2019年人教版八年级下册数学第17章测试卷及答案
- 格式:docx
- 大小:181.60 KB
- 文档页数:7
第17章勾股定理一.选择题(共10小题)1.已知Rt△ABC的三边分别为a、b、c,则下列结论不可能成立的是()A.a2﹣b2=c2B.∠A﹣∠B=∠CC.∠A:∠B:∠C=3:4:5 D.a:b:c=7:24:252.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1 B.2018 C.2019 D.20203.如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.B.0.8 C.3﹣D.4.如图△ABC中,∠D=90°,C是BD上一点,已知CB=9,AB=17,AD=8,则DC的长是()A.8 B.9 C.6 D.155.下列说法中,正确的个数有()①已知直角三角形的面积为2,两直角边的比为1:2,则斜边长为;②直角三角形的最大边长为,最短边长为1,则另一边长为;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5.A.1个B.2个C.3个D.4个6.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.7.如图,四边形ABCD中,∠ABC=90°,AC=BD,AC⊥BD,若AB=4,AD=5,则DC的长()A.7 B.C.D.28.如图,某公司举行周年庆典,准备在门口长25米,高7米的台阶上铺设红地毯,已知台阶的宽为3米,则共需购买()m2的红地毯.A.21 B.75 C.93 D.969.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm10.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AC=12km,BC=16km,则M,C两点之间的距离为()A.13km B.12km C.11km D.10km二.填空题(共5小题)11.现有两根木棒的长度分别是40cm和50cm,若要钉成一个三角形木架,其中有一个角为直角,则所需木棒的最短长度为.12.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角的大小为度.13.如图所示的网格是正方形网格,△ABC和△CDE的顶点都是网格线交点,那么∠BAC+∠CDE=°.14.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是.15.如图,在△ABC中,AC=BC=13,AB=24,D是AB边上的一个动点,点E与点A关于直线CD对称,当△ADE为直角三角形时,则AD的长为.三.解答题(共6小题)16.如图,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)分别求出AB,BC,AC的长;(2)试判断△ABC是什么三角形,并说明理由.17.如图,是一个长8m,宽6m,高5m的仓库,在其内壁的A(长的四等分点)处有一只壁虎,B(宽的三等分点)处有一只蚊子,则壁虎爬到蚊子处的最短距离为多少米.18.如图,A、B两点都与平面镜相距4米,且A、B两点相距6米,一束光线由A射向平面镜反射之后恰巧经过B点,求B点到入射点的距离.19.如图,在正方形ABCD中,E是边AD的中点,点F在边DC上,且DF=DC.试判断△BEF的形状,并说明理由.20.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.21.如图,在Rt△ABC中,AB=3,BC=4,动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q 的运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止运动,连接PQ,设它们的运动时间为t(t>0)秒.(1)设△CBQ的面积为S,请用含有t的代数式来表示S;(2)线段PQ的垂直平分线记为直线l,当直线l经过点C时,求AQ的长.参考答案一.选择题(共10小题)1.C.2.D.3.C.4.C.5.D.6.D.7.B.8.C.9.D.10.D.二.填空题(共5小题)11.30cm.12.9013.45°.14.15.15.17.三.解答题(共6小题)16.(1),,;(2)△ABC是直角三角形,理由如下:∵,AC2=52=25,∴AB2+BC2=AC2,∴△ABC是直角三角形.17.①将正面和左面展开,过点B向底面作垂线,垂足为点C,则△ABC为直角三角形,∵AC=×8+×6=8m,BC=5m,∴AB===m.故壁虎爬到蚊子处的最短距离为m.②将正面和上面展开,则A到B的水平距离为6m,垂直距离为7m,此时的最短距离为m③将下面和右面展开,则A到B的水平距离为11m,垂直距离为2m,此时的最短距离为5m.综上所述,壁虎爬到蚊子处的最短距离为米.18.作出B点关于CD的对称点B′,连接AB′,交CD于点O,则O点就是光的入射点.因为B′D=DB,所以B′D=AC,∠B′DO=∠OCA=90°,∠B′=∠CAO,所以△B′DO≌△ACO(ASA),则OC=OD=AB=×6=3米.连接OB.在Rt△ODB中,OD2+BD2=OB2,所以OB2=32+42=52,即OB=5(米),所以点B到入射点的距离为5米.19.【解答】证明:设正方形ABCD的边长为4x,∵E是边AD的中点,点F在边DC上,且DF=DC,∴AE=DE=2x,DF=x,CF=3x,∴在Rt△EDF中,EF2=ED2+DF2=x2+(2x)2=5x2;在Rt△AEB中,EB2=EA2+AB2=(2x)2+(4x)2=20x2;在Rt△BCF中,BF2=BC2+CF2=(4x)2+(3x)2=25x2;∴EF2+BE2=BF2,∴△BEF是直角三角形.20.【解答】(1)证明:∵在Rt△ADC中,∠ADC=90°,AD=8,CD=6,∴AC2=AD2+CD2=82+62=100,∴AC=10(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC为直角三角形;(2)解:S阴影=S Rt△ABC﹣S Rt△ACD=×10×24﹣×8×6=96.21.(1)如图1,当0<t≤3时,BQ=t,BC=4,∴S=×4×t=2t;如图2,当3<t≤5时,,AQ=t﹣3,则BQ=3﹣(t﹣3)=6﹣t,∴S=×4×(6﹣t)=12﹣2t;(2)连接CQ,如图3,∵QP的垂直平分线过点C,∴CP=CQ,∵AB=3,BC=4,∴AC===5,∴42+t2=(5﹣t)2,解得t=;或42+(6﹣t)2=(5﹣t)2,显然不成立;∴AQ=3﹣=.。
人教版八年级数学下册第十七章测试题(附答案)学校: 姓名: 班级: 考号:1.如图AB=AC ,则数轴上点C 所表示的数为( )A .+1B .-1C .-+1D .--12.已知x 、y 为正数,且|x-4|+(y-3)=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A .5B .25C .7D .153.如图,△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC .若△ABC 的边长为4,AE=2,则BD 的长为( )A .2 B. 3 C .D .+1 4.如图,Rt △ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A.4 B.5 C.D. 5.有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为()A.2,4,8 B.4,8,10 C.6,8,10 D.8,10,126.如右下图所示,在□ABCD中,已知∠ODA=90º, AC=10cm,BD=6cm,则AD的长为().A、4cmB、5cmC、6cmD、8cm7.