常用正交分解法列平衡方程求解
- 格式:ppt
- 大小:86.50 KB
- 文档页数:19
处理平衡问题的八种方法一、力的合成法物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等、方向相反;力的合成法是解决三力平衡问题的基本方法。
二、正交分解法物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解:F x合=0,F y合=0。
为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原则。
三、整体法与隔离法整体法是把两个或两个以上物体组成的系统作为一个整体来研究的分析方法;当只涉及研究系统而不涉及系统内部某些物体的受力和运动时,一般可采用整体法。
隔离法是将所确定的研究对象从周围物体(或连接体)系统中隔离出来实行分析的方法。
研究系统(或连接体)内某个物体的受力和运动情况时,通常可采用隔离法。
【典例1】如下图,有一直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间由一根质量可忽略,不何伸长的细绳相连,并在某一位置平衡,如图1所示,现将P环向左移一小段距离,两环将再达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力F N和细绳拉力F T的变化情况是( )A.F N不变,F T变大 B.F N不变,F T变小C.F N变大,F T变大 D.F N变大,F T变小【解析】采取先整体后隔离的方法。
以P、Q、绳为整体研究对象,受重力、AO给的向上的弹力、OB给的水平向左的弹力、AO给的向右的静摩擦力,由整体处于平衡状态知AO对P的向右的静摩擦力与OB对Q的水平向左弹力大小相等;AO给P的竖直向上的弹力与整体重力大小相等,当P环左移一段距离后,整体重力不变;AO对P竖直向上的弹力也不变;再以Q环为隔离研究对象,受力如下图,Q环所受重力G、OB对Q的弹力F、绳的拉力F T处于平衡,P环向左移动一小段距离的同时F T移至F′T位置,仍能平衡,即F T竖直分量与G大小相等,F T应变小,B准确。
共点力作用下物体平衡问题的求解方法上海师范大学附属中学 李树祥当物体处于静止或匀速直线运动时,我们就说物体处于平衡状态。
当物体处于平衡状态时,我们一般通过受力分析,然后根据合力为零来列式求解,常见的平衡问题的求解方法是:一、当研究对象是单个物体,且仅受两个力作用平衡时,则根据两个力一定大小相等,方向相反列式求得结果例1:一小球质量为10kg ,从空中以5m/s 的速度匀速下落。
已知空气阻力与速度成正比,求这个比例常数析解:阻力f=kv ,由于物体匀速下落,所以mg=f ,代入数值可得k=20kg/s 二、当研究对象是单个物体,且受三个力作用平衡时,有以下求解方法: 1、合成法:即任意两个力的合力一定与第三个力大小相等,方向相反 例2:滑滑梯是小孩子很喜欢的娱乐活动.如图所示,一个质量为m 的小孩正在沿倾角为θ的滑梯上匀速下滑,求小孩所受的支持力和摩擦力析解:小孩在滑梯上受力如图所示,小孩在重力、弹力和摩擦力三个力作用下处于平衡状态,其中任意两个力的合力一定与第三个力大小相等,方向相反,则N =mg cos θ,f =mg sin θ,所以A 、B 错误;故C 、D 正确. 2、正交分解法对物体受力分析后建立直角坐标系,把不在坐标轴上的力进行分解,然后根据x 轴、y 轴方向上的合力分别为零列平衡方程,形式为0=合x F ,0=合y F 。
为简化解题步骤,坐标系的建立应达到尽量少分解力的要求。
例3、如图所示,重物的质量为m ,轻细绳AO 与BO 的A 端、B 端是固定的,平衡时AO 是水平的,BO 与水平面夹角为θ,AO 的拉力F 1和BO 的拉力F 2的大小是( )A .θcos 1mg F =B .θcot 1mg F =C .θsin 2mg F =D .θsin /2mg F =析解 选O 点为研究对象,O 点受3个力的作用。
