九年上第三次月考试卷
- 格式:doc
- 大小:406.00 KB
- 文档页数:4
2023-2024年度(上)实验中学九年级阶段验收语文试卷考试时间:150分钟满分:120分注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
一、积累与应用(17 分)1.下列词语中加点字的字音、字形完全正确的一项是()(2分)A.恣睢(suī)天娇(jiāo)瞥见(piě)间不容发(fà)B.冒然(mào)旁骛(wù)逞办(chéng)自吹自擂(léi)C.吹嘘(xū)杜绝(jué)筵席(yán)言不及义(yì)D.糟踏(tà)端详(xiáng)炊烟(cuī)鸠占鹊巢(què)2. 依次填入下面句子横线处的词语最恰当的一项是()(2分)你若盛开,那是______在春日枝头上的一种情怀。
盛开,是花朵潜伏已久的梦,也是它不得不______的一种职责。
盛开,总是令人欣喜的。
花朵的盛开是______,是热闹;生命的盛开是激情,是______。
A.悄然绽放履行绚丽奋进B.含苞待放施行妖艳前进C.悄然绽放施行绚丽前进D.含苞待放履行妖艳奋进3.下列各项中分析正确的一项是()(2分)①被誉为楚国“丝绸宝库”的江陵马山一号楚墓,出土了大批精美的丝绸织物。
②这些织物轻薄细密、流光溢彩、柔软如梦。
③那锦上添花的刺绣,构图既生动流畅又艳丽繁复,有龙飞凤舞的灵动造型,也有花草枝蔓的自然延伸,其作品之精美、绣工之细腻,令人赞不绝口。
④历经两千余年的沧桑,颜色仍然鲜艳如新,令人叹为观止。
A.第②句中的“轻薄细密”“流光溢彩”“柔软如梦”都是并列短语。
B.第③句是病句,“龙飞凤舞”用词不当。
C.第④句中的“历经两千余年的沧桑”是状语。
D.第③句中的“赞不绝口”和第④句中的“叹为观止”可以调换位置。
4. 文学、文化常识与名著阅读(5分)(1)下列各项中表述不正确的一项是()(2分)A.运用典故是古诗词常见的表现方法,分为事典和语典两类,《水调歌头》开头、结尾是对语典的改造运用。
名校调研系列卷·九年级第三次月考试卷历史(人教版)一、单项选择题(每小题 1分,共 10分)1.《古印度吠陀时代和列国时代史料选辑》中有如下描述:“当他们分割普鲁沙时⋯⋯其口为婆罗门,由其双臂造成刹帝利,其双腿变成吠舍,从其双脚生出首陀罗。
”材料所反映的制度是( )A.幕府统治B.奴隶制民主政治C.现代工厂制度D.种姓制度2.从“征服意大利半岛”“灭掉迦太基”“称霸整个地中海地区”这些关键词中提炼出的学习主题是( )A.希腊文明的繁荣B.哥伦布远航C.罗马共和国的统治D.阿拉伯帝国的扩张3.古希腊一位百科全书式的学者是( )A.亚里士多德B.彼特拉克C.罗伯斯庇尔D.薄伽丘4.欧洲中世纪的大学,有权逮捕犯罪的人,并在大学的法庭进行审判,根据犯罪的轻重判处罚款或监禁。
这表明欧洲中世纪大学拥有( )A.免赋税特权B.司法特权C.教育自主权D.立法特权5.11世纪以后,西欧农奴获得离开庄园、摆脱领主人身束缚的机会是通过( )A.信仰伊斯兰教B.信仰佛教C.参加公民大会D.缴纳迁徙税6.莎士比亚称人是“宇宙的精华,万物的灵长”。
这表明莎士比亚(A.强调法律至上B.提倡人文主义C.忽视科学文化D.反对个性解放7.原产于美洲的玉米、烟草、花生等作物传入欧洲,欧洲大西洋沿岸工商业经济繁荣起来,世界贸易的中心由地中海区域向大西洋沿岸转移。
这一系列变化出现的原因是( )A.罗马帝国的扩张B.十字军东征C.亚历山大东征D.新航路的开辟8.“这场运动的领袖们将理性应用于经济、宗教和政治等领域,提出自由、平等的思想,使法国乃至整个欧洲的旧制度受到猛烈的抨击。
”材料反映的事件是( )A.早期殖民掠夺B.美国独立战争C.启蒙运动D.马克思主义诞生9.法兰西第一帝国的建立者是( )A.拿破仑B.路易十六C.查士丁尼D.查理曼10.它仅存在短短的几十天,但却是无产阶级建立的第一个政权,并为全世界无产阶级的革命事业提供了极为宝贵的经验教训。
九年级第三次阶段测试语文试卷(2023.12)(时间150分钟总分150分)一(25分)阅读下面一段文字,完成1-3题。
(6分)国潮风以文化为载体,以设计为语言,它并不局限于某一lǐng yù,某一形式。
悠久的中华历史文化,是国潮风 A (取之不尽/感激不尽)的创作源泉。
人们挖掘出尘封已久的文化元素,作出了全新的体现和展示。
国湖风让人们再一次爱上传统文化,产生文化认同感,引发民族jiāoào和情感共鸣。
国潮风虽然是一种消费和时尚潮流,也是一种文化现象,其本质是文化自信。
1. 根据拼音写出相应的汉字,给加点字注音。
( 3 分)▲▲挖掘▲2. 从括号内选择恰当的词语填在A处。
( 1 分)A处的词语是_______▲________。
3. 画线句有语病,请把修改方法写在下面的横线上。
(2 分)修改方法:______▲_________。
4. 学校举办“国潮风进校园”主题实践活动,语文老师在制作《乡愁》这首诗的课件时,找到了以下两幅图片,哪一幅更符合该诗的意蕴?为什么?( 4 分)A图 B图选择______▲_________,理由是____▲___________________________5.品读文学经典。
( 6 分)(1)阅读《艾青诗选》后,小语设计了下面的思维导图,横轴为背景,纵轴为诗作,两轴交点是主题。
请在纵坐标相应空白处填上诗歌题目。
(2分)①▲②▲(2)阅读下面的选段,回答问题。
(4 分)宋江道了一个喏,携了晁盖手,便投侧边小房里来。
晁盖问道:“押司如何来的慌速?” 宋江道:“哥哥不知,兄弟是心腹弟兄,我舍着条性命来教你。
如今黄泥冈事发了!白胜已自拿在济州大牢里了,供出你等七人。
济州府差一个何缉捕,带领若干,奉着太师府钧帖并本州文书,来捉你等七人,道你为首。
天幸撞在我手里,我只推说知县睡着,且教何观察在县对门茶坊里,我以此飞马而来报哥哥。
‘三十六计,走为上计’,若不快走时,更待甚么? 我回去引他当厅下了公文,知县不移时便差人连下来。
北师大版九年级上册数学第三次月考试卷一、选择题。
(每小题只有一个正确答案)1.若34yx=,则x yx+的值为()A.1B.47C.54D.742.下列函数中,反比例函数是()A.x(y+1)=1B.11yx=+C.21yx=D.13yx=3.若函数y=4x2+1的函数值为5,则自变量x的值应为()A.1B.-1C.±1D.32 24.在同一坐标系中,抛物线y=4x2,y=14x2,y=-14x2的共同特点是()A.关于y轴对称,开口向上B.关于y轴对称,y随x的增大而增大C.关于y轴对称,y随x的增大而减小D.关于y轴对称,顶点是原点5.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6B.5C.4D.36.下列各问题中,两个变量之间的关系不是反比例函数的是A.小明完成100m赛跑时,时间t(s)与跑步的平均速度v(m/s)之间的关系.B.菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系.C.一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的体积V之间的关系. D.压力为600N时,压强p与受力面积S之间的关系.7.如图,AB、CD相交于点O,AD∥CB,若AO=2,BO=3,CD=6,则CO等于()A.2.4B.3C.3.6D.48.如图,平面直角坐标系中,点M是直线2y=与x轴之间的一个动点,且点M是抛物线212y x bx c =++的顶点,则方程2112x bx c ++=的解的个数是()A .0或2B .0或1C .1或2D .0,1或29.如图,已知点C 是线段AB 的黄金分割点(其中AC >BC ),则下列结论正确的是()A .512BC AC -=B .512AC BC -=C .AB 2=AC 2+BC 2D .BC 2=AC•BA10.如图,已知四边形OABC 是菱形,CD ⊥x 轴,垂足为D ,函数4y x=的图象经过点C ,且与AB 交于点E .若OD=2,则△OCE 的面积为()A .2B .4C .D .二、填空题11.在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm ,则甲、乙两地间的实际距离是_____km.12.如图,圆O 的半径为2.C 1是函数y=x 2的图象,C 2是函数y=−x 2的图象,则阴影部分的面积是___.13.已知实数x ,y ,z 满足x +y +z =0,3x ﹣y ﹣2z =0,则x :y :z =_____.14.如图,在正方形ABCD 中, BPC 是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ,BD 与CF 相交于点H .给出以下结论:①AF =DE ;②∠ADP =15°;③13PF PC =;④PD 2=PH •PB ,其中正确的是_____.