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线上,且之间的距离为1,之间的距离为2,则AC的长是()A. B. C. D. 58.已知Rt△ABC中,∠C=90°,若cm,cm,则S为().A.24cmB.36cmC.48cmD.60cm9.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a+c=b,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,假命题的个数为()A.1个 B.2个 C.3个 D.4个10.如图,在的方格中,有一个正方形ABCD,假设每一个小方格的边长为1个单位长度,则正方形的边长为()A、B、C、D、11.如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G 为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A.B.C.D.二、填空题12.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm 到D,则橡皮筋被拉长了 cm.13.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=5,CD=3,则△ABC的周长是.14.已知直角三角形两边的长x、y满足|x-4|+=0,则第三边长为 .15.如图,△ABC是边长6的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上均速移动,它们的速度分别为V=2cm/s, V=1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为ts,则当t= s时,△PBQ为直角三角形.16.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B 落在矩形内点F处,连接CF,则CF的长为.17.在△ABC中,AB=13,AC=20,BC边上的高为12,则△ABC的面积为.18.如图Rt△ABC中,AC=12,BC=5,分别以AB,AC,BC为直径作半圆,则图中阴影部分的面积为。
2019-2020学年八年级数学下学期《17.1勾股定理》测试卷一.选择题(共6小题)1.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.2.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.3.如图,在直角△ABC中,∠C=90°,AC=3,AB=4,则点C到斜边AB的距离是()A.B.C.5D.【分析】根据勾股定理求出BC,根据三角形的面积公式计算.【解答】解:∵∠C=90°,AC=3,AB=4,∴CB==,△ABC的面积=×AC×BC=×AB×CD,即×3×=×4×CD,解得,CD=,故选:D.【点评】本题考查的是勾股定理,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.4.在△ABC中,若∠ABC=90°,则下列正确的是()A.BC=AB+AC B.BC2=AB2+AC2C.AB2=AC2+BC2D.AC2=AB2+BC2【分析】根据勾股定理即可得到结论.【解答】解:∵在△ABC中,∠ABC=90°,∴AC2=AB2+BC2.故选:D.【点评】本题考查了勾股定理,熟记勾股定理是解题的关键.5.在Rt△ABC中,斜边AB=2,则AB2+AC2+BC2等于()A.2B.4C.8D.16【分析】根据勾股定理求出AC2+BC2的值,再整体计算.【解答】解:根据勾股定理,得:AC2+BC2=AB2=4,故AB2+AC2+BC2=4+4=8,故选:C.【点评】熟练运用勾股定理:直角三角形两条直角边的平方和等于斜边的平方.6.如图,AD⊥CD,CD=4,AD=3,∠ACB=90°,AB=13,则BC的长是()A.8B.10C.12D.16【分析】直接利用勾股定理得出AC的长,进而求出BC的长.【解答】解:∵AD⊥CD,CD=4,AD=3,∴AC==5,∵∠ACB=90°,AB=13,∴BC==12.故选:C.【点评】此题主要考查了勾股定理,正确应用勾股定理是解题关键.二.填空题(共4小题)7.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=13;(2)若c=41,a=40,则b=9;(3)若∠A=30°,a=1,则c=2,b=;(4)若∠A=45°,a=1,则b=1,c=.【分析】(1)(2)直接运用勾股定理即可得出答案;(3)根据30°角对的直角边等于斜边一半可得出c,利用勾股定理可得出b;(4)此时直角三角形是等腰直角三角形a=b=1,利用勾股定理可得出c的值.【解答】解:(1)c==13;(2)b==9;(3)∵∠A=30°,a=1,∴c=2a=2,∴b==;(4)∵∠A=45°,a=1,∴a=b=1,∴c==.故答案为:13;9;2、;1、.【点评】本题考查了勾股定理的知识含30°角的直角三角形的性质,解答本题的关键是熟练掌握勾股定理的表达式.8.如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为10.【分析】在直角△ABF中,利用勾股定理进行解答即可.【解答】解:依题意知,BG=AF=DE=8,EF=FG=2∴BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB===10.故答案是:10.【点评】此题考查勾股定理的证明,解题的关键是得到直角△ABF的两直角边的长度.9.已知直角三角形的两边的长分别是3和4,则第三边长为5或.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.【点评】此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.10.已知等腰三角形的底角是30°,腰长为2,则它的周长是6.【分析】作AD⊥BC于D,根据直角三角形的性质求出AD,根据勾股定理求出BD,根据三角形的周长公式计算即可.【解答】解:作AD⊥BC于D,∵AB=AC,∴BD=DC,在Rt△ABD中,∠B=30°,∴AD=AB=,由勾股定理得,BD==3,∴BC=2BD=6,∴△ABC的周长为:6+2+2=6+4,故答案为:6+4.【点评】本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.三.解答题(共5小题)11.已知Rt△ABC中,AB=c,BC=a,AC=b.(1)∠C=90°,若a=5,b=12,求c.(2)若a=3,b=5,求c.【分析】(1)根据勾股定理求出即可;(2)分为两种情况,再根据勾股定理求出即可.【解答】解:(1)由勾股定理得:c===13;(2)当边c为直角边,边b为斜边时,c===4;当边c为斜边,c===;即c=4或.【点评】本题考查了勾股定理的应用,能灵活运用定理进行计算是解此题的关键,用了分类讨论思想.12.(1)已知Rt△ABC中,∠C=90°,若a=12,b=5,则c=13;(2)已知Rt△ABC中,∠C=90°,若c=10cm,b=6cm,则a=8cm;(3)已知Rt△ABC中,∠C=90°,若a:b=3:4,c=20,则a2=144,b2=256.【分析】(1)(2)直接利用勾股定理计算即可;(3)设a=3k,b=4k,则c=5k,构建方程求出k,可得a,b的值即可解决问题;【解答】解:(1)在Rt△ABC中,∵∠C=90°,a=12,b=5,∴c==13;故答案为13.(2)在Rt△ABC中,∵∠C=90°,c=10cm,b=6cm,∴a==8(cm);故答案为8cm.(3)在Rt△ABC中,∵∠C=90°,a:b=3:4,c=20,设a=3k,b=4k,则c=5k,∴5k=20,∴k=4,∴a=12,b=16,∴a2=144,b2=256,故答案为144,256.