化工原理1.8.1离心泵1
- 格式:pdf
- 大小:1.04 MB
- 文档页数:59
1离心泵的基本构造及工作原理离心泵是一种常见的动力机械设备,它主要通过转子的旋转来将液体从一个位置输送到另一个位置。
本文将介绍离心泵的基本构造和工作原理。
离心泵的基本构造包括进口管道、泵体、转子、排水管道和驱动装置等。
进口管道用于将液体引入泵体,泵体是离心泵的主体结构,容纳转子和内衬。
转子是离心泵的核心部件,它通常由叶轮、轴和轴套组成。
叶轮是用于转动并推动液体的部分,它通常由数个叶片组成,有时还包括导流片。
排水管道用于排出泵体中的液体。
驱动装置则主要负责转动转子,使离心泵正常工作。
离心泵的工作原理是基于离心力的作用。
当驱动装置启动时,转子开始转动。
由于离心力的作用,液体被推入叶轮,叶轮将液体快速旋转,并产生离心力。
离心力使液体沿着叶轮的排水管道流出泵体。
在离心泵中,叶轮的旋转将动能转化为液体的动能,从而推动液体的流动。
由于离心泵的叶轮受到液体的抵抗和摩擦力的作用,所以离心泵在运行过程中需要消耗相应的功率。
离心泵还有一个重要的特性是其性能曲线。
离心泵的性能曲线是指在一定转速下,离心泵输送液体时所能提供的扬程和流量之间的关系曲线。
通常情况下,离心泵在正常工作条件下,其性能曲线呈倒U型曲线。
在这个曲线中,当流量增加时,扬程逐渐降低,反之亦然。
这是因为在较低的流量下,液体与叶轮的摩擦力较小,所以液体的扬程较高;而在较大的流量下,摩擦力增大,液体的扬程减小。
总结起来,离心泵的基本构造包括进口管道、泵体、转子、排水管道和驱动装置等。
其工作原理是通过转子旋转产生离心力,从而推动液体的流动。
离心泵的性能曲线描述了其在不同流量下的扬程。
离心泵在许多工业领域中广泛应用,如供水系统、冷却系统和污水处理系统等。
离心泵的功能原理及故障解除办法
离心泵用于几乎所有直抽像水不含硬颗粒的液体并发症的低粘度流体的应用程序。
离心泵运输液体和液体通过来自一个水库或罐不同储层或罐的管道系统。
离心泵还用于移动数量巨大的组成的浮动的物质或材料,如各类食品、粉砂的流体。
这些水泵可以是.在全体审议单阶段,或者他们可以是堆放在一系列流程安排,以提供高输出压力的阶段。
离心泵是简单的概念和建设,并在中等压力提供最高的流量性能。
离心泵在所有可加工 materials–including 所有金属、塑料和陶瓷中可用。
离心泵功能
离心泵也被认为是旋动态泵,因为他们通过旋转的旋转叶轮运作。
流体移动并解除由于对流体的增加速度。
这些类型泵通常是机动流体在管结构的目的。
液体泵叶轮通过输入沿进一步通过叶轮和流外部输入不同的隔离舱管道系统的移动和最后离开到管道结构的下半部分。
离心泵弹出液和一个较小的头组件的方式的液体。
伯努利原理
离心泵按照什么称为伯努利原则运作。
他们通过旋转动力学力的传输操作。
这通常被通过一个-电动马达。
离心式水泵叶轮转动生成液体的动能,并绘制的流体从眼睛或叶轮的中心。
警告
离心泵往往出现故障的几种方法。
一些离心泵故障包括泵套管泄漏和密封有关的问题,如丢失的冲厕用泄漏、淬火系统,和冷却。
一些其他故障包括轴承与相关的泵和电机等冷却、润滑损失、油污染和异常噪音的问题。
----分割-----。
化学工程基础(李德华著)课后答案下载化学工程基础(李德华著)课后答案下载书名:化学工程基础 (第二册)作者:林爱光,阴金香出版社:清华大学出版社出版时间: -8-1ISBN: 9787302172642开本: 16开定价: 39.80元化学工程基础(李德华著):图书信息本书为清华大学“化工原理”课程所用教材,在清华大学多个院系使用多年。
全书分7章,包括流体的流动与输送、传热过程和传热设备、精馏、吸收、气液传质设备、化学反应工程学和膜分离过程。
为便于学生理解和掌握课程内容,书中提供了典型的例题和习题。
书末附有做化工习题常用的物性参数图表及管子、泵、通风机的部分规格。
本书可用作高等院校工科有关专业及理科化学和应用化学专业“化工基础”课程的教材,也可供上述专业从事设计、开发和运行的科技人员参考。