(填写正确结论的序号)三、解答题15.已知a 、b 、c 为三角形ABC 的三边长,且36a b c ++=,345a b c==,求三角形ABC 三边的长.16.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.17.新冠疫情暴发后,口罩的需求量增大.某口罩加工厂承揽生产1600万个口罩的任务,计划用t 天完成.(1)写出每天生产口罩w (万个)与生产时间t (天)(t >4)之间的函数表达式;(2)由于国外的疫情形势严峻,卫生管理部门要求厂家提前4天交货,那么加工厂每天要多做多少万个口罩才能完成任务?(用含t 的代数式表示)18.如图,D 、E 分别是 ABC 的边AB 、BC 上的点,DE ∥AC ,若:BDE CDE S S △△=1:3,求DOE AOC S S △△:的值.19.抛物线y =mx 2﹣4m (m >0)与x 轴交于A ,B 两点(A 点在B 点左边),与y 轴交于C 点,已知OC =2OA .求:(1)A ,B 两点的坐标;(2)抛物线的解析式.20.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB的延长线于点E.求证:(1) APB≌ APD;(2)PD2=PE•PF.21.如图,在平面直角坐标系中有抛物线c:y=x2+m和直线l:y=﹣2x﹣2,直线l与x轴的交点为B,与y轴的交点为A.(1)求m取何值时,抛物线c与直线l没有公共点;(2)向下平移抛物线c,当抛物线c的顶点与点A重合时,试判断点B是否在平移后的抛物线上.22.反比例函数y=kx(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3BD.(1)求k的值;(2)在y轴上确定一点M,使点M到A,B两点距离之和d=MA+MB最小,求点M的坐标.23.在 ABC中,∠C=90°,AC=BC,点M,N分别在AC,BC上,将 ABC沿MN折叠,顶点C恰好落在斜边的P点上.(1)如图1,若点N为BC中点时,求证:MN∥AB;(2)如图2,当MN与AB不平行时,求证:PA CM PB CN=;(3)如图3,当AC≠BC且MN与AB不平行时,(2)中的等式还成立吗?请直接写出结论.参考答案与详解1.D【详解】∵34 yx=,∴x yx+=434+=74,故选D2.D【分析】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为y=kx(k为常数,k≠0)或y=kx﹣1(k为常数,k≠0).【详解】解:A、不是反比例函数,故A选项不合题意;B、不是反比例函数,故B选项不合题意;C、不是反比例函数,故C选项不合题意;D、是反比例函数,故D选项符合题意.故选:D.【点睛】此题主要考查了反比例函数的定义,解题的关键是牢记反比例函数的形式然后判断.3.C【分析】根据题意,把函数的值代入函数表达式,然后解方程即可.【详解】解:根据题意,得4x2+1=5,x2=1,解得x=-1或1.故选C.【点睛】本题考查给出二次函数的值去求函数自变量的值.代入转化为求一元二次方程的解.4.D【详解】解:因为抛物线y=4x2,y=14x2,y=-14x2都符合抛物线的最简形式y=ax2,其对称轴是y轴,顶点是原点.故选D.【点睛】本题考查二次函数的图象性质.5.D【详解】解:根据题意可得当0<x<8时,其中有一个x的值满足y=2,则对称轴所在的位置为0<h<4故选:D【点睛】本题考查二次函数的性质,利用数形结合思想解题是关键.6.C此题可先对各选项列出函数关系式,再根据反比例函数的定义进行判断.【详解】A、根据速度和时间的关系式得,t=100 v;B、因为菱形的对角线互相垂直平分,所以12xy=48,即y=96x;C、根据题意得,m=ρV;D、根据压强公式,p=600s;可见,m=ρV中,m和V不是反比例关系.故选C.【点睛】本题主要考查了反比例函数的定义,正确表示出各量之间的函数关系是解决本题的关键.7.C【分析】由平行线分线段成比例定理,得到CO BODO AO=;利用AO、BO、CD的长度,求出CO的长度,即可解决问题.【详解】如图,∵AD∥CB,∴CO BO DO AO=;∵AO=2,BO=3,CD=6,∴362COCO=-,解得:CO=3.6,故选C.【点睛】本题考查了平行线分线段成比例定理及其应用问题.掌握平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例是解题的关键..8.D【分析】分三种情况:点M的纵坐标小于1;点M的纵坐标等于1;点M的纵坐标大于1;进行讨论即可得到方程12x2+bx+c=1的解的个数.解:点M 的纵坐标小于1,方程2112x bx c ++=的解是2个不相等的实数根;点M 的纵坐标等于1,方程2112x bx c ++=的解是2个相等的实数根;点M 的纵坐标大于1,方程2112x bx c ++=的解的个数是0.故方程2112x bx c ++=的解的个数是0,1或2.故选D .【点睛】本题考查了二次函数的性质,本题涉及分类思想和方程思想的应用.9.A 【分析】根据黄金分割的定义得出512BC AC AC AB -==,从而判断各选项.【详解】解:∵点C 是线段AB 的黄金分割点,且AC >BC ,∴512BC AC AC AB -==,∴选项A 符合题意,2AC BC AB =⋅,∴选项D 不符合题意;∵12AC BC +==,∴选项B 不符合题意;∵222AB AC BC ≠+,∴选项C 不符合题意;故选:A .【点睛】本题主要考查了黄金分割,熟练掌握黄金分割的定义是解题关键.10.C如图:连接AC ,∵OD=2,CD ⊥x 轴,∴OD×CD=xy=4,解得CD=2,由勾股定理,得OC ==由菱形的性质,可知OA=OC ,∵△OCE 与△OAC 同底等高,∴S △OCE =S △OAC =12×OA×CD=12.故选C .11.1.25【分析】根据比例尺=图上距离:实际距离,列比例式直接求得甲、乙两地间的实际距离.【详解】设甲、乙两地间的实际距离为xcm ,则:1255000x=,解得:x =125000.125000cm =1.25km .故答案为:1.25.【点睛】本题考查了比例尺的概念、比例的性质;根据比例尺进行计算,注意单位的转换问题.12.2π【分析】根据圆和二次函数图象的对称性,用割补法和圆的面积公式,即可求解.把x 轴下方阴影部分关于x 轴对称后,原图形阴影部分的面积和,变为一个半圆的面积,即2222ππ⋅=【点睛】利用图形的对称性,把不规则的阴影部分,补成规则的图形,再用圆的面积公式求解.13.1:(﹣5):4【分析】通过解方程组,用x 分别表示出y 与z ,然后求x :y :z 的值.【详解】解:x +y +z =0①,3x ﹣y ﹣2z =0②,①+②得4x ﹣z =0,则z =4x ,把z =4x 代入①得x +y +4x =0,则y =﹣5x ,所以x :y :z =x :(﹣5x ):4x =1:(﹣5):4.故答案为1:(﹣5):4.【点睛】本题考查了比例的性质:熟练掌握比例的性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质)是解决此类问题的关键.14.①②④【分析】先判断出BP =PC =BC ,∠PBC =∠PCB =∠BPC =60°,再判断出AB =BC =CD ,∠A =∠ADC =∠BCD =90°,进而得出∠ABE =∠DCF =30°,即可判断出△ABE ≌△DCF (ASA ),即可得出结论;由等腰三角形的性质得出∠PDC =75°,则可得出答案;证明△FPE ∽△CPB ,得出PF EF PC BC =,设PF =x ,PC =y ,则DC =y ,得出y =32(x +y ),则可求出答案;先判断出∠DPH =∠DPC ,进而判断出△DPH ∽△CPD ,即可得出结论.【详解】解:∵△BPC 是等边三角形,∴BP =PC =BC ,∠PBC =∠PCB =∠BPC =60°,在正方形ABCD 中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°,∴∠ABE=∠DCF=30°,∴△ABE≌△DCF(ASA),∴AE=DF,∴AE﹣EF=DF﹣EF,∴AF=DE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠ADP=∠ADC﹣∠PDC=90°﹣75°=15°.