【点评】本题考查勾股定理的应用,解题的关键是熟练掌握基本知识,利用方程是思想解决问题,属于中考常考题型.13.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.【分析】(1)根据勾股定理计算;(2)根据三角形的面积公式计算即可;(3)根据三角形的面积公式计算.【解答】解:(1)由勾股定理得,AB==25;(2)△ABC的面积=×BC×AC=150;(3)由三角形的面积公式可得,×AB×CD=150则CD==12.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.如图,AB⊥MN于A,CD⊥MN于D.点P是MN上一个动点.(1)如图①.BP平分∠ABC,CP平分∠BCD交BP于点P.若AB=4,CD=6.试求AD的长;(2)如图②,∠BPC=∠BP A,BC⊥BP,若AB=4,求CD的长.【分析】(1)过点P作PE⊥BC于E,过点B作BF⊥CD于F,利用角平分线性质定理可得AP=PE,再由全等三角形的判定方法可知Rt△ABP≌Rt△EBP,同理可证Rt△CEP ≌Rt△CDP,进而可得AB=BE,CE=CD,即BC=10,易证四边形ABFD是矩形,所以BF=AD,利用勾股定理求出BF的长即可;(2)如图2,延长CB和P A,记交点为点Q.根据等腰△QPC“三合一”的性质证得QB=BC;由相似三角形(△QAB∽△QDC)的对应边成比例得到,则CD=2AB,问题得解;【解答】解:(1)过点P作PE⊥BC于E,过点B作BF⊥CD于F,∵AB⊥MN于A,CD⊥MN于D,BP平分∠ABC,∴AP=PE,在Rt△ABP和Rt△EBP中,,∴Rt△ABP≌Rt△EBP,∴AB=BE=4,同理可得CE=CD=6,∴BC=BE+CE=10,易证四边形ABFD是矩形,∴BF=AD,CF=6﹣4=2,∴AD==4;(2)延长CB和P A,记交点为点Q.∵∠BPC=∠BP A,BC⊥BP,∴QB=BC(等腰三角形“三合一”的性质).∵BA⊥MN,CD⊥MN,∴AB∥CD,∴△QAB∽△QDC,∴,∴CD=2AB=2×4=8.【点评】本题考查了勾股定理的运用、矩形的判定和性质、等腰三角形的判定和性质以及全等三角形的判定和性质、相似三角形的判定和性质,题目的综合性较强,难度较大,解题的关键是正确添加辅助线构造直角三角形.15.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.【分析】(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ 即可;(2)由题意得出BQ=BP,即2t=8﹣t,解方程即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时(图1),则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时(图2),则BC+CQ=12,易求得t;③当BC=BQ时(图3),过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【解答】(1)解:(1)BQ=2×2=4cm,BP=AB﹣AP=8﹣2×1=6cm,∵∠B=90°,PQ===2(cm);(2)解:根据题意得:BQ=BP,即2t=8﹣t,解得:t=;即出发时间为秒时,△PQB是等腰三角形;(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒.②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则BE ===4.8(cm)∴CE ==3.6cm,∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点评】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.第11 页共11 页。
人教版数学八年级下册第十七章测试卷姓名:分数:一、选择题1.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4.A.2个B.3个C.4个D.5个2.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形3.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A.15°B.30°C.45° D.60°4.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm25.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.56.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1: B.1::2 C.1::D.1:4:17.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A. B.3 C.+2 D.8.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B. C. D.210.直角三角形有一条直角边长为13,另外两条边长为连续自然数,则周长为()A.182 B.183 C.184 D.185二、填空题11.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为.12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为m.13.小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为米.14.如果一个三角形的三个内角之比是1:2:3,且最小边的长度是8,最长边的长度是.15.若三角形的三边满足a:b:c=5:12:13,则这个三角形中最大的角为度.16.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为cm.17.命题:“同角的余角相等”的逆命题是.18.如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到 B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.(结果保留根号)19.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.20.一艘小船早晨8:00出发,它以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,则上午10:00,两小船相距海里.三、解答题21.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).22.三个半圆的面积分别为S1=4.5π,S2=8π,S3=12.5π,把三个半圆拼成如图所示的图形,则△ABC一定是直角三角形吗?说明理由.23.某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?24.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事情所走的最短路程是多少?25.印度数学家什迦逻(1141年﹣1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅”请用学过的数学知识回答这个问题.26.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?27.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm、宽为1cm、高为4cm.答案1.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4.A.2个B.3个C.4个D.5个【考点】勾股定理的逆定理;三角形内角和定理.