多晶硅铸锭的晶体生长过程
- 格式:docx
- 大小:25.50 KB
- 文档页数:8
多晶硅生产工艺流程多晶硅是一种重要的半导体材料,广泛应用于光伏、集成电路等领域。
多晶硅的生产工艺流程主要包括原料准备、熔炼、晶体生长、切割、清洗等环节。
下面将详细介绍多晶硅的生产工艺流程。
首先,原料准备是多晶硅生产的第一步。
原料主要包括二氧化硅粉末和还原剂,其中二氧化硅粉末是多晶硅的主要原料,而还原剂则是用于将二氧化硅还原成硅的重要物质。
在原料准备阶段,需要对原料进行严格的筛选和配比,确保原料的纯度和稳定性。
接下来是熔炼环节。
在熔炼炉中,将原料进行高温熔融,使其形成硅液。
熔炼过程需要严格控制温度和气氛,以确保硅液的纯度和稳定性。
此外,熔炼过程中还需要对炉体进行保温和冷却,以确保炉内温度的稳定和均匀。
随后是晶体生长。
在晶体生长炉中,将硅液逐渐冷却结晶,形成多晶硅晶体。
晶体生长过程需要严格控制温度梯度和晶体生长速度,以确保晶体的质量和结晶度。
同时,还需要对晶体进行定向凝固,以获得所需的晶体形态和取向。
然后是切割环节。
将生长好的多晶硅晶体进行切割,得到所需尺寸和形状的硅片。
切割过程需要使用高精度的切割设备,确保切割的精度和表面质量。
同时,还需要对切割后的硅片进行表面处理,以去除切割产生的缺陷和污染。
最后是清洗环节。
将切割好的硅片进行清洗,去除表面的杂质和污染物。
清洗过程需要使用高纯度的溶剂和超纯水,确保硅片表面的清洁度和光洁度。
同时,还需要对清洗后的硅片进行干燥和包装,以确保其在后续工艺中的稳定性和可靠性。
综上所述,多晶硅生产工艺流程包括原料准备、熔炼、晶体生长、切割、清洗等环节。
每个环节都需要严格控制工艺参数,确保多晶硅的质量和性能。
多晶硅的生产工艺流程在不断优化和改进,以满足不同领域对多晶硅品质的需求,推动半导体产业的发展。
多晶硅工艺流程范文多晶硅是一种具有高纯度的硅材料,广泛应用于太阳能电池、半导体和光纤等领域。
多晶硅的制备过程包括硅熔炼、多晶硅生长、切割和抛光等步骤。
以下是多晶硅的工艺流程详解。
第一步是硅熔炼。
硅熔炼是多晶硅制备的关键步骤,通常采用短弧熔炼法。
首先,将高纯度的二氧化硅经过还原反应,用碳源将其还原为硅金属。
然后,将硅金属放入一个石英坩埚中,在高温下使用直流电弧加热,使硅金属熔化。
加热过程中,石英坩埚起到了保护硅金属不受污染的作用。
最终,石英坩埚中的硅熔体冷却凝固,形成硅锭。
第二步是多晶硅生长。
硅锭经过切割机切割成合适大小的硅块(也称为硅棒)。
然后,通过多晶硅炉进行多晶硅生长。
多晶硅炉是一个具有高温和高真空环境的炉子。
在多晶硅炉中,硅块被放置在石英坩埚中,加热至高温,并通过剥离外部应力的方法,使硅块在坩埚中缓慢旋转。
在高温的作用下,硅块逐渐融化,并通过晶核生长的方式,在坩埚中形成多晶硅晶体。
多晶硅晶体的形成速度和晶体质量的均匀性,取决于生长过程中温度和旋转速度的控制。
第三步是硅棒切割。
多晶硅晶体经过冷却后,形成一根硅棒。
然后,使用机械切割机将硅棒切割成多个合适的硅片。
硅片的厚度取决于具体应用的要求,通常在几百微米到几毫米之间。
硅棒切割的精度和效率对多晶硅的成本和质量有着重要影响。
最后一步是硅片抛光。
切割好的硅片表面往往有一些粗糙度和污染物。