沿水平方向和竖直方向建立xOy 坐标系,如图所示。
由物体的平衡条件0cos 12=-=F F F x θ合;0sin 2=-=mg F F y θ合解得 ⎩⎨⎧==θθsin /cot 21m g F m g F 因此选项BD 正确。
求解共点力平衡问题的八种方法一、分解法一个物体在三个共点力作用下处于平衡状态时,将其中任意一个力沿其他两个力的反方向分解,这样把三力平衡问题转化为两个方向上的二力平衡问题,则每个方向上的一对力大小相等;二、合成法对于三力平衡时,将三个力中的任意两个力合成为一个力,则其合力与第三个力平衡,把三力平衡转化为二力平衡问题;例1如图1所示,重物的质量为m,轻细绳AO和BO的A端、B端是固定的,平衡时AO 是水平的,BO与水平面的夹角为θ,AO的拉力F1和BO的拉力F2的大小是图1A.F1=mg cos θB.F1=mg cot θC.F2=mg sin θD.F2=mg/sin θ解析解法一分解法用效果分解法求解;F2共产生两个效果:一个是水平方向沿A→O拉绳子AO,另一个是拉着竖直方向的绳子;如图2甲所示,将F2分解在这两个方向上,结合力的平衡等知识解得F1=F2′=mg cot θ,F2=错误!=错误!;显然,也可以按mg或F1产生的效果分解mg或F1来求解此题;图2解法二合成法由平行四边形定则,作出F1、F2的合力F12,如图乙所示;又考虑到F12=mg,解直角三角形得F1=mg cot θ,F2=mg/sin θ,故选项B、D正确;答案BD三、正交分解法物体受到三个或三个以上力的作用处于平衡状态时,常用正交分解法列平衡方程求解:F x合=0,F y合=0;为方便计算,建立坐标系时以使尽可能多的力落在坐标轴上为原则;例2如图3所示,用与水平成θ角的推力F作用在物块上,随着θ逐渐减小直到水平的过程中,物块始终沿水平面做匀速直线运动;关于物块受到的外力,下列判断正确的是图3A.推力F先增大后减小B.推力F一直减小C.物块受到的摩擦力先减小后增大D.物块受到的摩擦力一直不变解析对物体受力分析,建立如图4所示的坐标系;图4由平衡条件得F cos θ-F f=0F N-mg+F sin θ=0又F f=μF N联立可得F=错误!可见,当θ减小时,F一直减小,故选项B正确;答案 B四、整体法和隔离法若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法;对于多物体问题,如果不求物体间的相互作用力,优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法相结合的方法;例3多选如图5所示,放置在水平地面上的质量为M的直角劈上有一个质量为m的物体,若物体在直角劈上匀速下滑,直角劈仍保持静止,那么下列说法正确的是图5A.直角劈对地面的压力等于M+mgB.直角劈对地面的压力大于M+mgC.地面对直角劈没有摩擦力D.地面对直角劈有向左的摩擦力解析方法一:隔离法先隔离物体,物体受重力mg、斜面对它的支持力F N、沿斜面向上的摩擦力F f,因物体沿斜面匀速下滑,所以支持力F N和沿斜面向上的摩擦力F f可根据平衡条件求出;再隔离直角劈,直角劈受竖直向下的重力Mg、地面对它竖直向上的支持力F N地,由牛顿第三定律得,物体对直角劈有垂直斜面向下的压力F N′和沿斜面向下的摩擦力F f′,直角劈相对地面有没有运动趋势,关键看F f′和F N′在水平方向上的分量是否相等,若二者相等,则直角劈相对地面无运动趋势,若二者不相等,则直角劈相对地面有运动趋势,而摩擦力方向应根据具体的相对运动趋势的方向确定;对物体进行受力分析,建立坐标系如图6甲所示,因物体沿斜面匀速下滑,由平衡条件得:支持力F N=mg cos θ,摩擦力F f=mg sin