化学工程基础(李德华著):内容简介1 流体的流动与输送1.1 概述1.2 流体静力学方程1.2.1 流体的性质1.2.2 流体的压强1.2.3 流体静力学基本方程1.2.4 流体静力学方程的应用1.3 流体流动的基本方程1.3.1 流量与流速1.3.2 粘度1.3.3 流体流动的'类型及其判断1.3.4 流动边界层1.3.5 流体稳定流动时的连续性方程1.3.6 流体流动过程的能量守恒和转化(伯努利方程式) 1.4 流速与流量的测量1.4.1 测速管1.4.2 孔板流量计1.4.3 转子流量计1.5 流体流动时的阻力1.5.1 管路的沿程阻力1.5.2 非圆形管内的流体阻力1.5.3 局部阻力1.5.4 乌氏粘度计测粘度的原理1.6 管路计算1.6.1 管路计算的类型和基本方法1.6.2 简单管路的计算1.6.3 复杂管路的计算1.7 两相流动1.7.1 球形颗粒在流体中运动时的阻力 1.7.2 曳力系数与雷诺数的关系1.7.3 重力沉降1.7.4 固体流态化1.8 流体输送设备1.8.1 离心泵1.8.2 离心压缩机1.8.3 往复压缩机和往复泵1.8.4 其他常用流体输送设备习题讨论题__符号说明2 传热过程和传热设备2.1 概述2.1.1 化工生产中的传热2.1.2 热传递的基本方式2.1.3 热量衡算2.1.4 稳定与不稳定传热2.2 热传导2.2.1 基本概念与傅里叶定律2.2.2 热导率2.2.3 通过平壁的稳定热传导2.2.4 通过圆筒壁的稳定热传导2.3 对流传热2.3.1 基本概念与牛顿冷却定律2.3.2 用量纲分析法求无相变时流体的给热系数??2.3.3 管内强制对流时的给热系数2.3.4 大空间自然对流传热2.3.5 保温层的临界直径2.4 辐射传热2.4.1 基本概念与定律2.4.2 物体间的辐射传热2.4.3 对流和辐射的联合传热2.5 热交换过程的传热计算2.5.1 热交换器的传热机理和传热基本方程式 2.5.2 总传热系数2.5.3 传热的平均温度差2.5.4 传热面积的计算2.5.5 热交换设备2.5.6 热交换过程的强化途径习题讨论题__符号说明3 精馏4 吸收5 气液传质设备6 化学反应工程学7 膜分离过程本书配套多媒体课件简介附录化学工程基础(李德华著):目录绪论点击此处下载化学工程基础(李德华著)课后答案。
化工原理实验指导离心泵性能测定实验一、实验目的1.熟悉离心泵的工作原理和操作方法。
2. 掌握离心泵特性曲线和管路特性曲线的测定和表示方法,加深对离心泵的了解。
3. 掌握离心泵特性管路特性曲线的测定方法、表示方法。
二、实验内容1.练习离心泵的操作。
2. 测定离心泵在一定转速(频率)下,H (扬程)、N (轴功率)、η(效率)与Q (流量)之间的特性曲线。
3. 测定流量调节阀某一开度下管路特性曲线。
三、实验原理(一)离心泵特性曲线离心泵是最常见的液体输送设备。
在一定的型号和转速下,离心泵的扬程H 、轴功率及效率η均随流量Q 而改变。
通常通过实验测出H —Q 、N —Q 及 η—Q 关系,并用曲线表示之,称为特性曲线。
特性曲线是确定泵的适宜操作条件和选用泵的重要依据。
泵特性曲线的具体测定方法如下:⒈ H 的测定在泵的吸入口和压出口之间列柏努利方程,有出入入出入出入出出入出出出入入入)--+-+-+-=+++=+++f f H g uu g P P Z Z H H gu g P Z H g u g P Z 2(222222ρρρ 上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力(不包括泵体内部的流动阻力所引起的压头损失),当所选的两截面很接近泵体时,与柏努利方程中其它项比较,出入-f H 值很小,故可忽略。
从设备 参数可以看出,出口管和入口管的管径相等,而且本实验装置没有支流管,所以u 出=u 入,于是上式变为:gu u g P P Z Z H 2(22入出入出入出)-+-+-=ρ 将设备参数)入出Z Z -(和测得的入出PP -的值代入上式,即可求得H 的值。
⒉ N 的测定功率表测得的功率为电动机的输入功率。
由于泵是由电动机直接带动的,传动效率可视为1.0,所以电动机的输出功率等于泵的轴功率。
即:泵的轴功率N =电动机的输出功率,kW ;电动机的输出功率=电动机的输入功率×电动机的效率;泵的轴功率=功率表的读数×电动机效率,kW 。
实验一流动过程综合实验实验1-1 流体阻力测定实验一、实验装置⒈实验装置流程图如图1-2所示。
⒉流量测量:在图1-2中由转子流量计22、23测量。
⒊直管段压强降的测量:差压变送器和倒置U形管直接测取压差值。