因此,需要对硅片进行抛光处理,以获得光滑和干净的表面。
抛光一般采用机械抛光工艺,通过悬浮液和抛光头在硅片表面进行机械磨削,以去除表面瑕疵。
抛光后的硅片还需要经过清洗和检测等工序,以确保质量达到要求。
综上所述,多晶硅的工艺流程包括硅熔炼、多晶硅生长、硅棒切割和硅片抛光等步骤。
这些工艺步骤的精度和效率对多晶硅的成本和质量有着重要影响。
随着技术的进步,多晶硅的制备过程也在不断改进,以提高产量和纯度,降低成本,进一步推动多晶硅在各个领域的应用。
多晶铸锭工艺流程
《多晶铸锭工艺流程》
多晶铸锭是一种重要的半导体材料,用于制造太阳能电池和其他光电器件。
多晶铸锭工艺流程是制造多晶铸锭的关键步骤,它影响着锭体的质量和成本。
首先,原料的准备是多晶铸锭工艺流程的第一步。
主要原料是硅材料,通过化学方法纯化成高纯度多晶硅。
然后将多晶硅熔化,形成硅液。
接着,将硅液慢慢凝固,形成多晶铸锭。
在多晶铸锭工艺流程中,温度控制非常重要。
硅液的温度要严格控制在合适的范围内,以确保多晶铸锭的结晶质量。
同时,还要控制凝固速度和温度梯度,以避免结晶缺陷的产生。
另外,多晶铸锭的成型也是工艺流程的关键环节。
成型的方法有多种,包括直接凝固法、加热悬浮法等。
不同的成型方法对多晶铸锭的质量和成本都有一定的影响。
最后,多晶铸锭还需要进行切割和抛光等后续加工工艺,以得到最终的产品。
这些加工工艺也会对多晶铸锭的质量和成本产生一定影响。
总的来说,多晶铸锭工艺流程是一个复杂的过程,需要精密的设备和严格的质量控制。
只有通过科学的工艺流程和高效的生产手段,才能生产出高质量、低成本的多晶铸锭产品。
多晶硅生产工艺多晶硅是一种高纯度的硅材料,广泛应用于电子、光电和太阳能等领域。
多晶硅的制备工艺主要包括净化硅材料、化学气相沉积和熔融法等。
本文将从多晶硅生产的三个关键步骤入手,详细介绍多晶硅的生产工艺。
一、净化硅材料多晶硅的生产基础是高纯度硅材料,一般采用电石法或硅锭法生产。
在电石法中,石油焦、白炭黑等原料经高温炉处理生成硅单质,再通过进一步的加热处理和气相冷却得到高纯度的硅粉末。
硅锭法是利用单晶硅作为原料,通过高温熔化并在特殊条件下生长出大型晶体锭。
这两种方法都需要对产生的硅材料进行净化处理,以获得较高的纯度。
在净化过程中,首先需要通过化学方法除去硅杂质,例如氧化物、碳和氮等。
一般采用氢氧化钠或氢氧化铝作为碱性还原剂,使硅材料与还原剂反应生成挥发性化合物的气体,通过气体与净化剂的反应使杂质得到去除。
其次,通过热处理和气相冷却等方法去除非金属杂质,例如碳、氧、氮、铁、铝等。
最后,通过电石法或硅锭法制备出较高纯度的硅粉或硅锭,成为制备多晶硅的基础原料。
二、化学气相沉积法化学气相沉积法是多晶硅生产的主要方法之一。
其基本原理是利用硅化合物热分解生成硅单质并在沉积基底上生长晶体。
一般采用氯硅烷、氯化硅、三氯硅烷等硅化合物作为原料气体,通过加热至高温(1000-1400℃)使硅化合物分解,生成氯离子和硅单质原子。
硅单质原子进一步在沉积基底上生长成为多晶硅晶体。
在化学气相沉积法中,氯化氢和二氧化硅等气体通入反应器内,使反应器内维持一定的反应压力(约5-10kPa),并保证反应器内气氛处于还原条件下。
在材料沉积过程中,需要控制反应器的温度、反应气压和气体流量等参数,以使沉积层的粗细、取向和晶界质量达到理想状态。