θ;图6对直角劈进行受力分析,建立坐标系如图乙所示,由牛顿第三定律得F N=F N′,F f=F f′,在水平方向上,压力F N′的水平分量F N′sin θ=mg cos θ·sin θ,摩擦力F f′的水平分量F f′cos θ=mg sin θ·cos θ,可见F f′cos θ=F N′sin θ,所以直角劈相对地面没有运动趋势,所以地面对直角劈没有摩擦力;在竖直方向上,直角劈受力平衡,由平衡条件得:F N地=F f′sin θ+F N′cos θ+Mg=mg+Mg;方法二:整体法直角劈对地面的压力和地面对直角劈的支持力是一对作用力和反作用力,大小相等、方向相反;而地面对直角劈的支持力、地面对直角劈的摩擦力是直角劈和物体整体的外力,所以要讨论这两个问题,可以以整体为研究对象;整体在竖直方向上受到重力和支持力,因物体在斜面上匀速下滑、直角劈静止不动,即整体处于平衡状态,所以竖直方向上地面对直角劈的支持力等于物体和直角劈整体的重力;水平方向上地面若对直角劈有摩擦力,无论摩擦力的方向向左还是向右,水平方向上整体都不能处于平衡状态,所以整体在水平方向上不受摩擦力,整体受力如图丙所示;答案AC五、三力汇交原理物体受三个共面非平行力作用而平衡时,这三个力必为共点力;例4一根长2 m,重为G的不均匀直棒AB,用两根细绳水平悬挂在天花板上,当棒平衡时细绳与水平面的夹角如图7所示,则关于直棒重心C的位置下列说法正确的是图7A.距离B端0.5 m处B.距离B端0.75 m处C.距离B端错误!m处D.距离B端错误!m处解析当一个物体受三个力作用而处于平衡状态,如果其中两个力的作用线相交于一点,则第三个力的作用线必通过前两个力作用线的相交点,把O1A和O2B延长相交于O点,则重心C一定在过O点的竖直线上,如图8所示;由几何知识可知:BO=错误!AB=1 m,BC=错误!BO=0.5 m,故重心应在距B端0.5 m处;A项正确;图8答案 A六、正弦定理法三力平衡时,三力合力为零;三个力可构成一个封闭三角形,如图9所示;图9则有:错误!=错误!=错误!;例5一盏电灯重力为G,悬于天花板上A点,在电线O处系一细线OB,使电线OA与竖直方向的夹角为β=30°,如图10所示;现保持β角不变,缓慢调整OB方向至OB线上拉力最小为止,此时OB与水平方向的夹角α等于多少最小拉力是多少图10解析对电灯受力分析如图11所示,据三力平衡特点可知:OA、OB对O点的作用力T A、T B的合力T与G等大反向,即T=G①图11在△OT B T中,∠TOT B=90°-α又∠OTT B=∠TOA=β,故∠OT B T=180°-90°-α-β=90°+α-β由正弦定理得错误!=错误!②联立①②解得T B=错误!因β不变,故当α=β=30°时,T B最小,且T B=G sin β=G/2;答案30°错误!七、相似三角形法物体受到三个共点力的作用而处于平衡状态,画出其中任意两个力的合力与第三个力等值反向的平行四边形中,可能有力三角形与题设图中的几何三角形相似,进而得到力的三角形与几何三角形对应边成比例,根据比值便可计算出未知力的大小与方向;例6如图12所示是固定在水平面上的光滑半球,球心O′的正上方固定一小定滑轮,细线一端拴一小球A,另一端绕过定滑轮;今将小球从如图所示的初位置缓慢地拉至B点;在小球到达B点前的过程中,半球对小球的支持力F N及细线的拉力F1的大小变化情况是图12A.F N变大,F1变小B.F N变小,F1变大C.F N不变,F1变小D.F N变大,F1变大解析由于三力F1、F N与G首尾相接构成的矢量三角形与几何三角形AOO′相似,如图13所示,图13所以有错误!=错误!,错误!=错误!,所以F1=G错误!,F N=G错误!,由题意知当小球缓慢上移时,OA减小,OO′不变,R不变,故F1减小,F N不变,故C对;答案 C八、图解法1.