故②正确;∵∠FPE=∠PFE=60°,∴△FEP是等边三角形,∴△FPE∽△CPB,∴PF EF PC BC=,设PF=x,PC=y,则DC=y,∵∠FCD=30°,∴y=32(x+y),整理得:(1﹣32)y=32x,解得:2333xy=,则2333PFPC=,故③错误;∵PC=CD,∠DCF=30°,∴∠PDC=75°,∵∠BDC=45°,∴∠PDH =∠PCD =30°,∵∠DPH =∠DPC ,∴△DPH ∽△CPD ,∴PD PH PC PD=,∴PD 2=PH •CP ,∵PB =PC ,∴PD 2=PH •PB ;故④正确.故答案为:①②④.【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.15.9a =,12b =,15c =【分析】根据比例的性质,可得a 、b 、c 的关系,根据a 、b 、c 的关系,可得一元一次方程,根据解方程,可得答案.【详解】解:由345a b c ==,得35a c =,45b c =,把35a c =,45b c =代入36a b c ++=,得343655c c c ++=,解得15c =,395a c ==,4125b c ==,所以三角形ABC 三边的长为:9a =,12b =,15c =.【点睛】本题考查了比例的性质,利用了比例的性质.利用等式的性质得出35a c =,45b c =是解题关键.16.()214y x =--+【分析】设顶点式()214y a x =-+,然后把(﹣2,﹣5)代入求出a 的值即可.【详解】解:设抛物线解析式为()214y a x =-+,把(﹣2,﹣5)代入得()22145a --+=-,解得:a =﹣1,所以抛物线解析式为:()214y x =--+.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数解析式时,要根据题目给定的条件,选择恰当的方法设出解析式,从而代入数值求解.17.(1)w =1600t (t >4);(2)每天要多做264004t t -(t >4)万个口罩才能完成任务【分析】(1)根据每天生产口罩w (万个)、生产时间t (天)(t >4)、生产总量之间的关系可直接列出函数表达式;(2)用提前4天交货的情况下每天生产的口罩数量减去计划每天生产的口罩数量即可得到结论.【详解】解:(1)由题意可得,函数表达式为:w =1600t(t >4);(2)由题意得:()()2160016004160016006400444t t t t t tt t ---==---(万个),答:每天要多做264004t t-(t >4)万个口罩才能完成任务.【点睛】本题主要考查了列反比例函数关系式,了解每天生产口罩w (万个)、生产时间t (天)(t >4)、生产总量之间的关系是解决问题的关键.18.1:16【分析】由已知得出BE:BC=1:4;证明△DOE∽△AOC,得到14DEAC=,由相似三角形的性质即可解决问题.【详解】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴1=4 DE BEAC BC=,∴S△DOE:S△AOC=1:16.【点睛】本题主要考查了相似三角形的判定及其性质的应用问题;熟练掌握相似三角形的判定与性质,证出BE:BC=1:4是解决问题的关键解题的关键.19.(1)A(﹣2,0),B(2,0);(2)y=x2﹣4【分析】(1)通过解方程mx²﹣4m=0可得A、B点的坐标;(2)先利用OA=2得到OC=4,所以|﹣4m|=4,然后求出满足条件的m的值,从而得到抛物线解析式.【详解】解:(1)当y=0时,mx2﹣4m=0,即x2﹣4=0,解得x1=2,x2=﹣2,∴A(﹣2,0),B(2,0);(2)当x=0时,y=mx2﹣4m=﹣4m,∴C(0,﹣4m),∵OA=2,∴OC=2OA=4,∴|﹣4m|=4,解得m=1或m=﹣1,∵m>0,∴m =1,∴抛物线解析式为y =x 2﹣4.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.20.(1)见解析;(2)见解析【分析】(1)由菱形的性质可得AB =AD ,∠BAC =∠DAC ,由“SAS”可证△ABP ≌△ADP ;(2)由全等三角形的性质可得PB =PD ,∠ADP =∠ABP ,通过证明△EPB ∽△BPF ,可得BP PE PF PB=,可得结论.【详解】证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,∠BAC =∠DAC ,在△ABP 和△ADP 中,AD AB BAP DAP AP AP =⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△ADP (SAS );(2)∵△ABP ≌△ADP ,∴PB =PD ,∠ADP =∠ABP ,∵AD //BC ,∴∠ADP =∠E ,∴∠E =∠ABP ,又∵∠FPB =∠EPB ,∴△EPB ∽△BPF ,∴BP PE PF PB=,∴PB 2=PE•PF ,∴PD 2=PE•PF .【点睛】本题考查了菱形的性质,三角形全等的判定与性质,三角形相似的判定与性质,解题的关键是熟练掌握三角形全等与相似的判定方法.21.(1)m>﹣1时,抛物线c与直线l没有公共点;(2)点B不在平移后的抛物线上,见解析【分析】(1)令x2+m=﹣2x﹣2,整理得x2+2x+m+2=0,根据判别式的意义得到△=22﹣4(m+2)<0,则抛物线c与直线l没有公共点;(2)先利用一次函数解析式确定A(0,﹣2),B(﹣1,0),再写顶点在A点的抛物线解析式为y=x2﹣2,然后根据二次函数图象上点的坐标特征进行判断.【详解】解:(1)根据题意得x2+m=﹣2x﹣2,整理得x2+2x+m+2=0,∵抛物线c与直线l没有公共点,∴△=22﹣4(m+2)<0,解得m>﹣1,∴m>﹣1时,抛物线c与直线l没有公共点;(2)当x=0时,y=﹣2x﹣2=﹣2,∴A(0,﹣2),当y=0时,﹣2x﹣2=0,解得x=﹣1,∴B(﹣1,0),∵抛物线c的顶点与点A重合,∴平移后的抛物线解析式为y=x2﹣2,当x=﹣1时,y=x2﹣2=﹣1,∴点B不在平移后的抛物线上.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程,把抛物线与一次函数的交点问题转化为一元二次方程根的问题.也考查了二次函数的几何变换.22.(1)k=1;(2)M(0,3 2)【分析】(1)A(1,3),则AB=3,OB=1,而AB=3BD,故BD=1,则D(1,1),将D坐标代入反比例解析式得:k=1;(2)作点B(1,0)关于y轴的对称点E(﹣1,0),连接AE交y轴于点M,则点M为所求点,即可求解.【详解】解:(1)∵A(1,3),AB⊥x轴,∴AB=3,OB=1,∵AB=3BD,∴BD=1,∴D(1,1),将D坐标代入反比例解析式得:k=1;(2)作点B(1,0)关于y轴的对称点E(﹣1,0),连接AE交y轴于点M,则点M为所求点,理由:d=MA+MB=MA+ME=AE为最小,设直线AE的表达式为y=mx+b,则3m bm b=+⎧⎨=-+⎩,解得3232mb⎧=⎪⎪⎨⎪=⎪⎩,故AE的表达式为y=32x+32,当x=0时,y=3 2,故点M的坐标为(0,3 2).【点睛】本题为反比例函数的综合应用,涉及待定系数法、函数图象的交点、轴对称的性质等知识,本题考查知识点较多,综合性较强,难度适中.23.(1)见解析;(2)见解析;(3)不成立【分析】(1)根据折叠的性质得到∠CNM=∠PNM,CN=PN,得到PN=BN,根据等腰直角三角形的性质、平行线的判定定理证明结论;(2)过点M作ME⊥AB于E,过点N作NF⊥AB于F,证明△MEP∽△PFN,根据相似三角形的性质得到MPPN=MEPF=EPFN,根据等腰直角三角形的性质得到ME=AE,PN=BF,根据比例的性质计算,证明结论;(3)仿照(2)的证明方法可以判断(2)中的等式不成立.【详解】解:(1)∵∠C=90°,AC=BC,∴∠B=∠A=45°,∵点N为BC中点,∴CN=BN,由折叠的性质可知,∠CNM=∠PNM,CN=PN,∴PN=BN,∴∠NPB=∠B=45°,∴∠BNP=90°,∴∠CNM=45°,∴∠CNM=∠B,∴MN∥AB;(2)证明:如图2,过点M作ME⊥AB于E,过点N作NF⊥AB于F,由折叠的性质可知,MP=MC,NP=NC,∠MPN=∠C=90°,∴∠MPE+∠NPF=90°,∵∠PNF+∠NPF=90°,∴∠MPE=∠PNF,∵∠MEP=∠PFN=90°,∠MPE=∠PNF,∴△MEP∽△PFN,∴MPPN=MEPF=EPFN,∵ME⊥AB,NF⊥AB,∠B=∠A=45°,∴ME=AE,PN=BF,∴MPPN=MEPF=EPFN=ME PEPF FN++=AE PEPF FB++=APBP,∴MPPN=APBP;(3)解:不成立,理由如下:过点M作MG⊥AB于G,过点N作NH⊥AB于H,∵∠C=90°,AC≠BC,不妨设AC<BC,则∠A<45°,∠B>45°,∴MG<AG,NH>BH,由(2)的证明方法可知:MPPN≠APBP.【点睛】本题考查的是相似三角形的判定和性质、翻转变换的性质、比例的性质,掌握相似三角形的判定定理和性质定理是解题的关键.。