三、熔融法熔融法是多晶硅生产的另一种常用方法。
其主要流程是将高纯度硅材料加热至熔化状态,然后在特定条件下进行成型和冷却。
其中的关键步骤包括炼铝电池法、湖式法和化学熔融法等。
炼铝电池法是将硅粉末加入熔融的铝中,在高温高压下反应生成硅铝合金,然后通过冷却、破碎等过程,得到晶粒尺寸较小的多晶硅。
第1篇一、引言多晶硅是光伏产业和半导体产业的重要原材料,广泛应用于太阳能电池、太阳能热利用、半导体器件等领域。
随着新能源产业的快速发展,对多晶硅的需求量日益增加。
本文将详细介绍多晶硅的生产工艺流程,旨在为相关企业和研究人员提供参考。
二、多晶硅生产工艺流程概述多晶硅的生产工艺流程主要包括以下几个阶段:原料处理、还原反应、熔融提纯、铸造、切割、清洗、包装等。
三、多晶硅生产工艺流程详解1. 原料处理多晶硅的生产原料主要是冶金级硅(Si),其含量在98%以上。
首先,将冶金级硅进行破碎、研磨等处理,使其达到一定的粒度要求。
2. 还原反应还原反应是多晶硅生产的关键环节,其主要目的是将冶金级硅中的杂质去除,得到高纯度的多晶硅。
还原反应分为以下几个步骤:(1)将处理后的冶金级硅加入还原炉中。
(2)在还原炉中通入还原剂,如碳、氢气等,与冶金级硅发生还原反应。
(3)在还原过程中,炉内温度保持在约1100℃左右,反应时间为几小时至几十小时。
(4)反应结束后,将还原炉内的物料进行冷却、破碎、研磨等处理。
3. 熔融提纯还原反应得到的粗多晶硅中仍含有一定的杂质,需要通过熔融提纯的方法进一步去除。
熔融提纯主要包括以下几个步骤:(1)将粗多晶硅加入熔融炉中。
(2)在熔融炉中通入提纯剂,如氢气、氯气等,与粗多晶硅发生反应,生成挥发性杂质。
(3)将挥发性杂质通过炉顶排气系统排出,实现提纯。
(4)提纯结束后,将熔融炉内的物料进行冷却、破碎、研磨等处理。
4. 铸造将提纯后的多晶硅熔体倒入铸造炉中,进行铸造。
铸造过程主要包括以下几个步骤:(1)将熔融的多晶硅倒入铸锭模具中。
(2)在铸锭模具中通入冷却水,使多晶硅迅速凝固。
(3)待多晶硅凝固后,将铸锭模具从熔融炉中取出,得到多晶硅铸锭。
5. 切割将多晶硅铸锭切割成所需尺寸的硅片。
切割过程主要包括以下几个步骤:(1)将多晶硅铸锭放置在切割机上。
(2)在切割机上安装切割刀片,将多晶硅铸锭切割成硅片。
多晶硅生产工艺多晶硅是一种重要的半导体材料,广泛应用于电子、光伏等领域。
它具有良好的导电性和光学性能,成为了现代科技领域的重要材料之一。
多晶硅的生产工艺是多段复杂的过程,下面将对其生产工艺进行详细介绍。
多晶硅的生产工艺可以分为熔炼、提纯和生长三个主要步骤。
首先是熔炼阶段,也被称为硅材料制备阶段。
在该阶段,将高纯度的硅原料与一定比例的草酸和氯化氢溶解在相应的溶剂中,经过混合、搅拌和过滤等工艺处理后,得到硅原料混合液。
然后将混合液加热至高温,使其熔融成为硅液。
硅液通过特殊的冷却方式,形成固态硅块,即硅锭。
接下来是提纯阶段。
硅锭虽然已经形成,但其中仍然包含着杂质元素,必须进行进一步的提纯。
提纯是为了降低杂质含量,提高硅材料的纯度。
提纯工艺主要包括气相法、液相法和固相法等。
其中,气相法是最常用的提纯方法。
在气相法中,通过将硅锭放入反应炉中,利用氢气将硅锭表面的氧化硅还原为气态氧化硅,然后再通过冷凝和净化等工艺,将气态氧化硅转化为高纯度的气态硅。