图一、流体综合实验装置流程示意图1:水箱:2:水泵;3:入口真空表;4:出口压力表;5,16:缓冲罐:6,14测局部阻力近端阀;7,15:测局部阻力远端阀;8,17:粗糙管测压阀;9,21:光滑管测压阀;10:局部阻力阀;11:文丘里流量计;12:压力传感器;13:涡流流量计;18:阀门;19光滑管阀;20:粗糙管阀;22:小流量计;23:大流量计;24阀门25:水箱放水阀;26:倒U型管放空阀;27: 倒U型管;28,30:倒U型管排水阀;29,31: 倒U型管平衡阀;32:功率表;33:变频调速器设备主要参数二、实验内容⒈测定实验管路内流体流动的阻力和直管摩擦系数λ。
⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 之间的关系曲线。
⒊在本实验压差测量范围内,测量阀门的局部阻力系数。
三、实验原理⒈直管摩擦系数λ与雷诺数Re 的测定h f = ρfP ∆=22u d l λ (1-1)λ=22u P l d f∆⋅⋅ρ (1-2) Re =μρ⋅⋅u d (1-3)式中:-d 管径,m ;-∆f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,Pa ·s 。
⒉局部阻力系数ζ的测定 22'u P h ff ζρ=∆=' (1-4)2'2u P f∆⋅⎪⎪⎭⎫ ⎝⎛=ρζ (1-5)式中:-ζ局部阻力系数,无因次; -∆'f P 局部阻力引起的压强降,Pa ;-'f h 局部阻力引起的能量损失,J /kg 。
图1-1 局部阻力测量取压口布置图局部阻力引起的压强降'f P ∆ 可用下面的方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在其上、下游开两对测压口a-a'和b-b ',见图1-1,使ab =bc ; a 'b '=b 'c ' 则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c ' 在a~a '之间列柏努利方程式:P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f(1-6)在b~b '之间列柏努利方程式:P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f = △P f ,a b +△P f ,a 'b '+△P 'f (1-7) 联立式(1-6)和(1-7),则:'f P ∆=2(P b -P b ')-(P a -P a ')为了实验方便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。
离心泵性能测定实验目录一. 实验设备的特点二. 设备主要技术数据三. 实验设备应注意的事项四. 实验方法及步骤五. 使用实验设备应注意的事项六. 附录一. 实验设备的特点:1. 本实验装置数据稳定,重现性好, 使用方便,安全可靠。
2. 本装置体积小,重量轻,设备紧凑,功能齐全;实验采用循环水系统,节约实验费用。
二、设备主要技术数据:1. 设备参数:(1)离心泵:流量Q=4m 3/h ,扬程H=8m ,轴功率N=168w (2)真空表测压位置管内径d 1=0.025m (3)压强表测压位置管内径d 2=0.025m(4)真空表与压强表测压口之间的垂直距离h 0=0.18m (5)实验管路d=0.040m (6)电机效率为60% 2. 流量测量采用涡轮流量计测量流量(仪表常数77.902次/升) 3. 功率测量功率表:型号 PS-139 精度1.0级 4. 泵吸入口真空度的测量真空表:表盘真径-100mm 测量范围-0.1-0MPa 精度1.5级 5. 泵出口压力的测量压力表:表盘直径-100mm 测量范围0-0.25MPa 精度1.5级 三、实验装置的流程水泵1将水槽10内的水输送到实验系统,用流量调节阀6调节流量,流体经涡轮流量计9计量后,流回储水槽。
流程示意图见图一。
四、实验方法及步骤1. 向储水槽10内注入蒸馏水。
2. 检查流量调节阀6,压力表3及真空表2的开关是否关闭(应关闭)。
3. run 键启动离心泵,缓慢打开调节阀6至全开。
待系统内流体稳定,打开压力表和真空表的开关,方可测取数据。
4.测取数据的顺行可从最大流量至0,或反之。
一般测10~20组数据。
5.每次在稳定的条件下同时记录:流量、压力表、真空表、功率表的读数及流体温度。
6.实验结束,关闭流量调节阀,停泵,切断电源。
五、使用实验设备注意事项1.2. 使用变频调速器时一定注意FWD 指示灯亮,切忌按REV 指示灯亮,电机反转。
3. 启动离心泵前,关闭压力表和真空表的开关 以免损坏压强表。