九年级(上)第三次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.52.(3分)如图,直线l1∥l2∥l3,另两条直线分别交l1、l2、l3于点A、B、C及点D、E、F,且AB=3,DE=4,EF=2,则()A.BC:DE=1:2B.BC:DE=2:3C.BC•DE=8D.BC•DE=6 3.(3分)(易错题)如图,▱ABCD中,E是AD延长线上一点,BE交AC于点F,交DC于点G,则下列结论中错误的是()A.△ABE∽△DGE B.△CGB∽△DGE C.△BCF∽△EAF D.△ACD∽△GCF 4.(3分)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺5.(3分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.6.(3分)如图,已知△ABC和△DEF,点E在BC边上,点A在DE边上,边EF 和边AC相交于点G.如果AE=EC,∠AEG=∠B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是()A.=B.=C.=D.=7.(3分)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18B.C.D.8.(3分)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE :S四边形ABCE为()A.3:4B.4:3C.7:9D.9:79.(3分)如图,在正方形网格中,△ABC和△DEF相似,则关于位似中心与相似比叙述正确的是()A.位似中心是点B,相似比是2:1B.位似中心是点D,相似比是2:1C.位似中心在点G,H之间,相似比为2:1D.位似中心在点G,H之间,相似比为1:210.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.二、填空题(每小题3分,共12分)11.(3分)有一块多边形草坪,在设计图纸上的面积为300cm2,其中一条边的长度为5cm,经测量,这条边的实际长度为15m,则这块草坪的实际面积是.12.(3分)在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC 上,当AE=时,以A、D、E为顶点的三角形与△ABC相似.13.(3分)如图,在五角星中,AD=BC,且C、D两点都是AB的黄金分割点,CD=1,则AB的长是.14.(3分)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为.三、解答题(共78分)15.(12分)解下列方程:(1)3x2﹣5x﹣2=0(2)x2﹣1=2(x+1)(3)4x2+4x+1=3(3﹣x)2(4)(2x+8)(x﹣2)=x2+2x﹣1716.(6分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,交AC于F点,过点M作ME∥BC,交AB于点E.求证:△ABC∽△MED.17.(6分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N 两点之间的直线距离.18.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?19.(6分)关于x的方程(a2﹣4a+5)x2+2ax+4=0:(1)试证明无论a取何实数这个方程都是一元二次方程;(2)当a=2时,解这个方程.20.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?21.(8分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.22.(8分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C 重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.23.(8分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图,这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率.(2)小明和小亮约定做一个游戏,其规则如下:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表或画树状图的方法说明.(纸牌用A、B、C、D)24.(10分)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.2.【解答】解:∵l1∥l2∥l3∴∵AB=3,DE=4,EF=2∴BC•DE=AB•EF=6.故选D.3.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD∴∠EDG=∠EAB∵∠E=∠E∴△ABE∽△DGE(第一个正确)∵AE∥BC∴∠EDC=∠BCG,∠E=∠CBG∴△CGB∽△DGE(第二个正确)∵AE∥BC∴∠E=∠FBC,∠EAF=∠BCF∴△BCF∽△EAF(第三个正确)第四个无法证得,故选D4.【解答】解:依题意有△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.故选:B.5.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.6.【解答】解:当=时,则=,而∠B=∠AEG,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF.故选:C.7.【解答】解:∵四边形ABCD是正方形,AB=12,BM=5,∴MC=12﹣5=7.∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠CMG=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMG,∠B=∠C=90°,∴△ABM∽△MCG,∴=,即=,解得CG=,∴DG=12﹣=.∵AE∥BC,∴∠E=CMG,∠EDG=∠C,∴△MCG∽△EDG,∴=,即=,解得DE=.故选:B.8.【解答】解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE :S四边形ABCE=9:7.故选:D.9.【解答】解:如图,在正方形网格中,△ABC和△DEF相似,连接AF,CE,∴位似中心在点G,H之间,又∵AC=2EF,∴相似比为2:1,故选:C.10.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=,故选:C.二、填空题(每小题3分,共12分)11.【解答】解:由题意可知,设草坪的实际面积为x,又图纸与实际的比例为0.05:15=1:300,所以有(1:300)2=300:xx=27000000cm2=2700m2所以草坪的实际面积为2700m2.故答案为:2700m2.12.【解答】解:当=时,∵∠A=∠A,∴△AED∽△ABC,此时AE===;当=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE===;故答案为:或.13.【解答】解:∵C、D两点都是AB的黄金分割点,∴AC=AB,BD=AB,∴AC+BD=(﹣1)AB,即AB+CD=(﹣1)AB,∴AB=+2.故答案为+2.14.【解答】解:如图,根据题意,知△ABE∽△ADG,∴AB:AD=BE:DG,又∵AB=2,AD=2+6+8=16,GD=8,∴BE=1,∴HE=6﹣1=5;同理得,△ACF∽△ADG,∴AC:AD=CF:DG,∵AC=2+6=8,AD=16,DG=8,∴CF=4,∴IF=6﹣4=2;=(IF+HE)•HI∴S梯形IHEF=×(2+5)×6=21;所以,则图中阴影部分的面积为21.三、解答题(共78分)15.【解答】解:(1)3x2﹣5x﹣2=0,(3x+1)(x﹣2)=0,∴3x+1=0或x﹣2=0,∴x1=﹣,x2=2;(2)x2﹣1=2(x+1),(x+1)(x﹣1)﹣2(x+1)=0,(x+1)(x﹣1﹣2)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3;(3)4x2+4x+1=3(3﹣x)2整理得:x2+22x=26,x2+22x+121=26+121(x+11)2=147,x+11=±7,∴x1=﹣11+7,x2=﹣11﹣7;(4)(2x+8)(x﹣2)=x2+2x﹣17整理得:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=﹣1.16.