【专题】选择题.【分析】计算出三角形的角利用定义判定或在知道边的情况下利用勾股定理的逆定理判定则可.【解答】解:①,根据勾股定理的逆定理不是直角三角形,故不是;②a=6,∠A=45不是成为直角三角形的必要条件,故不是;③∠A=32°,∠B=58°则第三个角度数是90°,故是;④72+242=252,根据勾股定理的逆定理是直角三角形,故是;⑤22+22≠42,根据勾股定理的逆定理不是直角三角形,故不是.故选A.【点评】本题考查了直角三角形的定义和勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【考点】勾股定理的逆定理;完全平方公式.【专题】选择题.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:∵(n2﹣1)2+(2n)2=(n2+1)2,∴三角形为直角三角形,故选D.【点评】本题利用了勾股定理的逆定理判定直角三角形,即已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.3.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A.15°B.30°C.45° D.60°【考点】勾股定理.【专题】选择题.【分析】根据斜边的平方等于两条直角边乘积的2倍,以及勾股定理可以列出两个关系式,直接解答即可.【解答】解:设直角三角形的两直角边是a、b,斜边是c.根据斜边的平方等于两条直角边乘积的2倍得到:2ab=c2,根据勾股定理得到:a2+b2=c2,因而a2+b2=2ab,即:a2+b2﹣2ab=0,(a﹣b)2=0∴a=b,则这个三角形是等腰直角三角形,因而这个三角形的锐角是45°.故选C.【点评】已知直角三角形的边长问题,不要忘记三边的长,满足勾股定理.4.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2【考点】勾股定理;翻折变换(折叠问题).【专题】选择题.【分析】根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.5.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.5【考点】勾股定理的逆定理.【专题】选择题.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:因为①62+82=102,②132=52+122,④92+402=412,符合勾股定理的逆定理,所以能构成直角三角形的有三组.故选B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1: B.1::2 C.1::D.1:4:1【考点】勾股定理.【专题】选择题.【分析】根据给出的条件和三角形的内角和定理计算出三角形的角,再计算出它们的边的比.【解答】解:∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,∴c=2a,b=a,∴三条边的比是1::2.故选B.【点评】本题考查了三角形的内角和定理和勾股定理,通过知道角的度数计算特殊三角形边的比.7.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A. B.3 C.+2 D.【考点】勾股定理;含30度角的直角三角形.【专题】选择题.【分析】根据直角三角形的性质及勾股定理即可解答.【解答】解:如图所示,Rt△ABC中,∠B=60°,AB=1,则∠A=90°﹣60°=30°,故BC=AB=×1=,AC===,故此三角形的周长是.故选D.【点评】考查了勾股定理和含30度角的直角三角形,熟悉直角三角形的性质:直角三角形中,30°所对的直角边是斜边的一半.熟练运用勾股定理.8.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米【考点】勾股定理的应用.【专题】选择题.【分析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.【解答】解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A.【点评】此题是勾股定理在实际生活中的运用,比较简单.9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B. C. D.2【考点】勾股定理.【专题】选择题.【分析】根据勾股定理进行逐一计算即可.【解答】解:∵AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,∴AC===;AD===;AE===2.故选D.【点评】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.10.直角三角形有一条直角边长为13,另外两条边长为连续自然数,则周长为()A.182 B.183 C.184 D.185【考点】勾股定理.【专题】选择题.【分析】设出另一直角边和斜边,根据勾股定理列出方程,再根据边长都是自然数这一特点,写出二元一次方程组,求解即可.【解答】解:设另一直角边长为x,斜边为y,根据勾股定理可得x2+132=y2,即(y+x)(y﹣x)=169×1因为x、y都是连续自然数,可得,∴周长为13+84+85=182;故选A.【点评】本题综合考查了勾股定理与二元一次方程组,解这类题的关键是利用勾股定理来寻求未知系数的等量关系.11.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为.【考点】勾股定理;等腰三角形的性质.【专题】填空题.【分析】根据等腰三角形的三线合一得BD=8,再根据勾股定理即可求出AB的长.【解答】解:∵等腰△ABC的底边BC为16,底边上的高AD为6,∴BD=8,AB===10.【点评】注意等腰三角形的三线合一,熟练运用勾股定理.12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为m.【考点】勾股定理的应用.【专题】填空题.【分析】从实际问题中找出直角三角形,利用勾股定理解答.【解答】解:根据图中数据,运用勾股定理求得AB===480米.【点评】考查了勾股定理的应用,是实际问题但比较简单.13.小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为米.【考点】勾股定理的应用.【专题】填空题.【分析】根据题意画出图形根据勾股定理解答.【解答】解:如图,在Rt△AOB中,∠O=90°,AO=9m,OB=12m,根据勾股定理得AB====15m.【点评】本题很简单,只要根据题意画出图形即可解答,体现了数形结合的思想.14.如果一个三角形的三个内角之比是1:2:3,且最小边的长度是8,最长边的长度是.【考点】勾股定理;三角形内角和定理.【专题】填空题.【分析】根据三角形的三个内角之比是1:2:3,求出各角的度数,再根据直角三角形的性质解答即可.【解答】解:设一份是x,则三个角分别是x,2x,3x.再根据三角形的内角和定理,得:x+2x+3x=180°,解得:x=30°,则2x=60°,3x=90°.故此三角形是有一个30°角的直角三角形.根据30°的角所对的直角边是斜边的一半,得,最长边的长度是16.【点评】此题要首先根据三角形的内角和定理求得三个角的度数,再根据直角三角形的性质求得最长边的长度即可.15.若三角形的三边满足a:b:c=5:12:13,则这个三角形中最大的角为度.【考点】勾股定理的逆定理.【专题】填空题.【分析】一个三角形的三边符合a2+b2=c2,根据勾股定理的逆定理,这个三角形是直角三角形,依此可得这个三角形中最大的角的度数.【解答】解:设三角形的三边分别为5x,12x,13x,则(5x)2+(12x)2=(13x)2,根据勾股定理的逆定理,这个三角形是直角三角形.