图解法对研究对象进行受力分析,再根据平行四边形定则或三角形定则画出不同状态下力的矢量图画在同一个图中,然后根据有向线段表示力的长度变化情况判断各个力的变化情况;2.图解法主要用来解决三力作用下的动态平衡问题所谓动态平衡问题就是通过控制某一物理量,使物体的状态发生缓慢变化;从宏观上看,物体是运动的,但从微观上理解,物体是平衡的,即任一时刻物体均处于平衡状态;3.利用图解法解题的条件是1物体受三个力的作用而处于平衡状态;2一个力不变,另一个力的方向不变或大小不变,第三个力的大小、方向均变化;例7如图14所示,一个重为G的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态,今使板与斜面的夹角β缓慢增大,问:在此过程中,球对挡板和球对斜面的压力大小如何变化图14解析取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2,因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形,当挡板逆时针转动时,F2的方向也逆时针转动,作出如图15所示的动态矢量三角形,由图可见,F2先减小后增大,F1始终随β增大而减小;由牛顿第三定律可知,球对挡板压力先减小后增大,球对斜面压力减小;图15答案见解析。
共点力平衡专题【典型例题】题型一:三力平衡例1、如图所示,在倾角为α的斜面上,放一质量为m 的小球,小球被竖直的木板挡住,不计摩擦,则球对挡板的压力是( ) A .mgcos α B .mgtan α C.mg/cos α D .mg 解法一:(正交分解法):对小球受力分析如图甲所示,小球静止,处于平衡状态,沿水平和竖直方向建立坐标系,将FN2正交分解,列平衡方程为F N1=F N2sin α mg =F N2cos α可得:球对挡板的压力F N1′=F N1=mgtan α,所以B 正确. 解法二:(力的合成法):如图乙所示,小球处于平衡状态,合力为零.F N1与F N2的合力一定与mg 平衡,即等大反向.解三角形可得:F N1=mgtan α,所以,球对挡板的压力F N1′=F N1=mgtan α。
解法三:(效果分解法):小球所受的重力产生垂直板方向挤压竖直板的效果和垂直斜面方向挤压斜面的效果,将重力G 按效果分解为如上图丙中所示的两分力G 1和G 2,解三角形可得:F N1=G 1=mgtan α,所以,球对挡板的压力F N1′=F N1=mgtan α.所以B 正确.解法四:(三角形法则):如右图所示,小球处于平衡状态,合力为零,所受三个力经平移首尾顺次相接,一定能构成封闭三角形.由三角形解得:F N1=mgtan α,故挡板受压力F N1′=F N1=mgtan α。
所以B 正确. 题型二:动态平衡问题例2、如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A ,A 的左端紧靠竖直墙,A 与竖直墙之间放一光滑圆球B,整个装置处于静止状态。
设墙壁对B 的压力为F1,A 对B 的压力为F2,则若把A 向右移动少许后,它们仍处于静止状态,则F1、F2的变化情况分别是( )A .F1减小B .F1增大C .F2增大D .F2减小 方法一 解析法:以球B 为研究对象,受力分析如图甲所示,根据合成法,可得出F1=Gtan θ,F2=Gcos θ,当A 向右移动少许后,θ减小,则F1减小,F2减小。
处理平衡问题的几种方法一、合成、分解法利用力的合成与分解解决三力平衡的问题.具体求解时有两种思路:一是将某力沿另两个力的反方向进行分解,将三力转化为四力,构成两对平衡力;二是某二力进行合成,将三力转化为二力,构成一对平衡力.[例1] 如图所示,石拱桥的正中央有一质量为m 的对称楔形石块,侧面与竖直方向的夹角为α,重力加速度为g 。