【解答】证明:∵DM⊥AB,∴∠MDE=∠C=90°,∵EM∥BC,∴∠MED=∠B,∴△ABC∽△MED.17.【解答】解:在△ABC与△AMN中,=,=,∴,又∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得:MN=1500米,答:M、N两点之间的直线距离是1500米;18.【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.19.【解答】解:(1)a2﹣4a+5=(a2﹣4a+4)+1=(a﹣2)2+1,∵(a﹣2)2≥0,∴(a﹣2)2+1≠0,∴无论a取何实数关于x的方程(a2﹣4a+5)x2+2ax+4=0都是一元二次方程;(2)当a=2时,原方程变为x2+4x+4=0,解得x1=x2=﹣2.20.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.21.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.22.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△ECF,∴∠DFE=∠CFE,∴FE平分∠DFC.23.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有2种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.24.【解答】解:(1)如图,(2)设小明原来的速度为xm/s,则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,∵点C,E,G在一条直线上,CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB,∴=,=,∴=,即=,解得x=1.5,经检验x=1.5为方程的解,∴小明原来的速度为1.5m/s.答:小明原来的速度为1.5m/s.。
人教版九年级物理上册第三次月考试卷(带有答案解析)(考试范围:第十七章考试时间:90分钟试卷满分:90分)学校:___________班级:___________姓名:___________考号:___________一、单选题(每题3分,共18分)。
1.关于欧姆定律 , 下列叙述中错误的是()A.在相同电压下 , 导体的电流和电阻成反比B.对同一个导体 , 导体中的电流和电压成正比C.因为电阻是导体本身的性质 , 所以电流只与导体两端的电压成正比D.导体中的电流与导体两端的电压有关 , 也与导体的电阻有关2.如图所示的电路中,电源电压恒定,R为定值电阻,闭合开关S后,将滑动变阻器的滑片P从最右端移到中间某个位置,电压表和电流表的示数分别变化了ΔU和ΔI。
下列对ΔΔUI比值的判断正确的是()A.变大B.不变C.变小D.先变大再变小3.如图所示的电路中,电源两端的电压保持不变,当开关S闭合后,灯L不发光,电压表指针有明显偏转.若电路中只有一处故障,对于此电路可能故障的判断,下列说法中不正确的是()A.灯L短路B.灯L断路C.滑动变阻器R2断路D.定值电阻R1断路4.如图所示,电源电压不变,闭合开关S,当滑动变阻器滑片P向右移动时()A.电流表A1示数变大,电压表V示数变大B.电流表A2示数变小,电压表V示数变小C.电压表V示数与电流表A1示数比值不变D.电压表V示数与电流表A2示数比值不变5.如图甲所示电路,电源电压保持不变,闭合开关S,当滑动变阻器的滑片P从右端滑到左端的过程中R1、R2的I—U关系图像如图乙所示,则下列判断正确的是()A.图线A是电阻R1的I—U关系图像B.电源电压为20VC.R1的阻值是20ΩD.滑动变阻器R2的最大阻值为30Ω6.如图所示的电路中,电源电压为4.5V不变,电阻R1标有“6 Ω 0.5 A”,滑动变阻器R2标有“30Ω 1 A”,电流表量程为“0~0.6 A”,电压表量程为“0~3 V”。
2023~2024学年上学期九年级第三次核心素养检测语文试题注意:本试卷分试题卷和答题卡两部分。
考试时间120分钟,满分120分。
考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡。
一、积累与运用(共23分)班级开展“无悔青春难忘初中生活”主题活动,以下是资料组准备的部分材料,请你帮忙完善。
【追忆美好】1. 小豫回忆自己作为志愿者参加2023年中华轩辕龙舟大赛时的感受,并分享了下面一段话。
其中有些字词他拿不准,请帮他判断。
龙舟竞渡,又称赛龙舟,每年在端午前后举行。
它是全民性特征明显的文化活动,船上操桨驾①______(驭育)的舵手多,岸上加油助威观看比赛者更多。
轩辕龙舟大赛有着广泛的群众基础,且其竞渡习俗也有着本地文化的独特烙印。
当嘹亮的哨音响起,数十条龙舟在眼前奔驶而出,竞技的热血在水面喷薄时没有人会无精打②______(彩采),因为人们只会感受到文化传承所带来的滚烫的澎湃。
(1)语段中三个加点字怎么读?请帮他作出选择()A. tuóluòbóB. tuólàobáoC. duòlàobóD. duòluòbáo(2)语段中两个横线处应分别选用哪个字?请工整书写。
2. 小文和同学们分享了鸡冠洞独特的钟乳石景观,还为同学们搜集了相关科普知识,但有几句话的顺序不小心弄乱了,请你帮忙选出衔接最恰当的一项()钟乳石是在碳酸盐岩地区的洞穴内广泛分布的一种钟乳状次生碳酸钙沉积物。
______。
______;______;______。
①石钟乳是从洞顶像时钟的钟摆一样向下垂直悬挂的部分②当自上向下的石钟乳和由下向上的石笋长到一起上下相连时,就称为石柱③这些地质形态主要分为石钟乳、石笋和石柱三种④这些沉积物在漫长地质历史中,在特定地质环境条件下形成了不同的形态⑤石笋一般位于石钟乳的正下方,像地面长出的竹笋一样A. ③④②①⑤B. ③④②⑤①C. ④③⑤①②D. ④③①⑤②【回味经典】3. 古诗文默写。
名校调研系列卷・九年级第三次月考试卷 数学(人教版)一、选择题(每小题2分,共12分)1.下列函数中,是的反比例函数的是( )A. B. C. D.2.下列事件中,属于必然事件的是( )A.买彩票中10万大奖B.同位角相等C.圆的直径平分任意一条弦D.三角形任意两边之和大于第三边3.反比例函数的图象如图所示,轴,若的面积为3,则的值为( )A.-3 B. C.-6 D.-94.如图,将一块含有角的直角三角板(,)绕顶点逆时针旋转得到,则等于( )A. B. C. D.5.如图,是的内切圆,若,则的度数为()y x y x =-2y x =-11y x =-221y x x =-+()0k y k x=≠//AB y ABC V k 32-30︒ABC 90C ︒∠=30B ︒∠=A 100︒AB C ''V BB C ''∠5︒10︒15︒20︒O e ABC V 80A ︒∠=BOC ∠A. B. C. D.6.如图是二次函数的部分图象,该函数图象的对称轴是直线,图象与轴交点的纵坐标是2,则下列结论:①;②方程一定有一个根在-2和-1之间;③方程一定有两个不相等的实数根;④,其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)7.在平面直角坐标系中,点关于原点对称的点是点,则_____.8.在一个不透明的袋中装有100个红、紫两种颜色的球,除颜色外其他都相同,通过多次摸球试验后发现,摸到紫球的频率稳定在0.45左右,则袋中紫球大约有_____个.9.如图,已知、、、四个点均在上,若,弦的长等于半径,则_____度.10.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点、,当时,的取值范围是_____.100︒110︒120︒130︒()20y ax bx c a =++≠1x =y 20a b +=20ax bx c ++=2302ax bx c ++-=0a b c -+>()6,0P -P 'PP '=A B C D O e 44A ︒∠=CD BOC ∠=1y kx b =+2m y x=()4,4A -(),2B n -12y y >x11.已知关于的一元二次方程有两个不相等的实数根,则的取值范围是_____.12.当灯泡两端电压恒定时,通过灯泡的电流与其电阻成反比例,关于的函数图象如图所示,当电流时,电阻的取值范围是_____.13.如图,五边形为的内接正五边形,与相切于点,则_____度.14.