则这个三角形中最大的角为90度.故答案为:90.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.16.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为cm.【考点】勾股定理.【专题】填空题.【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【解答】解:∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10,设斜边上的高为h,则直角三角形的面积为×6×8=×10h,h=4.8cm,这个直角三角形斜边上的高为4.8cm.【点评】本题考查了勾股定理的运用即直角三角形的面积的求法,属中学阶段常见的题目,需同学们认真掌握.17.命题:“同角的余角相等”的逆命题是.【考点】互逆命题.【专题】填空题.【分析】先把同角的余角相等写成“如果…那么…”的形式,然后交换题设和结论即可得到逆命题.【解答】解:“同角的余角相等”的逆命题为“如果两个角相等,那么这两个角是同一个角的余角”.故答案为:如果两个角相等,那么这两个角是同一个角的余角.【点评】本题考查了命题与定理,正确理解原命题与逆命题的关系是解题关键.18.如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到 B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.(结果保留根号)【考点】勾股定理的应用.【专题】填空题.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:三级台阶平面展开图为长方形,长为25dm,宽为(3+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=252+[(3+3)×3]2=949,解得x=.故答案为dm.【点评】此题主要考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.19.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.【考点】勾股定理的应用.【专题】填空题.【分析】利用勾股定理,用一边表示另一边,代入数据即可得出结果.【解答】解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52,得x=4,故答案为4.【点评】本题主要是考查学生对勾股定理的熟练掌握,解题的关键是从实际问题中整理出直角三角形并正确的利用勾股定理.20.一艘小船早晨8:00出发,它以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,则上午10:00,两小船相距海里.【考点】勾股定理的应用.【专题】填空题.【分析】正东方向与正南方向正好构成直角,因而两船所经过的路线,与10:00时,两船之间的连线正好构成直角三角形.根据勾股定理即可求解.【解答】解:在直角△OAB中,OB=2×8=16海里.OA=12海里,根据勾股定理:AB===20海里.故答案为:20.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.21.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).【考点】勾股定理的应用.【专题】解答题.【分析】根据题意画出图形,构造出直角三角形,利用勾股定理求解.【解答】解:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB﹣BE=AB﹣CD=13﹣8=5∴在Rt△ADE中,DE=BC=12∴AD2=AE2+DE2=122+52=144+25=169∴AD=13(负值舍去)答:小鸟飞行的最短路程为13m.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.22.三个半圆的面积分别为S1=4.5π,S2=8π,S3=12.5π,把三个半圆拼成如图所示的图形,则△ABC一定是直角三角形吗?说明理由.【考点】勾股定理的逆定理.【专题】解答题.【分析】根据S1、S2、S3,可得出AC2,BC2及AB2,根据勾股定理的逆定理可得出三角形是直角三角形.【解答】解:∵S1=π()2=4.5π,S2=π()2=8π,S3=π()2=12.5π,∴AC2=36,BC2=64,AB2=100,又∵AC2+BC2=AB2,∴△ABC一定是直角三角形.【点评】本题考查了勾股定理的逆定理的知识,关键是根据面积表示出AC2,BC2及AB2,要求熟练掌握勾股定理的逆定理.23.某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【考点】勾股定理的应用;勾股定理的逆定理.【专题】解答题.【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC 为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.【解答】解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC,=×4×3+×12×5=36.所以需费用36×200=7200(元).【点评】本题考查了勾股定理的应用,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.24.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事情所走的最短路程是多少?【考点】勾股定理的应用.【专题】解答题.【分析】先作A关于MN的对称点,连接A′B,构建直角三角形,利用勾股定理即可得出答案.【解答】解:如图,作出A点关于MN的对称点A′,连接A′B交MN于点P,则A′B就是最短路线,在Rt△A′DB中,由勾股定理求得A′B=DA==17km,答:他要完成这件事情所走的最短路程是17km.【点评】本题考查的是勾股定理和轴对称在实际生活中的运用,需要同学们联系实际,题目是一道比较典型的题目,难度适中.25.印度数学家什迦逻(1141年﹣1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅”请用学过的数学知识回答这个问题.【考点】勾股定理的应用.【专题】解答题.【分析】红莲在水中的长度,花离原位的长度和花的总长可构成直角三角形,设出湖水的深度为x,根据勾股定理列出方程可求出.【解答】解:设湖水深为x尺,则红莲总长为(x+0.5)尺,根据勾股定理得:在Rt△ABC中,有:x2+s2=(x+0.5)2,在Rt△ADC中,有:0.52+s2=22,由以上两式解得:x=3.5,即湖水深3.5尺.【点评】本题的关键是读懂题意,找出题中各个量之间的关系,建立等式进行求解.26.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?【考点】勾股定理的应用.【专题】解答题.【分析】(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC>200则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.【解答】解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).【点评】此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.27.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm、宽为1cm、高为4cm.【考点】勾股定理;平面展开﹣最短路径问题.【专题】解答题.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将正方体展开,然后利用两点之间线段最短解答.【解答】解:如图:根据题意,如上图所示,最短路径有以下三种情况:(1)沿AA′,A′C′,C′B′,B′B剪开,得图(1)AB′2=AB2+BB′2=(2+1)2+42=25;(2)沿AC,CC′,C′B′,B′D′,D′A′,A′A剪开,得图(2)AB′2=AC2+B′C2=22+(4+1)2=4+25=29;(3)沿AD,DD′,B′D′,C′B′,C′A′,AA′剪开,得图(3)AB′2=AD2+B′D2=12+(4+2)2=1+36=37;综上所述,最短路径应为(1)所示,所以AB′2=25,即AB′=5cm.【点评】此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.。
