定两个样本之间是否存在显著差异,从而进行有效的统计推断和决策。