如图,抛物线与轴相交于点、,与轴相交于点,点在该抛物线上,坐标为,则点的坐标是_____.三、解答题(每小题5分,共20分)15.用因式分解法解方程:.x 2230x x m ++=m ()A I ()R ΩI R 0.2A I ≤R ΩABCDE O e PA O e A PAB ∠=2y ax bx c =++x A ()2,0B m +y C D (),m c A ()2324x x x -=-16.如图,在中,,,将绕点顺时针旋转得到,交于点,若,求的长.17.已知反比例函数(为常数).(1)若该反比例函数的图象位于第二、四象限,求的取值范围;(2)若、是该反比例函数图象上的点,直接写出函数值、的大小.18.如图,的直径垂直弦于点,是圆上一点,是的中点,连接交于点,连接.(1)求证:;(2)若,,求的长.四、解答题(每小题7分,共28分)19.有3张相同的卡片,正面分别写有数字-3、8、10,将卡片的背面朝上放在桌面上.(1)洗匀后,从中随机抽取1张卡片,抽到写有正数的卡片的概率为_____;(2)洗匀后,从中随机抽取2张卡片,用画树状图或列表的方法,求抽取的2张卡片上的数字之积是负数的概率.20.如图,二次函数的图象与轴交于点、、与轴交于点.ABC V 90C ︒∠=20B ︒∠=ABC V A 25︒ADE V AD BC F 3AE =AF 26a y x+=a a ()11,4,a A y =-()21,B y -1y 2y O e AB CD E F D »BFCF OB G BC GE BE =6AG =4BG =CD 243y x x =+-x A B y C(1)该二次函数的顶点坐标是_____;(2)连接、,的面积为_____,(3)若将该二次函数的图象向上平移个单位长度后恰好过点,求的值.21.已知反比例函数,点、都在该反比例函数的图象上.(1)求反比例函数的解析式;(2)当时,直接写出的取值范围;(3)若经过的直线与轴交于点,求的面积.22.如图①是一座抛物线型拱桥,小星学习二次函数后,受到该图启示设计了一建筑物造型,它的截面图是抛物线的一部分(如图②),抛物线的顶点在处,对称轴与水平线垂直,,点在抛物线上,且点到对称轴的距离,点在抛物线上,点到对称轴的距离是1.(1)求抛物线的解析式;(2)如图②,为更加稳固,小星想在上找一点,加装拉杆、,同时使拉杆的长度之和最短,请你帮小星求出点的坐标.五、解答题(每小题8分,共16分)AC BC ABC V m (2,0)-m ()0k y k x=≠()2,A a -()9,1B a +1x >y AB y C OAC V C OC OA 9OC =A A 3OA =B B OC P PA PB P23.如图,点、、在上,,,延长到点,使,连接、.(1)求证:是的切线;(2)若,求图中阴影部分的面积(结果保留根号和).24.在中,,,,将绕点逆时针旋转得到,其中点、的对应点分别为点、.【教材呈现】(1)如图①,将绕点旋转得到,则线段的长为_____;【问题解决】(2)在旋转的过程中,连接,交边于点,当时,如图②,求证:;【拓展延伸】(3)点为边的中点,在旋转的过程中,连接,当的值最大时,连接,直接写出此时的长.六、解答题(每小题10分,共20分)25.如图,在等腰直角三角形中,,,点从点出发,以的速度沿边向终点运动,过点作,交折线于点Q ,D 为的中点,以为边向右侧作正方形,设正方形与重叠部分图形的面积是,点的运动时间为.A B C O e 150AOB ︒∠=45ABC ︒∠=OB D BD OB =OC CD CD O e 12CD =πRt ABC △90ACB ︒∠=10AB =8AC =ABC V B A BC ''V A C A 'C 'ABC V B 180︒A BC ''V CC 'ABC V CC 'ABD //CC A B ''12CD AB =E AC ABC V CC 'CC 'C E 'C E 'ABC 90ACB ︒∠=4cm AB =P A 2cm/s AB B P PQ AB ⊥AC CB -PQ DQ DEFQ DEFQ ABC V ()2cm y P ()s x(1)当点在边上时,正方形的边长为_____(用含的代数式表示);(2)当点不与点重合时,求点落在边上时的值;(3)当时,求关于的函数解析式;(4)直接写出边的中点落在正方形内部时的取值范围.26.如图,在平面直角坐标系中,抛物线(为常数)经过点,且与轴交于点,点在该抛物线上,横坐标为,将该抛物线、两点之间(包括、两点)的部分记为图象.(1)求此抛物线对应的二次函数的解析式;(2)当时,二次函数的最大值是_____,最小值是_____;(3)当图象的最大值与最小值的差为3时,求的值;(4)抛物线(为常数)与轴的另一交点为,若点在抛物线上,且在轴下方,点为轴上一动点,当以、、、为顶点的四边形是平行四边形时,直接写出点的坐标.名校调研系列卷・九年级第三次月考试卷数学(人教版)参考答案一、1.B2.D3.C4.B5.D6.B二、7.12 8.45 9.28 10.或 11. 12. 13.3614.三、15.解:,.16.解:Q AC DEFQ cm x P B F BC x 02x <<y x BC DEFQ x 223y x bx =-++b ()1,0A -y B C 21m -B C B C G 23x -≤≤G m 223y x bx =-++b x D M x N x B D M N N 4x <-08x <<98m <15R ≥()2,0-11x =22x =AF =17.解:(1)的取值范围是.(2).18.(1)证明:是的中点,,,,,,,.(2)解:.四、19.解:(1).(2)画树状图如图.由树状图知共有6种等可能的结果,其中抽取的2张卡片上的数字之积是负数的结果有4种,抽取的2张卡片上的数字之积是负数的概率为.20.解:(1).(2).(3)由题意,得平移后的抛物线的解析式为,经过点(-2,0),,解得.21.解:(1)反比例函数的解析式为.(2)的取值范围是.(3)的面积为2.22.解:(1)抛物线的解析式为.(2)点的坐标为.五、23.(1)证明:,,,,,是等边三角形,,,,,,是半径,是的切线.(2)解:图中阴影部分的面积为.24.(1)解:12.a 3a <-12y y >D »BFECG ECB ∴∠=∠CD AB ⊥ 90CEG CEB ︒∴∠=∠=CGE CBE ∴∠=∠CG CB ∴=CE BG ⊥ EG EB ∴=8CD =23∴4263=()2,7--()227y x m =+-+ ()20227m ∴=-+-+7m =6y x=y 06y <<OAC V 29y x =-+P (0,6),150OA OB AOB ︒=∠= 15A OBA ︒∴∠=∠=45ABC ︒∠= 60OBC ︒∴∠=OC OB = OBC ∴V OB BC ∴=BD OB = BC BD ∴=30BCD D ︒∴∠=∠=603090OCD OCB BCD ︒︒︒∴∠=∠+∠=+=OC CD ∴O e 8π-(2)证明:将绕点逆时针旋转得到,,,,,,,,,,,,.,,,,,.(3)解:.六、25.解:(1).(2)延长交于点,由题意,得,为的中点,,,,解得.(3)分三种情况:当时,;当时,;当时,.(4)的取值范围是.26.解:(1)二次函数的解析式为.(2)4;-5.(3)图象的最大值与最小值的差为3时,分两种情况:当点在点右侧时,图象的最大值是4,图象的最大值与最小值的差为3,∴图象的最小值是1,点的纵坐标是1,∵点在该抛物线上,横坐标为,,解得,(舍去),;当点在点左侧时,图象的最大值是3,∵图象的最大值与最小值的差为3,∴图象的最小值是0,∴点的纵坐标是,点在该抛物线上,横坐标为,点与重合,,解得,的值为0.综上所述,或0.(4)点的坐标为或.ABC V B A BC ''V A A '∴∠=∠A C B ''∠90ACB ︒=∠=BC BC '=BCC BC C ''∴∠=∠//CC A B '' 180A A C C A BC C A C B '''''''︒∴∠+∠=∠+∠+∠=90A BC C ''︒∴∠+∠=90A BC C '︒∴∠+∠=90A BCC '︒∴∠+∠=90ACB BCC ACD '︒∠=∠+∠= A ACD ∴∠=∠AD CD ∴=90ACB ︒∠= 90A ABC ︒∴∠+∠=ABC ∴∠BCC '=∠CD BD ∴=BD AD AB += 12CD AB ∴=C E '=x FE AB G 2AP x =D PQ DQ x ∴=GP x =224x x x ∴++=45x =405x <≤2y x =415x <≤2232082y x x =-+-12x <<21222y x x =-+x 312x <<223y x x =-++G C B G G G ∴C C 223y x x =-++21m -()()21212213m m ∴=--+-+1m =2m =m ∴C B G G G C 0 C 223y x x =-++21m -∴C A 211m ∴-=-0m =m ∴m N ()2-()2-。