这样就可以获得高纯度的硅材料。
最后是生长阶段。
生长是将高纯度的硅材料制备成多晶硅晶体的过程。
生长工艺主要有Czochralski法和漂移法两种方法。
Czochralski法是较为常用的生长方法。
在Czochralski法中,通过将高纯度的硅材料放入石英坩埚中,加热后形成熔融的硅液。
然后将从石英坩埚中拉出的单晶硅丝与旋转的种子晶体接触,通过旋转与拉扯的方式,将硅液逐渐凝固成为多晶硅晶体。
漂移法则是通过控制熔融硅液中的温度梯度和控制气氛中的杂质浓度来实现多晶硅的生长。
综上所述,多晶硅的生产工艺是一个复杂而严谨的过程。
通过熔炼、提纯和生长三个主要步骤,将原材料转化为高纯度的多晶硅晶体。
这些高纯度的多晶硅晶体能够广泛应用于电子、光伏等领域,推动了现代科技的发展。
多晶硅的生产工艺在不断改进和创新,为提高多晶硅质量和产量起到了重要作用。
一、多晶硅锭产业背景太阳能电池产业是近几年发展最快的产业之一,最近5年来以超过50%的速度高速增长。
在各种类型的太阳能电池中,晶体硅太阳电池由于其转换效率高,技术成熟而继续保持领先地位,占据了90%以上的份额,预计今后十年内晶体硅仍将占主导地位。
太阳能电池产业的飞速发展,带动硅锭/硅片的需求也大增,特别是多晶硅硅锭的生产向大规模化发展,单厂生产能力已达到百兆瓦级。
虽然目前单晶硅的转换效率比多晶硅高,但两者的差距正逐渐缩短,多晶硅具有制造成本较低与单位产出量较大的优势,故多晶硅芯片在太阳能产业中未来仍将扮演主流角色。
二、多晶硅锭的组织结构太阳能电池多晶硅锭是一种柱状晶,晶体生长方向垂直向上,是通过定向凝固(也称可控凝固、约束凝固)过程来实现的,即在结晶过程中,通过控制温度场的变化,形成单方向热流(生长方向与热流方向相反),并要求液固界面处的温度梯度大于0,横向则要求无温度梯度,从而形成定向生长的柱状晶。
一般来说,纯金属通过定向凝固,可获得平面前沿,即随着凝固进行,整个平面向前推进,但随着溶质浓度的提高,由平面前沿转到柱状。
对于金属,由于各表面自由能一样,生长的柱状晶取向直,无分叉。
而硅由于是小平面相,不同晶面自由能不相同,表面自由能最低的晶面会优先生长,特别是由于杂质的存在,晶面吸附杂质改变了表面自由能,所以多晶硅柱状晶生长方向不如金属的直,且伴有分叉。
三、定向凝固时硅中杂质的分凝太阳能电池硅锭的生长也是一个硅的提纯过程,是基于杂质的分凝效应进行的。
如下图所示,一杂质浓度为C0的组分,当温度下降至T’’时,其固液界面处固相侧的杂质浓度为C*S。
对一个杂质浓度非常小的平衡固液相系统,在液固界面处固相中的成分与在液相中的成分比值为一定,可表达为平衡分配系数K=C*S/C*L其中,C*L液固界面处液相侧溶质浓度C*S 液固界面处固相侧溶质浓度金属杂质在硅中平衡分配系数在10-4—10-8之间,B为0.8,P 为0.35。
多晶硅的生产工艺多晶硅是一种重要的半导体材料,广泛应用于光伏电池和集成电路等领域。
多晶硅的生产工艺包括硅矿石提取、硅块制备、硅片切割和晶体生长,下面将对其详细进行介绍。
多晶硅的生产工艺首先是硅矿石提取。
硅矿石主要包括二氧化硅、二氧化硅含量高达99%以上的化合物。
硅矿石通常采用地下或露天矿石矿井开采,经过碾磨和浮选等过程提取出硅矿石。
