第五章偏微分方程的有限元法
- 格式:ppt
- 大小:14.33 MB
- 文档页数:105
有限元法的原理求解域概述及解释说明1. 引言1.1 概述有限元法是一种数值分析方法,用于求解物理问题的数学模型。
它在工程领域得到了广泛的应用,能够对复杂的结构和系统进行精确的建模和计算。
有限元法通过将连续域划分为许多小的离散单元,在每个单元上使用适当的近似函数来表示待求解的变量,然后利用这些离散单元之间相互连接关系建立代数方程组,并通过求解该方程组得到所需结果。
1.2 文章结构本文将围绕有限元法展开讨论,并按照以下结构组织内容:引言包含概述、文章结构和目的;有限元法的原理部分将涵盖离散化方法、强弱形式及变分问题以及单元划分和网格生成;求解域部分将介绍求解域的定义与划分、边界条件设定和处理以及网格节点和单元的挑选策略;概述及解释说明部分将探讨有限元法在工程领域中的应用、与其他数值方法之间的对比与优势以及未来发展趋势和挑战;最后,本文将总结主要观点,并展望有限元法在应用领域的发展前景。
1.3 目的本文旨在对有限元法进行全面而清晰的介绍和解释,包括其基本原理、求解域的定义与处理方法以及在工程领域中的应用。
通过深入理解有限元法的原理和应用,读者可以更好地了解该方法的优劣势,并掌握将其应用于实际问题求解的能力。
此外,本文还将通过探讨有限元法未来的发展趋势和挑战,为研究者提供对该方法进行进一步改进和扩展的思路。
2. 有限元法的原理2.1 离散化方法有限元法是一种使用离散化方法来对偏微分方程进行求解的数值方法。
它将求解域划分为许多小单元,每个小单元称为有限元。
在这些有限元内,我们假设待求解的场量是线性或非线性的,并通过适当选择合适的函数空间来进行近似。
2.2 强弱形式及变分问题在有限元法中,我们将偏微分方程转化为一个弱形式或者说变分问题。
这是通过将原始方程乘以一个测试函数并进行积分得到的。
这样可以减小方程中高阶导数项对近似解产生的影响,并提供了更好的数学性质以进行计算。
2.3 单元划分和网格生成为了进行离散化,求解域需要被划分成一系列小单元。
偏微分方程的解法偏微分方程(Partial Differential Equations,简称PDEs)是数学中的一个重要分支,它描述了多变量函数的偏导数之间的关系。
这些方程在自然科学、工程应用和社会科学等领域都发挥着重要作用。
解决偏微分方程是一个复杂而有挑战性的过程,需要运用多种数学方法和工具来求解。
在本文中,我将为您介绍几种常见的偏微分方程的解法,并提供一些示例以帮助您更好地理解。
以下是本文的主要内容:1. 一阶线性偏微分方程的解法1.1 分离变量法1.2 特征线方法2. 二阶线性偏微分方程的解法2.1 分离变量法2.2 特征值法2.3 Green函数法3. 非线性偏微分方程的解法3.1 平移法3.2 线性叠加法3.3 变换法4. 数值方法解偏微分方程4.1 有限差分法4.2 有限元法4.3 谱方法5. 偏微分方程的应用领域5.1 热传导方程5.2 波动方程5.3 扩散方程在解一阶线性偏微分方程时,我们可以使用分离变量法或特征线方法。
分离变量法的基本思路是将方程中的变量分离,然后通过积分的方式求解每个分离后的常微分方程,最后再将结果合并。
特征线方法则是将方程中的变量替换为新的变量,使得方程中的导数项消失,从而简化求解过程。
对于二阶线性偏微分方程,分离变量法、特征值法和Green函数法是常用的解法。
分离变量法的核心思想与一阶线性偏微分方程相似,将方程中的变量分离并得到常微分方程,然后进行求解。
特征值法则利用特征值和特征函数的性质来求解方程,适用于带有齐次边界条件的问题。
Green函数法则通过引入Green函数来求解方程,其特点是适用于非齐次边界条件的情况。
非线性偏微分方程的解法则更加复杂,常用的方法有平移法、线性叠加法和变换法。
这些方法需要根据具体问题的特点选择合适的变换和求解技巧,具有一定的灵活性和创造性。
除了上述解析解法,数值方法也是解偏微分方程的重要手段。
常用的数值方法包括有限差分法、有限元法和谱方法等。
有限元分析如何求解偏微分方程有限元分析如何求解偏微分方程「篇一」1、有限元法是近似求解连续场问题的数值方法。