若接触面间的摩擦力忽略不计,则石块侧面所受弹力的大小为( )A.mg2sin α B.mg 2cos α C.12mg tan αD.12mg cot α[解析] 石块受力如图所示,由对称性可知两侧面所受弹力相等,设为F N ,由三力平衡可知四边形OABC 为菱形,故△ODC 为直角三角形,且∠OCD 为α,则由12mg =F N sin α,可得F N =mg 2sin α,故A 正确.[答案] A 二、图解法在共点力的平衡中,有些题目中常有“缓慢”一词,则物体处于动态平衡状态.解决动态平衡类问题常用图解法,图解法就是在对物体进行受力分析(一般受三个力)的基础上,若满足有一个力大小、方向均不变,另有一个力方向不变时,可画出这三个力的封闭矢量三角形来分析力的变化情况的方法,图解法也常用于求极值问题.[例2] 如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕O 点转至水平位置,则此过程中球对挡板的压力F1和球对斜面的压力F2的变化情况是()A.F1先增大后减小,F2一直减小B.F1先减小后增大,F2一直减小C.F1和F2都一直减小D.F1和F2都一直增大[解析]小球受力如图甲所示,因挡板是缓慢转动,所以小球处于动态平衡状态,在转动过程中,此三力(重力、斜面支持力、挡板弹力)组成矢量三角形的变化情况如图乙所示(重力大小方向均不变,斜面对其支持力方向始终不变),由图可知此过程中斜面对小球的支持力不断减小,挡板对小球弹力先减小后增大,再由牛顿第三定律知B对.[答案] B三、正交分解法物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解:F x合=0,F y合=0.为方便计算,建立坐标系时以使尽可能多的力落在坐标轴上为原则.[例3]如图所示,用与水平方向成θ角的推力F作用在物块上,随着θ逐渐减小直到水平的过程中,物块始终沿水平面做匀速直线运动.关于物块受到的外力,下列判断正确的是()A.推力F先增大后减小B.推力F一直减小C.物块受到的摩擦力先减小后增大D .物块受到的摩擦力一直不变[解析] 对物体受力分析,建立如图所示的坐标系.由平衡条件得F cos θ-F f =0F N -(mg +F sin θ)=0 又F f =μF N 联立可得F =μmgcos θ-μsin θ,可见,当θ减小时,F 一直减小,故选项B 正确.[答案] B 四、三力汇交原理物体受三个共面非平行外力作用而平衡时,这三个力必为共点力. [例4] 一根长2 m ,重为G 的不均匀直棒AB ,用两根细绳水平悬挂在天花板上,当棒平衡时细绳与水平面的夹角如图所示,则关于直棒重心C 的位置下列说法正确的是( )A .距离B 端0.5 m 处 B .距离B 端0.75 m 处C .距离B 端32 m 处 D .距离B 端33 m 处[解析] 当一个物体受三个力作用而处于平衡状态,如果其中两个力的作用线相交于一点,则第三个力的作用线必通过前两个力作用线的相交点,把O 1A 和O 2B 延长相交于O 点,则重心C 一定在过O 点的竖直线上,如图所示.由几何知识可知:BO =12AB =1 m ,BC =12BO =0.5 m ,故重心应在距B 端0.5 m 处.A项正确.[答案] A五、整体法和隔离法选择研究对象是解决物理问题的首要环节.若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法.对于多物体问题,如果不求物体间的相互作用力,我们优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法相结合的方法.[例5]如图所示,顶端装有定滑轮的斜面体放在粗糙水平面上,A、B两物体通过细绳相连,并处于静止状态(不计绳的质量和绳与滑轮间的摩擦).现用水平向右的力F作用于物体B上,将物体B缓慢拉高一定的距离,此过程中斜面体与物体A仍然保持静止.在此过程中()A.水平力F一定变小B.斜面体所受地面的支持力一定变大C.