第十七章 勾股定理一、填空题1.等腰三角形的腰长5 cm,底长8 cm,则底边上的高为 3 cm .2.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等”写出它的逆命题 如果两个三角形的面积相等,那么这两个三角形全等 .该逆命题是 假 命题(填“真”或“假”).3. 在Rt △ABC 中, ∠C=90°,AB=15,BC:AC=3:4,则BC= 9 。
4.△ABC 的两边分别为5,12,另一边c 为奇数,且a+b+c 是3的倍数,则c 应为 13 ,此三角形为 直角 三角形.5. 一座桥长24米,一艘小船自桥北头出发,向正南方向驶去,因水流原因,到达南岸后,发现已偏离桥南头10米,则小船实际行驶了 26 米。
6. 如图,一菜农要修建一个育苗棚,棚宽BE=2m ,棚高AE=1.5m ,长BC=20m 。
AE 所在的墙面与地面垂直,现要在棚顶覆盖一种农用塑料薄膜,请你为他计算一下,共需多少这种塑料薄膜 50 m 2。
二、选择题7.在下列长度的四组线段中,不能组成直角三角形的是( D ). A .40,41,9===c b a B .25,5===c b a C .5:4:3::=c b a D . 15,12,11===c b a 8.下列三角形一定不是直角三角形的是( C ) (A)三角形的三边长分别为5,12,13 (B)三角形的三个内角比为1∶2∶3 (C)三边长的平方比为3∶4∶5 (D)其中有两个角互余9.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2米,则树高为( C )(A)√5 米 (B)√3 米 (C)(√5+1)米 (D)3米10.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( A ) (A)7.5平方千米 (B)15平方千米 (C)75平方千米 (D)750平方千米11.如图所示,圆柱的高AB=3,底面直径BC=3,现有一只蚂蚁想从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( C )(A)3√1+π (B)3√2 (C)3√4+π22(D)3√1+π212.在△ABC 中,∠A,∠B,∠C 的对边分别为a,b,c,且(a+b)(a-b)=c 2,则( A ) (A)∠A 为直角(B)∠C 为直角(C)∠B 为直角 (D)不是直角三角形13.如图,点P 是以AB 为半径的圆弧与数轴的交点,则数轴上点P 表示的实数是( D )(A)-2 (B)-2.2(C)-√10 (D)-√10+114.设三角形的三边长分别等于下列各组数,能构成直角三角形的是( D ) (A)13,14,15 (B)4,5,6 (C)5,6,10(D)6,8,1015.如图,在平面直角坐标系中,点P 坐标为(-4,3),以点B(-1,0)为圆心,以BP 的长为半径画弧,交x 轴的负半轴于点A,则点A 的横坐标介于( A )(A)-6和-5之间 (B)-5和-4之间 (C)-4和-3之间 (D)-3和-2之间16.在直角三角形中,若勾为3,股为4,则弦为( A ) (A)5 (B)6 (C)7 (D)8 二、解答题17.如图,在△ABC 中,∠A=30°,AC=2√3,∠B=60°,求点C 到AB 的距离和△ABC 的面积.解:过点C 作CD ⊥AB,则∠ADC=90°, 因为∠A=30°,AC=2√3, 所以CD=√3,在△ABC 中,因为∠A=30°,∠B=60°, 所以∠ACB=90°, 在Rt △ABC 中,设BC=x,则AB=2x,因为AB 2=BC 2+AC 2, 所以(2x)2=x 2+(2√3)2, x=2,所以S △ABC =12AC ·BC=12×2√3×2=2√3.18.如图所示的一块地,AD=8 m,CD=6 m,∠ADC=90°,AB=26 m,BC=24 m.求这块地的面积.解:连接AC,则△ADC 为直角三角形, 因为AD=8,CD=6, 所以AC=10.在△ABC 中,AC=10,BC=24,AB=26. 因为102+242=262, 所以△ABC 也是直角三角形.所以这块地的面积为S=S △ABC -S △ADC =12AC ·BC-12AD ·CD=12×10×24-12×8×6=120-24=96 m 2.所以这块地的面积为96 m 2 .19. 如图, 一架方梯长25米,斜靠在一面墙上,梯子底端离墙7米。
人教版八年级数学下册第十七章达标检测卷一、选择题(每题3分,共30分)1.下列各组数中,是勾股数的是()A.1.5,2,2.5 B.1,2,5C.2,3, 5 D.5,12,132.【教材P26练习T2变式】在平面直角坐标系中,点P(3,4)到原点的距离是()A.3 B.4 C.5 D.±53.下列命题中,其逆命题成立的是()A.对顶角相等B.等边三角形是等腰三角形C.如果a>0,b>0,那么ab>0D.如果三角形的三边长a,b,c(其中a<c,b<c)满足a2+b2=c2,那么这个三角形是直角三角形4.如图,数轴上点A表示的数是0,点B表示的数是1,BC⊥AB,垂足为B,且BC=1.以点A为圆心,AC的长为半径画弧,与数轴交于点D,则点D 表示的数为()A.1.4 B. 2C. 3 D.25.在△ABC中,a,b,c分别是∠A,∠B,∠C所对的边.下列条件中,不能得出△ABC是直角三角形的是()A.b2=a2-c2B.∠A:∠B:∠C=3:4:5C.∠C=∠A-∠B D.a:b:c=1:3: 26.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于点D,E是垂足,连接CD.若BD=1,则AC的长是()A.2 3 B.2 C.4 3 D.4 7.若△ABC的三边长a,b,c满足(a-b)2+|a2+b2-c2|=0,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.无法确定8.如图为某楼梯示意图,测得楼梯长为5 m,高为3 m.计划在楼梯表面铺地毯,则地毯长度至少需要()A.5 m B.7 m C.8 m D.12 m 9.如图,长方体的底面邻边长分别是5 cm和7 cm,高为20 cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B(点B为棱的中点),那么所用细线最短为()A.20 cm B.24 cm C.26 cm D.28 cm 10.如图①所示的是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图②所示的“数学风车”,则这个风车的外围周长是()A.36 B.76 C.66 D.12二、填空题(每题3分,共24分)11.命题“如果|a|=|b|,那么a2=b2”的逆命题是________________,它是________(填“真”或“假”)命题.12.如图,已知正方形ABCD的面积为8,则对角线BD的长为________.13.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为________.14.