然后进行硅块制备,硅矿石被送入冶炼炉进行高温还原,将硅矿石中的杂质去除,得到纯度较高的冶金硅。
然后将冶金硅通过电解炉进行电解,得到高纯度的多晶硅液体。
多晶硅液体被倒入棚式炉中,经过冷却形成硅块。
接下来是硅片切割,在硅块表面涂覆一层液态脱氧剂,并通过一系列工艺处理,使硅块的形状变得更加规则。
然后将硅块切割成薄片,切成所需的硅片尺寸。
最后是晶体生长,将切割好的硅片放入石英炉中,在特定的温度和气氛下进行晶体生长。
晶体生长的过程中,硅片逐渐形成多晶硅结晶体,晶体生长速度和温度、压力、气氛等参数有关。
晶体生长完成后,通过切割和打磨等工艺得到所需的多晶硅片。
多晶硅的生产工艺需要高温、高压和专业设备进行。
其具体工艺参数和流程可以根据不同的生产要求进行调整。
多晶硅的质量和纯度对于后续的制造工艺和产品性能有着重要影响,因此在生产过程中需要严格控制工艺参数和质量检测。
总结起来,多晶硅的生产工艺包括硅矿石提取、硅块制备、硅片切割和晶体生长等步骤。
这些步骤需要高温、高压和专业设备进行,并且需要严格控制工艺参数和质量检测。
多晶硅的生产工艺对于多晶硅的质量和纯度有着重要影响,对于提高多晶硅的制造工艺和产品性能至关重要。
多晶硅生产工艺流程多晶硅是一种产业用途广泛的材料,主要用于光伏太阳能电池板和半导体器件的制造。
多晶硅生产工艺流程包括硅矿选矿、冶炼、提纯和铸锭过程。
以下是多晶硅的生产工艺流程的详细介绍。
1.硅矿选矿多晶硅的原材料主要是含有二氧化硅的硅矿石,如石英砂、硅石等。
在硅矿选矿过程中,会先分离出含有高纯度二氧化硅的石英砂和硅石。
选矿过程主要包括二次破碎、筛分和重选等步骤,以提高硅矿的纯度。
2.冶炼选矿后的硅矿石通过冶炼过程将硅矿石中的杂质去除,并得到多晶硅的粗锭。
冶炼过程一般采用电弧炉进行,首先将硅矿石与焦炭按一定比例混合,然后通过电极放电产生高温、高电弧强度的等离子体,在高温下将硅矿石还原为金属硅。
3.提纯冶炼得到的粗锭中含有大量的杂质,需要通过提纯过程将杂质去除,提高硅的纯度。
提纯过程主要包括溶解、晶体化和冷凝等步骤。
首先将粗锭切割成小块,然后将小块放入高温炉中进行溶解,使杂质在溶液中被分离出来。
接着,将溶液在低温条件下快速冷却和晶体化,从而使纯净硅晶体在溶液中析出。
最后,通过连续冷凝和提拉的方法将硅晶体逐渐拉长,形成高纯度多晶硅棒。
4.铸锭提纯后的硅棒是多晶硅的基础材料,但其直径较细,不能满足工业生产的需求。
因此,需要通过铸锭过程将硅棒拉制成直径较大的硅棒,以便后续加工制造太阳能电池板和半导体器件。
铸锭过程是在真空下进行的,将硅棒浸入熔融的硅池中,然后缓慢提拉和旋转,使硅棒逐渐变长,并且保持直径一致。
以上就是多晶硅生产的工艺流程的详细介绍。
通过选矿、冶炼、提纯和铸锭等步骤,可以生产出高纯度的多晶硅,为太阳能电池板和半导体器件的制造提供了重要的原材料。
随着科技的不断发展,多晶硅的生产工艺也在不断创新和改进,以提高生产效率和降低成本。
多晶硅铸锭的晶体生长过程 多晶硅铸锭的晶体生长过程 在真空熔炼过后,还要经过一个降温稳定,就进入定向凝固阶段。这个过程既是多晶硅的晶体生长过程,也能够对回收料和冶金法多晶硅料中含有的杂质进行进一步的提纯。
(一)定向凝固与分凝现象 硅液中的杂质在硅液从底部开始凝固的时候,杂质趋向于向液体中运动,而不会停留在固体中。这个现象叫做分凝现象。