2、有限元法将连续的求解域(离散),得到有限个单元,单元与单元之间用(结点相连。
3、从选择未知量的角度看,有限元法可分为三类(位移法力法混合法)。
4、以(结点位移)为基本未知量的求解方法称为位移量。
5、以(结点力)为基本未知量的求解方法称为力法。
7、直梁在外力作用下,横截面上的内力有(剪力)和(弯矩)两个。
8、平面刚架结构在外力作用下,横截面上的内力有(剪力)、(弯矩)、(轴力)。
9、进行直梁有限元分析,结点位移有(转角)、(挠度)。
12、弹性力学问题的方程个数有(15)个,未知量个数有(15)个。
13、弹性力学平面问题方程个数有(8),未知数(8)个。
15、几何方程是研究(应变)和(位移)关系的方程。
16、物理方程描述(应力)和(应变)关系的方程。
17、平衡方程反映(应力)和(位移)关系的方程。
18、把进过物体内任意一点各个(截面)上的应力状况叫做(该点)的应力状态。
19、形函数在单元结点上的值,具有本点为(1),他点为零的性质,并在三角形单元的后一结点上,三个形函数之和为(1)。
20、形函数是(三角形)单元内部坐标的(线性位移)函数,它反映了单元的(位移)状态。
21、结点编号时,同一单元相邻结点的(编号)尽量小。
25、单元刚度矩阵描述了(结点力)和(结点位移)之间的关系。
矩形单元边界上位移是(线性)变化的。
1、从选择未知量的角度来看,有限元法可分为三类,下面那种方法不属于其中(C)。
A、力法B、位移法C、应变法D、混合法2、下面对有限元法特点的叙述中,哪种说法是错误的(D)。
A、可以模拟各种几何形状负责的结构,得出其近似值。
B、解题步骤可以系统化,标准化。
C、容易处理非均匀连续介质,可以求解非线性问题。
D、需要适用于整个结构的插值函数。
3、几何方程研究的是(A)之间关系的方程式。
A、应变和位移B、应力和体力C、应力和位移D、应力和应变 4.物理方研究的是(D)之间关系的方程式。
数值模拟偏微分方程的三种方法介绍(有限差分方法、有限元方法、有限体积方法)I.三者简介有限差分方法(Finite Difference Methods)是数值模拟偏微分方程最早采用的方法,至今仍被广泛使用O该方法包括区域剖分和差商代替导数两个步骤。
首先将求解区域划分为差分网格,用有限个网格节点代替连续的求解区域。
其次,利用Taylor级数展开等方法将偏微分方程中的导数项在网格节点上用函数值的差商代替进行离散,从而建立以网格节点上的值为未知量的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且十分成熟的数值方法。
差商代替导数后的格式称为有限差分格式,从格式的精度来考虑,有一阶格式、二阶格式和高阶格式。
从差分的空间离散形式来考虑,有中心格式和迎风格式。
对于瞬态方程,考虑时间方向的离散,有显格式、隐格式、交替显隐格式等。
目前常见的差分格式,主要是以上几种格式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于结构网格,网格的大小一般根据问题模型和Courant稳定条件来决定。
有限元方法(Finite Element Methods)的基础是虚位移原理和分片多项式插值。
该方法的构造过程包括以下三个步骤。
首先,利用虚位移原理得到偏微分方程的弱形式,将计算区域划分为有限个互不重叠的单元(三角形、四边形、四面体、六面体等),在每个单元上选择合适的节点作为求解函数的插值点,将偏微分方程中的变量改写成由各变量或其导数的节点值与所选用的分片插值基函数组成的线性表达式,得到微分方程的离散形式。
利用插值函数的局部支集性质及数值积分可以得到未知量的代数方程组。
有限元方法有较完善的理论基础,具有求解区域灵活(复杂区域)、单元类型灵活(适于结构网格和非结构网格)、程序代码通用(数值模拟软件多数基于有限元方法)等特点。
有限元方法最早应用于结构力学,随着计算机的发展已经渗透到计算物理、流体力学与电磁学等各个数值模拟领域。