公元3世纪初,中国古代数学家赵爽注释《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是________.15.已知直角三角形的两边长分别为3和4,则此三角形的周长为______________.16.如图,在平面直角坐标系中,将长方形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为__________.17.如图,一扇门的高为2 m,宽为1.5 m,李师傅有3块木板,尺寸如下:①号木板长3 m,宽2.7 m;②号木板长2.8 m,宽2.8 m;③号木板长4 m,宽2.4 m.可以从这扇门通过的木板是________(填序号).18.如图,AB,BC,CD,DE是四根长度均为5 cm的火柴棒,点A,C,E 共线.若AC=6 cm,CD⊥BC,则线段CE的长度是________.三、解答题(19~22题每题10分,23题12分,24题14分,共66分) 19.如图,在△ABC中,CD⊥AB,垂足为D,AB=AC=13,BD=1.(1)求CD的长;(2)求BC的长.20.【教材P39复习题T9变式】如图,在边长为1的小正方形组成的网格图中,△ABC的三个顶点均在格点上,请按要求完成下列问题:(1)求△ABC的周长;(2)试判断△ABC的形状.21.【教材P33例2变式】如图,某港口A有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8 n mile的速度前进,乙船沿南偏东某个角度以每小时15 n mile的速度前进,2 h后,甲船到达M岛,乙船到达P岛,两岛相距34 n mile,你知道乙船是沿哪个方向航行的吗?22.【教材P39复习题T10拓展】一根直立的旗杆长8 m,一阵大风吹过,旗杆从C点处折断,顶部B着地,离杆脚A 4 m,如图,工人在修复的过程中,发现在折断点C的下面1.25 m的D处,有一明显刮痕.如果旗杆从D处折断,则杆脚周围多大范围内有被砸中的危险?23.在△ABC中,BC=a,AC=b,AB=c,如图①,若∠C=90°,则有a2+b2=c2;若△ABC为锐角三角形,小明猜想:a2+b2>c2.理由如下:如图②,过点A作AD⊥CB于点D,设CD=x.在Rt△ADC中,AD2=b2-x2;在Rt△ADB中,AD2=c2-(a-x)2,∴b2-x2=c2-(a-x)2,即a2+b2=c2+2ax.∵a>0,x>0,∴2ax>0.∴a2+b2>c2.∴当△ABC为锐角三角形时,a2+b2>c2.∴小明的猜想是正确的.请你猜想,当△ABC为钝角三角形时,如图③,a2+b2与c2的大小关系,并证明你猜想的结论.24.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+3,PA=2,则:①线段PB=________,PC=________;②猜想:PA2,PB2,PQ2三者之间的数量关系为____________________.(2)如图②,当点P在线段AB的延长线上时,(1)②中所猜想的结论仍然成立,请你利用图②给出证明过程.答案一、1.D 2.C 3.D 4.B 5.B 6.A 7.C 8.B 9.C10.B 点拨:依题意,可知“数学风车”中的四个大直角三角形的斜边长为122+52=13.所以这个风车的外围周长是(13+6) ×4=76.二、11.如果a 2=b 2,那么|a |=|b |;真12.4 13.3 14.4 15.12或7+7 16.(10,3) 17.③18.18.8 cm 点拨:由题意知AB =BC =CD =DE =5 cm ,AC =6 cm.如图,过点B 作BM ⊥AC 于点M ,过点D 作DN ⊥CE 于点N ,则∠BMC =∠CND =90°,AM =CM =12AC =12×6=3(cm),CN =EN .∵CD ⊥BC ,∴∠BCD =90°.∴∠BCM +∠CBM =∠BCM +∠DCN =90°.∴∠CBM =∠DCN .在△BCM 和△CDN 中, ⎩⎨⎧∠CBM =∠DCN ,∠BMC =∠CND ,BC =CD ,∴△BCM ≌△CDN (AAS).∴BM =CN .在Rt △BCM 中,∵BC =5 cm ,CM =3 cm ,∴BM =BC 2-CM 2=52-32=4(cm).∴CN =4 cm.∴CE =2CN =2×4=8(cm).三、 19.解:(1) ∵AB =13,BD =1,∴AD =13-1=12.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5.(2)在Rt△BCD中,BC=BD2+CD2=12+52=26.20.解:(1)∵AB=22+12=5,AC=22+42=25,BC=32+42=5,∴AB+AC+BC=5+25+5=35+5,即△ABC的周长为35+5.(2)∵AB2+AC2=(5)2+(25)2=25,BC2=52=25,∴AB2+AC2=BC2.∴△ABC是直角三角形.21.解:由题意知,AM=8×2=16(n mile),AP=15×2=30(n mile).∵两岛相距34 n mile,∴MP=34 n mile.∵162+302=342,∴AM2+AP2=MP2.∴∠MAP=90°.又∵∠NAM=60°,∴∠PAS=30°.∴乙船是沿南偏东30°方向航行的.22.解:在Rt△ABC中,AB=4 m,设BC=x m,则AC=(8-x)m.由勾股定理得BC2=AC2+AB2,即x2=(8-x)2+42,解得x=5.故BC=5 m,AC=3 m.如果旗杆从D处折断,设顶部的着地点为E,则DE=BC+CD=5+1.25=6.25(m),AD=AC-CD=3-1.25=1.75(m).在Rt△ADE中,由勾股定理得AE=DE2-AD2= 6.252-1.752=6(m).∴杆脚周围6 m范围内有被砸中的危险.23.解:当△ABC为钝角三角形时,a2+b2与c2的大小关系为a2+b2<c2.证明:如图,过点A作AD⊥BC,交BC的延长线于点D.设CD=y.在Rt△ADC中,由勾股定理得AD2=AC2-DC2=b2-y2;在Rt△ADB中,由勾股定理得AD2=AB2-BD2=c2-(a+y)2.∴b2-y2=c2-(a+y)2,整理,得a2+b2=c2-2ay.∵a>0,y>0,∴2ay>0.∴a2+b2=c2-2ay<c2.∴当△ABC为钝角三角形时,a2+b2<c2.24.解:(1)①6;2②PA2+PB2=PQ2(2)证明:如图,过点C作CD⊥AB于点D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵PA2=(AD+PD)2=(DC+PD)2=DC2+2DC·PD+PD2,PB2=(PD-BD)2=(PD-DC)2=DC2-2DC·PD+PD2,∴PA2+PB2=2DC2+2PD2.∵在Rt△PCD中,由勾股定理,得PC2=DC2+PD2,∴PA2+PB2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴PA2+PB2=PQ2.。