在固液界面稳定的时候,杂质在固体中的数量与在液体中的数量的比值,叫做分凝系数。分凝系数小于1的杂质,在进行定向凝固的时候,都会趋向于向顶部富集。富集的数量和程度,取决于分凝系数的多少。一般来说,金属杂质的分凝系数都在10-3 以下(铝大约是0.08),所以,定向凝固方式除杂,对于金属杂质比较有效;而硼和磷的分凝系数分别为0.8和0.36,因此,硼和磷的分凝现象就不是太明显。
在定向凝固提纯的同时,考虑硅的长晶工艺,使得定向凝固后的硅能够成为多晶硅锭而直接进行切片,这就是将提纯与铸锭统一在一个工艺流程中完成了。这也是普罗的提纯铸锭炉的重要提纯手段。由于含有杂质的硅料和高纯料的结晶和熔液的性质都不太一样,因此,提纯铸锭炉所采用的热场与纯粹铸锭炉的热场是有区别的。
普罗新能源公司目前采用自己研制的提纯铸锭一体化的专利设计,比较成功地解决了这个问题,使得真空熔炼与铸锭是在一次工艺里完成的,既较好地解决了提纯的问题,也圆满地完成了铸锭的要求。
(二)晶体生长过程 定向凝固分为以下四个阶段,包括:晶胚形成、多晶生长、顶部收顶、退火冷却。
晶胚形成 在熔炼过后,要把硅溶液的温度降低到1440 ℃左右,并保持一段时间,然后,使坩埚底部开始冷却,冷却到熔点以下6-10 ℃左右,即1404-1408 ℃左右。
RDS4.0型的炉体降低底部温度的方法是降低底部功率,和逐渐打开底部热开关的方式。与常规铸锭炉的提升保温体和加热体方式相比,由于不存在四周先开始冷却然后才逐步到中央的过程,因此,底部温度要均匀得多。
铸锭时,底部红外测温的数据不完全是硅液底部的温度,因为,该测点与坩埚底部的硅液还隔了至少一层坩埚,因此,红外温度仅能参考,还是要根据每台炉子各自的经验数据。这时,底部会形成熔点以下的过冷液体,由于坩埚底部的微细结构的不均匀,在一些质点上会形成晶核,即这些质点会首先凝固,形成结晶。这些质点可能是坩埚上突出的不均匀点,可能是坩埚的凹陷,由于位置比其它位置低,所以在降温的时候,温度也会较低。
晶核形成后,由于太阳能电池需要的是径向尺寸较大的柱状晶,因此,最好不要让晶核一旦形成就立刻向上生长,这样会导致晶粒过细;而是首先要让晶核形成后,先在坩埚底部横向生长,等长到一定的尺寸后,再向上生长。这样,要求坩埚底部的温度在下降到熔点稍低后,就保持平稳,不再下降。这样,坩埚底部晶核形成后,由于向上生长时,温度太高,无法生长,因此,只能横向生长。
开始形成晶核时,由于坩埚底部的不均匀,晶核的形成也不均匀,有的地方密,有的地方稀疏。在这些晶核横向生长时,长到一定的程度,就会相遇,相遇后由于有生长的动力,在遇到其它晶片时,则遇到了阻力,当晶片遇到的阻力过大时,就会停止生长。有的时候,这种阻力可能会使与坩埚底部结合不牢固的晶片脱落,这样,比较牢固的就会在脱落掉的晶片留下的空隙继续生长, 直到整个底部都布满晶片后,相互挤压,所有的晶片就只能开始向上生长。这时,各个开始向上长的片状晶体,就称之为晶胚。这就是晶胚形成的过程。
晶核在锅底开始竞争导致部分晶片脱落时,这些晶片由于较轻,会向上面漂浮,直到浮到硅液表面。由于晶片的温度较低,因此,会导致红外测温仪的温度偏低,但通常很快就熔化了,所以温度也会回复。这样,在温度曲线上会出现一个个的向下的尖峰。