2024-2025学年九年级数学上学期第三次月考模拟卷(湖南省专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围及分值占比:湘教版九年级上册第三章约40%,第四章约25%,第一章至第二章约35%5.难度系数:0.75。
一、选择题(本题共10小题,每小题3分,共30分)1.若两个相似三角形的面积之比为1:2,那么这两个三角形对应边上的高之比为( )A .1:2B .1:4C .D .4:12.已知a ,b ,c ,d 是成比例线段,其中3cm a =,6cm b =,9cm c =,则线段d 的长为( )A .2cm B .18cm C .24cm D .17cm3.若点()()()123,2,,1,,4A x B x C x -都在反比例函数8y x =的图像上,则123,,x x x 的大小关系是( )A .123x x x <<B .231x x x <<C .132x x x <<D .213x x x <<4.如图,下列条件中不能判定ACD V 和ABC V 相似的是( )A .ACDB Ð=ÐB .ACB ADC Ð=ÐC .AC AB CD BC =D .2AC AD AB=×5.如图,ABC V 的顶点是正方形网格的格点,则tan A 的值为( )A .12B C .13D 6.若关于x 的一元二次方程2230kx x -+=有两个实数根,则k 的取值范围是( )A .13k <B .13k £C .13k <且0k ¹D .13k £且0k ¹7.如图,小正方形的边长均为1,则图中三角形(阴影部分)与ABC V 相似的是( )A .B .C .D .8.潮汐塔是万平口区域内的标志性建筑,在其塔顶可俯视景区全貌.某数学兴趣小组用无人机测量潮汐塔AB 的高度,测量方案如图所示:无人机在距水平地面119m 的点M 处测得潮汐塔顶端A 的俯角为22°,再将无人机沿水平方向飞行74m 到达点N ,测得潮汐塔底端B 的俯角为45°(点,,,M N A B 在同一平面内),则潮汐塔AB 的高度为( )(结果精确到1m .参考数据:sin 220.37,cos 220.93,tan 220.40°°=°»»)A .41mB .42mC .48mD .51m9.如图,在平面直角坐标系中,直线8y kx =+与y 轴交于点C ,与反比例函数m y x=在第一象限内的图象交于点B ,连接OB ,若16OBC S =△,1tan 3BOC Ð=,则m 的值是( )A .64B .48C .40D .3210.如图,正方形ABCD 的边长为4,点E ,F 分别在边DC ,BC 上,且BF CE =,AE 平分CAD Ð,连接DF ,分别交AE ,AC 于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN AC ^垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM PN +的最小值为③2CF GE AE =×;④ADM S D = )A .①②B .②③④C .①③④D .①③二、填空题(本题共8小题,每小题3分,共24分)11.如图,在矩形OABC CDEF 中,点A 在y 轴正半轴上,点C ,F 均在x 轴正半轴上,点D 在边BC 上,2BC CD =,3AB =.若点B ,E 在同一个反比例函数的图象上,则这个反比例函数的表达式是__________.12.若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是__________.13.如图,ABC V 和DEF V 是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC V 与DEF V 的周长比是__________.14.如图,焊接一个钢架,包括底角为37°的等腰三角形外框和3m 高的支柱,则共需钢材约__________m (结果取整数).(参考数据:sin370.60°»,cos370.80°»,tan370.75°»)15.如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为__________.16.如图,一个由8个正方形组成的“C ”型模板恰好完全放入一个矩形框内,模板四周的直角顶点M ,N ,O ,P ,Q 都在矩形ABCD 的边上,若8个小正方形的面积均为1,则边AB 的长为__________.17.定义新运算:2,0,,0,a b a a b a b a ì-£Ä=í-+>î例如:224(2)40-Ä=--=,23231Ä=-+=.若314x Ä=-,则x 的值为__________.18.如图,三角形ABC 中,10AB AC ==,tan 2A =,BE AC ^于点E ,D 是线段BE 上的一个动点,则CD 的最小值是__________.三、解答题(本题共6小题,共66分,其中第19、20题各6分,第21、22题各8分,23、24题各9分,25、26题各10分)19.计算:020241æ-+-çè20.用指定方法解下列方程:(1)2x 2-5x +1=0(公式法); (2)x 2-8x +1=0(配方法).21.如图,在平面直角坐标系xOy 中,直线5y x =-+与y 轴交于点A ,与反比例函数k y x=的图象的一个交点为(,4)B a ,过点B 作AB 的垂线l .(1)求点A 的坐标及反比例函数的表达式;(2)若点C 在直线l 上,且ABC V 的面积为5,求点C 的坐标;(3)P 是直线l 上一点,连接PA ,以P 为位似中心画PDE △,使它与PAB V 位似,相似比为m .若点D ,E 恰好都落在反比例函数图象上,求点P 的坐标及m 的值.22.为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装避阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷长为5米,与水平面的夹角为16°,且靠墙端离地高BC 为4米,当太阳光线与地面的夹角为45°时,求阴影的长.(结果精确到米;参考数据:sin160.28,cos160.96,tan160.29°»°»°»)23.如图,在梯形ABCD 中AD BC ∥,点F ,E 分别在线段BC ,AC 上,且=FAC ADE ÐÐ,AC AD=(1)求证:DE AF=(2)若ABC CDE Ð=Ð,求证:2AF BF CE=×24.龙岩市公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔10月份到12月份的销量,该品牌头盔10月份销售50个,12月份销售72个,10月份到12月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,商家经过调查统计,当售价为40元/个时,月销售量为500个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到8000元,且尽可能让顾客得到实惠,则该品牌头盔每个售价应定为多少元?25.如图,正方形ABCD的边长为3,E、F为线段AC上两动点(不与A,C点重合),且∠EBF=45°.(1)求证:△ABF∽△BEF;(3)如图2,过点E,F分别作AB,BC的垂线相交于点O,垂足分别为M,N,求OM•ON的值.26.综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若BC m =,DC n =,2BCD q Ð=,求AC 的长(用含m ,n ,q 的式子表示).(3)拓展应用如图3,在Rt ABC △中,90B Ð=°,3AB =,4BC =,分别在边BC ,AC 上取点M ,N ,使四边形ABMN是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.。
九年 ·语文(省命题) H学校姓名考号名校调研系列卷·九年级第三次月考试卷语文(人教版)题号二三总分得分一、积累与运用(15分)阅读语段,按要求完成1-4题。
(8分)青春,如诗如画,是人生中最为璀璨的篇章。
在这最美的时光里,青春是最美的奋斗时节。
青春的奋斗,如同一幅xuàn 丽多彩的画卷在眼前徐徐展开。
【甲】青春的奋斗,是一首激昂的乐章。
在奋斗的旋律中,有挫折时的低沉,有拼搏时的高亢,更有成功时的激昂海湃。
当遇到困难时,我们不退缩、不放弃,勇敢地迎难而上。
【七。
青春的奋斗,是一场没有终点的旅程。
在这个旅程中,我们怀揣梦想,不断前行。
【丙】1.根据拼音写汉字,给加点字注音。