物体A所受斜面体的摩擦力一定变大D.地面对斜面体的摩擦力一定变大[解析]隔离物体B为研究对象,分析其受力情况如图所示.则有F=mg tanθ,F T=mgcos θ,在物体B缓慢拉高的过程中,θ增大,则水平力F随之变大,对A、B两物体与斜面体这个整体而言,由于斜面体与物体A仍然保持静止,则地面对斜面体的摩擦力一定变大,但是因为整体竖直方向并没有其他力,故斜面体所受地面的支持力不变;在这个过程中尽管绳子张力变大,但是由于物体A所受斜面体的摩擦力开始并不知道其方向,故物体A所受斜面体的摩擦力的情况无法确定,所以答案为D.[答案] D六、临界问题的常用处理方法——假设法运用假设法解题的基本步骤是:(1)明确研究对象;(2)画受力图;(3)假设可发生的临界现象;(4)列出满足所发生的临界现象的平衡方程求解.[例6]倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5.现给A施以一水平力F,如图所示.设最大静摩擦力与滑动摩擦力相等(sin 37°=0.6,cos 37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值可能是()A.3 B.2C.1 D.0.5[解析]设物体刚好不下滑时F=F1,则F1cos θ+μF N=G sin θ,F N=F1sin θ+G cos θ.得:F1G=sin 37°-0.5×cos 37°cos 37°+0.5×sin 37°=0.21.1=211;设物体刚好不上滑时F=F2,则:F2cos θ=μF N+G sin θ,F N=F2sin θ+G cos θ,得:F2G=sin 37°+0.5×cos 37°cos 37°-0.5×sin 37°=10.5=2,即211≤FG≤2,故选B、C、D.[答案]BCD七、相似三角形法物体受到三个共点力的作用而处于平衡状态,画出其中任意两个力的合力与第三个力等值反向的平行四边形中,可能有力三角形与题设图中的几何三角形相似,进而得到力三角形与几何三角形对应成比例,根据比值便可计算出未知力的大小与方向.[例7] 如图所示,一个重为G 的小球套在竖直放置的半径为R 的光滑圆环上,一个劲度系数为k ,自然长度为L (L <2R )的轻质弹簧,一端与小球相连,另一端固定在大环的最高点,求小球处于静止状态时,弹簧与竖直方向的夹角φ.[解析] 对小球B 受力分析如图所示,由几何关系有△AOB ∽△CDB ,则R AB =G F 又F =k (AB -L ) 联立可得AB =kRLkR -G在△AOB 中,cos φ=AB 2 R =AB 2R =kRL 2R (kR -G )=kL2(kR -G ).则φ=arccoskL 2(kR -G )[答案] arccoskL2(kR -G )八、正弦定理法三力平衡时,三力合力为零.三个力可构成一个封闭三角形,若由题设条件寻找到角度关系,则可由正弦定理列式求解.[例8] 一盏电灯重力为G ,悬于天花板上A 点,在电线O 处系一细线OB ,使电线OA 与竖直方向的夹角为β=30°,如图所示.现保持β角不变,缓慢调整OB 方向至OB 线上拉力最小为止,此时OB 与水平方向的夹角α等于多少?最小拉力是多少?[解析] 对电灯受力分析如图所示.据三力平衡特点可知:OA 、OB 对O 点的作用力F T A 、F T B 的合力F T 与G 等大反向,即F T =G ①在△OF T B F T 中,∠F T OF T B =90°-α又∠OF T F T B =∠F T OA =β,故∠OF T B F T =180°-(90°-α)-β=90°+α-β 由正弦定理得F T Bsin β=F Tsin (90°+α-β)②联立①②解得F T B =G sin βcos (α-β)因β不变,故当α=β=30°时,F T B 最小,且F T B =G sin β=G /2. [答案] 30° G 2。