多晶生长 晶胚形成后,开始向上生长。多晶硅的晶体生长于单晶硅的生长有些不同的地方。首先,多晶硅硅的生长是众多的晶柱共同生长,而且相互之间还有竞争和相遇;而单晶则只有一个晶体,不存在晶粒之间的竞争问题;第二,多晶硅的生长是由于温场的作用,底部温度不断下降,导致固液界面不断上升;而单晶的液面温度基本不变;第三,多晶硅铸锭的硅液相对静止,而单晶硅的硅液和晶体是旋转的。这些差异,导致多晶硅生长晶体有利有弊。
晶胚一旦形成,就应当以一定的速度是晶体向上生长。这就需要使坩埚底面的温度慢慢下降,而导致硅液的熔点温度面,在慢慢上升,上升的速度应当与硅晶体的生长速度保持一致。硅晶体的生长速度不是一定的,有一个范围,大约在6~20mm/小时之间。因此,控制固液界面的移动速度,使之保持在这个速度范围内,就可以了。
在常规铸锭时,许多人以为保温体移动的速度就是固液界面的移动速度,这是完全不对的。固液界面的速度与保温体的移动速度有关,但还与底面的温度和加热体的功率有关。有时,固液界面的移动速度大约保温体的移动速度,有时,固液界面的移动速度小于保温体的移动速度。如果底面的温度过低,加热体功率也不大的时候,保温体稍微上升,可能会导致整个底部向上的一段区域内温度比较快地下降,这时,固液界面移动的速度就比保温体可能要快,从而导致长晶很快。 更多的时候,如果保温体是慢慢提升的,而加热体的功率也比较大时,当保温体提升到了一定的高度,由于保温体以下的部分依然有辐射从而保持较高的温度,这时,固液界面的移动速度就比保温体的移动速度慢得多。总之,坩埚底部温度也需要不断地变化,而硅液顶部的温度,也是需要不断地变化的。更为复杂的是,这两个参数随时间的变化都不是线性的。
考虑到液体硅内部由于存在对流的作用,温差较小,而固体硅内部由于硅无法移动,热量只能通过热传导的方式,而硅的导热系数较低,导热性差,因此,固体硅的内部可以形成较大的温度差。这样的话,在晶胚一旦形成,可以让底部先以较快的温度梯度下降,而同时,顶部可以保持一个相对较高的温度,这样有利于底部的柱状晶生长。
当柱状晶长到80-120 mm高时,由于固体的导热性较差,因此,顶部温度要以一个线性匀速下降,这可以有利于固液界面的匀速上移。
当柱状晶长到160-220 mm高时,由于大部分已经是固体,因此,底部温度对固液界面的温度影响已经不大,但由于固液界面在结晶时的潜热,因此,产生的热量还是需要不断地从底部被带走,因此,底部温度必须足够的低,以便在固体硅内部形成足够大的温度梯度,把固液界面的温度带走。这时,促使固液界面上升的主要动力就是顶部温度的下降,和底部温度的下降。当顶面的温度逐渐趋于硅的凝点时,晶体生长就接近表面,近于结晶完成阶段。
通常,铸锭要想成功,要同时保证两个基本条件,一个是温度梯度始终是下低上高,而且固液界面以我们希望的长晶速度向上移动;其次,要保证固液界面尽量水平。如果固液界面不水平,就必然导致中部长得快,或者旁边长得快。这样,不仅不利于定向凝固去杂,而且,晶体在中部交叉,可能导致多晶硅锭内部的应力增大,使得硅锭容易破裂。
要保证固液界面水平不是那么简单的事情。主要原因是,硅液在凝固后,导热性很小,因此,硅液和凝固的硅锭内部原来高温的热量和结晶时放出的结晶潜热的散发不是很容易。因为热源在四周,底部散热,因此,水平温差始终 会存在。尤其是在结晶的后半段时间,随着结晶厚度的增加,温场的复杂程度也越来越大。