(2分)(1)xuàn( )丽多彩(2)高亢( )2.下列选项中与“奋斗时节”短语类型一致的是( )(2分)A.徐徐展开B.激昂澎湃C. 迎难而上D.怀揣梦想3.将下列语句依次填入文中甲、乙、丙横线处,最恰当的一项是( )(2分)①每一次的挑战都是成长的机遇,每一次的挫折都是奋斗的勋章②也许前方的道路崎岖不平,但我们坚信,只要努力奋斗,就一定能抵达成功的彼岸③那是清晨第一缕阳光洒在书本上的专注,是深夜灯火下为梦想拼搏的身影A.②①③B.③①②C.②③①D.①②③4.请提取文中画波浪线句子的主于:。
(2分)5.在下面田字格中填写古诗词名句。
(7分)赏读经典,砥砺人生。
范仲淹《渔家傲·秋思》中的(1)告诉我们戌边将士的思乡之情与报国之志;苏轼《定风波》中的“(2) 归去,也无风雨也无晴”告诉我们面对人生的“风雨”,要坚守自己的精神世界,顺境不骄,逆境不惧;辛弃疾《破阵子·为陈同甫赋壮词以寄之》中的(3)”表达了作者渴望建功立业的雄心壮志;秋瑾《满江红》中的(4)“身不得,男儿列,告诉我们词人巾帼不让须眉的豪迈气概。
语文试卷第1 页 ( 共8 页)得分评卷人(一)阅读下面材料,完成6-11题。
第13题
第3题
第6题
一、填空题(每空1分,共计26分)
1.冬天手冷时,我们经常将两只手相互搓搓使手感到暖和,这是利用 的方法使手的内能增加的;用热水袋使身体变暖,是利用 的方法使人身体的内能增加的。
2.汽油的热值是4.6×107
J/Kg ,表示的物理意义是_____________________________________________,完全燃烧500g 的汽油可放出的热量为_______________。
3.如图,玻璃体里面的导线不相连接,当开关闭合时,电灯 ,当给玻璃体加热至红炽状态,电灯 ,比较这两个现象,说明 . 4.电压表必须 在电路中,电流表必须 电路中。
5.一节干电池的电压为__ __V ,我国家庭照明电路的电压是 V ,对人体安全的电压是 V 。
6.如图所示,电源电压保持不变,R 1=3R 2=2R 3。
当S 1、S 2均闭合时,通过R 1、R 3的电流之比为____________;当S 1、S 2均断开时,R 1、R 2两端的电压之比是_________。
7. 2008年5月12日,四川汶川发生了强烈地震。
在道路完全中断的情况下,空军派出直升机进行救援,空降兵在匀速下落中相对于降落伞是_______的,机械能是_______(填“增大”、“减小”或“不变”)的。
8.如图所示,闭合开关后,滑片P 向右移动时,灯泡亮度 (选填变亮、不变、变暗)。
若把C 改接到A ,滑片P 向左移动,灯泡的亮度将 (选填变亮、不变、变暗)。
9.在如图所示的电路中,将电键K 闭合,
则安培表的示数将______,伏特表的示数将________(均填“变大”、“变小”或“不变”)。
10.在连接电路过程中,开关应该是______的。
电路接好后,应检查电路有无______路和______路,然后闭合开关做实验。
11.干电池中的碳棒相当于电池的 极,锌筒相当于电池的 极。
13.神舟”六号飞船的顺利升空和安全返回,标志着我国的航天技术迈上新台阶。
上图是飞船返回舱着落前的情形,请说出与之相关的两个物理知识。
(1) (2) 二、选择题(每题2分共24分)
1.用一个开关同时控制两只电灯发光,两只电灯在电路中 ( ) A .一定要串联 B .只有并联 C . 可以是串联,也可以是并联 D . 不可能是并联 2.在图所示的电路中,电源电压为6伏。
当电键K 闭合时,只有一只灯泡发光,且电压表V 的示数为6伏。
产生这一现象的原因可能是 ( )
A .灯L 1短路。
B .灯L 2短路。
C .灯L 1断路。
D .灯L 2断路。
C
第8题
第9题
3.现代火箭用液态氢作燃料,是因为它具有()A.较大的比热容B.较低的沸点 C.较高的凝固点D.较大的热值
4.下列现象中不属于扩散现象的有: ( ) A.放在盐水中的鸡蛋被腌咸了;B、长期堆煤的墙角会变黑;
C.糖溶在水中,使水变甜;D.在显微镜下观察到水中微生物在游动。
5.下列材料属于导体材料的是 ( ) A.铜陶瓷B.石墨人体 C.橡胶油 D.水银硫酸铜溶液
6.下列组几组物品中,均为用电器的是()A.电冰箱洗衣机空调 B.微波炉电吹风导线C.电铃电池电话 D.电灯插座手机7.关于公式 R = U/I , 下列说法中正确的是 ( ) A.导体的电阻与导体两端的电压成正比 B.导体的电阻与通过导体的电流成反比
C.导体的电阻与导体两端的电压成正比 , 与通过导体的电流成反比
D.导体的电阻与导体两端的电压和通过导体的电流都无关
8.两个电阻值完全相等的电阻,若并联后的总电阻是10欧姆,则将它们串联的总电阻是A.5Ω B.10ΩC.20Ω D.40Ω ( ) 9.己知 R1: R2=3:2, 若将它们并联在某一电路中, 则通过它们的电流之比I1:I2,,若将他们串联在这一电路中,则它们的电压之比U1:U2,则I1:I2,与U1:U2之比为 ( ) A. 2:3 ,1:1 B. 3:2 ,1:1 C. 1:1 ,2:3 D. 2:3 ,3:2
10.从显象管尾部的热灯丝发射出来的电子,高速撞击在电视机的荧光屏上,使荧光屏发光,则在显像管内:( )
A.电流方向从灯丝到荧光屏 B.电流方向从荧光屏到灯丝
C.显像管内是真空的,没有电流 D.显像管内电流方向不断改变
11.一位同学用电压表与电流表测甲、乙两个电阻阻值时作出了如图所示I-U图像,由图像可判断这两个电阻()A.R甲=R乙 B.R甲<R乙 C.R甲>R乙D.无法判断
12
较这两段导体两端的电压及通过它们的电流的大小,有()
A. U AB>U BC, I AB<I BC B. U AB<U BC, I AB=I BC C. U AB>U BC, I AB=I BC D. U AB=U BC, I AB<I BC
三、作图题(每题3分共6分)
1.根据如图所示的实物图在右边虚框内画出电路中。
2.两灯泡并联,开关S是总开关,电流表只测通过L1的电流。
请将所缺的导线补上。
四、简答题(每题2分共4分)
1.某校STS 活动小组自制出一种自动测定油箱内油量多少的装置,如图所示,R 是滑动变阻器,它的金属滑片是杠杆的一端,从油量表(由电流表改装而成)指针所指示刻度,就能知道油量的多少。
请简述这种装置的工作原理。
2. 汽车急刹车时,车轮停止转动,在地面上摩擦,轮胎表面温度急剧升高产生冒烟现象,并在地面上留下黑色痕迹,为什么?
五、计算题(共18分)
1小星家的太阳能热水器,水箱容积是200L .小星进行了一次观察活动:某天早上,他用温度计测得自来水的温度为20℃,然后给热水器水箱送满水,中午时“温度传感器”显示水箱中的水温为45℃.请你求解下列问题:
(1)水箱中水的质量;水吸收的热量(c 水=4.2×103
J /(kg ·℃))
(2)如果水吸收的这些热量,由燃烧煤气来提供,而煤气灶的效率为40%,求至少需要燃烧多少煤气(煤气的热值为q=4.2×107
J /kg )
2.如图所示,R 1=10,开关S 断开时电流表的示数为0.3A ,开关S 闭合时,电流表的示数为0.5A 。
求(1)电源电压;(2)R 2的阻值
3.如图示的电路中,电源电压为6V ,且保持不变,电阻R 1、R 2、R 3的阻值分别为8Ω、4Ω、12Ω。
求:⑴、如果开关S 1、S 2都断开时,电流表、电压表的示数是多大? ⑵、如果开关S 1、S 2都闭合时,电流表的示数是多大?
五、实验探究(共计24分)
1.如图所示电路中有两个小灯,请在图中○内,分别填入
、
、
的
符号,要求开关闭合时两灯均能发光,且两电表的示数均不为零。
(3分) 2
.用一个电源、一个电铃、两个开关、两只灯泡为仓库设计一个电路,要
第1题
第2题
第
1
求:
取货人在前门按开关S 1,电铃响,红灯亮;送货人在后门按开关S 2,电铃响,绿灯亮。
(2分)
3
(1)分析第1、2次或第3、4次实验数据,可以得出的初步结论是:同种物质升高相同温度时,吸收热量的多少与物质的 有关。
(2)分析第
1、3
次或第
2、4
次实验数据,可以得出的初步结论
是: 。
比较1和2发现, ; 比较2和3发现, ; 比较2和4发现, 。
5.在伏安法测电阻的实验中,待测电阻约为10Ω左右,滑动变阻器标有“50Ω 1.2A”字样。
(10分) (1)实验原理:
(2)实验器械除了电源、待测电阻、电压表、安培表、滑动变阻器和导线外还需 ; (3)在虚线框内画出电路图;
(4)在闭合开关前,滑动变阻器连入电路的电阻阻值应最 ,滑动变阻器在实验
中除能起保护电路的作用外,另一个主要作用是 。
(5)闭合开关,结果某一组同学发现,无论怎样移动滑片,电压表示数总是很小,其原因是 。
(6)小明所在的小组电压表坏了,老师说在不改变电路的基础上只用电流表也能测出待测电阻,小明很快就想出了办法,你知道小明是怎么做的吗?写出简单步骤及R x 的表达式。