16.901讲义笔记一维有限%首先,我们考虑•个比上一节稍微复杂点的问题; 豎二f(X),卫冲,V(O) = O.V(L)=O在这里,f(X)是)C的般函数,我们来看•个特别的情形:f(x)=x(L-x),此时,方程的梏确解如F:有限元方法利用加权残差的方法■其中:(1)设va)=£«Ma), v()()是我们对v(x)的近似,省为未知常数9 V|(x)是用户选择的歯数,即形状朗数:(2)定义N个加权残差LRj = p^(x)R(V)dx • j = l-> N to其中,RV)二器・f为绒差凹⑴足“用户”选择的加权函数,即权函数:(3)令加权残并为冬•町以确定⑷的值,即求耳使得对所fi 1=I->N, Rj=Oe令限元方法( )是加权残若法的一种,下血看看我们是如何用它来解决问题的。
一维有限元方法有限元方法(〉扌野个连续区域离散化-系列小单尤,这些单元与有限差分法()或有限体积法()产牛的网格完全相同,而佼之前两者主耍的优点在于:能够容易地把握单元的变化范囤。
对于我们讨论的一维问题,可以将区域(数轴〉离散化为如下图所示:这里,叫三单•元的个数。
我们还会用別下血i些定义:个三角划分;尽管令限元法对于一维,二维,三维甚至高细问题都是仃效的,们我们还是要谈及区域离散化的一种方浓,即三角划分。
4 T定义为第I个单元所在的区域。
对于_维问题,这表明,TS-个满足片心的X的集合。
接卜来耍确定的是毎个单兀该用什么样的函数,典型的函数形式就是用从一个单元到卜一个单兀保持解连续的多项式。
例如:一个线性有限元如卜團;i示:在毎个单元内的函数是线形的,在毎两个单元的交点处足连续的。
对于专门诜择的满足线件变化的形状函数,右估计残差时有一个很明显的问题:回忆前曲的内容,RV)二器一f,它在一个单冗里等于什么呢?因为函数是线性的,所以器=0,则有:R(V)=f ,即R(V)与无关。
冋时,满足线性变化的形状函数似乎也是一个好的近似,我们举-个例子来说明。
偏微分方程数值解的计算方法偏微分方程是研究自然和社会现象的重要工具。
然而,大多数偏微分方程很难用解析方法求解,需要用数值方法求解。
本文将介绍偏微分方程数值解的计算方法,其中包括有限差分方法、有限体积法、谱方法和有限元方法。
一、有限差分方法有限差分法是偏微分方程数值解的常用方法,它将偏微分方程中的空间变量转换为网格点上的差分近似。
例如,对于一个二阶偏微分方程:$$\frac{\partial^{2}u}{\partialx^{2}}+\frac{\partial^{2}u}{\partial y^{2}}=f(x,y,u)$$可以使用中心差分方法进行近似:$$\frac{\partial^{2}u}{\partial x^{2}}\approx \frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{(\Delta x)^{2}}$$$$\frac{\partial^{2}u}{\partial y^{2}}\approx \frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{(\Delta y)^{2}}$$其中,$u_{i,j}$表示在第$i$行第$j$列的网格点上的函数值,$\Delta x$和$\Delta y$表示网格步长。
将差分近似代入原方程中,得到如下的差分方程:$$\frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{(\Deltax)^{2}}+\frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{(\Deltay)^{2}}=f_{i,j,u_{i,j}}$$该方程可以用迭代法求解。
有限差分方法的优点是易于实现,但在均匀网格下准确性不高。
二、有限体积法有限体积法是将偏微分方程中的积分形式转换为求解网格单元中心值的方法。
例如,对于如下的扩散方程:$$\frac{\partial u}{\partial t}=\frac{\partial}{\partialx}\left(D(u)\frac{\partial u}{\partial x}\right)$$可以使用有限体积法进行近似。