现在铸锭的热场的计算模型有DSS型,HEM 型,RPDS型等等;这些与实际铸锭的真正热场分布都有不小的差距。硅中杂质的蒸汽压、自由能,甚至结晶产生的熵变,都对结晶进程有影响,而这些因素,是采用原生多晶硅进行铸锭时不需要考虑的。
普罗解决温度梯度的方法是,保持坩埚底部的等温面水平,即温度差很下,那么,由于顶面是液体,可以近似看作等温面,所以,在上下两个面的夹击下,能够大致保证位于中间的固液界面的水平状态。
坩埚底面保持等温的方法主要从两个途径解决,一个,是放置坩埚的平台采用导热性良好的石墨平台,由于石墨导热性很好,因此,在四周与中间存在外界温差时,只要有足够的时间,就能够将整个面的温度大致拉平。要做到这一点,还需要在石墨平台的结构上下功夫,这里面有普罗的专利技术,基本上保证了这一点。
保持固液界面水平还有一个必要条件,就是底部加热体和散热的结构使得底部温度均匀。上海普罗的铸锭炉是目前国际市场上唯一能够保证底部加热和散热均保持均匀的热场结构和炉体结构。
顶部收顶 当晶体长到接近顶部时,最后的收顶过程十分重要。由于红外温度测量的问题,往往测量的温度不一定十分准确,因此,设定的结晶温度可能没有结晶,当顶部的硅液中含有杂质的时候(这是必然的),硅液的熔点也会发生变化,杂质越多,熔点越低,而杂质的含量是难以确定来的,因此,很难控制到温度正好到顶部结晶时结束。此外,在冶金法的硅料中,顶部往往有一层渣,这些渣的存在也会导致温度出现偏差。还有,当晶体长到顶部时,由于四周和中部的温度差异,中部温度即便准确,四周的温度可能也会不同,因此,长晶收尾的过程,必须要考虑整个硅锭的情况。 如果收尾不良,会导致比较严重的后果,甚至可能造成铸锭过程的前功尽弃。首先,如果温度控制不好,收尾的时候,加入晶体距离顶部还有一段距离,那么,在收尾的时候,由于总是存在一个快速降温的过程,这个过程会导致顶部的硅液从表面先凝固,这样,在硅锭下部的晶体和顶部的凝固成的固体壳层之间,会残留一些液体,这些液体在随后的降温过程中也会凝固,由于硅液凝固时体积会膨胀,这样的话,轻则导致硅锭表面“鼓包”现象的产生,重则导致上部已凝固的部分破裂。由于应力的力量非常大,这些破裂不仅仅是最后凝固的部分,而且还会延及下部已经凝固的硅锭。
但是,整个硅锭顶部同时结晶只能是一种理想状况,实际是不可能达到的。正常情况下,硅锭某部分的晶体是最先长到硅液顶部,率先完成结晶。此时,应当在该温度保持一段时间,缓慢地降低加热功率,使硅锭其余区域的晶体慢慢向上生长,通常大约120-180分钟后,整个硅锭顶部的长晶可全部完成。
退火降温 长晶完成后,不能立即降温,因为,结晶完成时,顶部温度在1410 ℃左右,底部温度才900 ℃左右,上下温差有500 ℃之多,如此之大的温差会产生很大的热应力,因此,必须经过退火过程。
退火指提供一个环境使硅锭的温度以一个缓慢的速度趋于一致,并保持一段时间。退火可以消除硅锭内部的应力,还能把长晶过程中存在的位错等缺陷给与一定程度的消除,使得晶体不容易碎裂。即便长晶很顺利,退火不当也会造成硅锭的破裂。对于下一步要进行切片用的铸锭来说,破裂就等于废品。如果仅仅是提纯而不需要铸锭,一个完整的硅锭也比破裂的规定便于处理,如去顶部和边皮等。因此,退火过程绝对不能忽视,不能因为长晶已经完成,到这个时候就大意处理。