八年级数学(下)第十七章测试题(含答案)一、选择题(每小题4分,共28分)1.一个直角三角形的斜边长比一条直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.644.如图,一个高1.5m,宽3.6m的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8 mB.3.9 mC.4 mD.4.4 m5.(2013·德宏州中考)设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.36.如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L47.(2013·柳州中考)在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为( )A. B.C. D.二、填空题(每小题5分,共25分)8.定理“全等三角形的对应边相等”的逆命题是,它是命题(填“真”或“假”).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE= .10.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程的平方应该是.11.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P 从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC 边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.12.(2013·哈尔滨中考)在△ABC中,AB=2,BC=1,∠ABC=45°,以AB 为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共47分)13.(10分)已知△ABC的三边分别为a,b,c,且a+b=4,ab=1,c=,试判定△ABC的形状,并说明理由.14.(12分)(2013·湘西州中考)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长.(2)求△ADB的面积.15.(12分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.(13分)(2013·贵阳中考)在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2 c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案解析1.【解析】选C.设斜边长为x,则一直角边为x-2,由勾股定理得,x2=(x-2)2+62,解得x=10.2.【解析】选D.由题意设三边长分别为x,x,x,∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.3.【解析】选D.由题意得,直角三角形的斜边为17,一条直角边为15,所以正方形A的面积为172-152=64.4.【解析】选B.设木板的长为xm,由题意知,x2=1.52+3.62,解得x=3.9(m).5.【解析】选D.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5①,∵a,b是直角三角形的两条直角边,∴a2+b2=2.52②,由①②可得ab=3.6.【解析】选B.在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,得x=≈2.8868,2x=5.7736,所以最好选用L2.7.【解析】选A.∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB,AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S△ABD=×3×=BD·,解得BD=.8.【解析】“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.答案:三边分别对应相等的两个三角形全等真9.【解析】AE=====2.答案:210.【解析】如图,则AG=3.在Rt△APG中,PG2=PA2-AG2=52-32=16.在Rt△PGB中,PB2=PG2+GB2=16+(3+5)2=80.答案:8011.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36 cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9,BC=12,AC=15,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3s时,BP=9-3×1=6,BQ=2×3=6,所以S△PBQ=BP·BQ=×6×6=18(cm2).答案:1812.【解析】当点D与C在AB同侧,BD=AB=2,作CE⊥BD于E,CE=BE=,ED=,由勾股定理得CD=(如图1);当点D与C在AB异侧,BD=AB=2,∠DBC=135°,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理得CD=(如图2).答案:或13.【解析】△ABC是直角三角形,理由:∵(a+b)2=16,a2+2ab+b2=16,ab=1,∴a2+b2=14.又∵c2=14,∴a2+b2=c2.∴△ABC是直角三角形.14.【解析】(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,AB===10, ∴S△ADB=AB·DE=×10×3=15.15.【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得: BC ===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h>70km/h,∴这辆小汽车超速行驶.16.【解析】(1)锐角钝角.(2)> <.(3)∵a=2,b=4,∴2<c<6,且由题意,c为最长边, ∴4<c<6,当a2+b2=c2,即c=2时,△ABC是直角三角形, ∴当4<c<2时,△ABC是锐角三角形,当2<c<6时,△ABC是钝角三角形.。
2019-2020学年八年级下册第17章《勾股定理》单元测试题(满分100分)姓名:___________班级:___________成绩:___________一.选择题(共8小题,满分24分)1.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,6,92.下列三角形是直角三角形的是()A.B.C.D.3.将一根长度为16cm自然伸直的弹性皮筋AB两端固定在水平的桌面上,然后把中点C 竖直向上拉升6cm至D点(如图),则该弹性皮筋被拉长了()A.2cm B.4cm C.6cm D.8cm4.一个直角三角形的两条边长分别为3cm,5cm,则该三角形的第三边长为()A.4cm B.8cm C.cm D.4cm或cm 5.若△ABC满足下列条件,则能判断其为直角三角形的选项有()个.(1)∠A=∠B﹣∠C.(2)∠A:∠B:∠C=1:1:2.(3)a:b:c=1:1:2.(4)b2=a2﹣c2A.1B.2C.3D.46.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+7.如图,将一根长13厘米的筷子置于底面直径为6厘米,高为8厘米的圆柱形杯子中,则筷子露在杯子外面的长度至少为()厘米.A.1B.2C.3D.48.已知△ABC中,AB=17cm,AC=10cm,BC边上的高AD=8cm,则边BC的长为()A.21cm B.9cm或.21cm C.13cm D.13cm或21cm 二.填空题(共8小题,满分24分)9.如图,边长为1的正方形网格中,AB3.(填“>”,“=”或“<”)10.在直角三角形ABC中,斜边AB=3,则AB2+AC2+BC2=.11.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是.12.已知个直角三角形的两条直角边的长分别是和,则这个角三角形的周长为.13.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为.14.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B 的距离为12m,这棵大树在折断前的高度为.15.如图,在四边形ABCD中,∠B=90°,AB=2,BC=CD=1,AD=,则四边形的面积为.16.如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了米.三.解答题(共7小题,满分52分)17.在Rt△ABC中,∠C=90°,a、b、c分别表示∠A、∠B、∠C的对边.(1)如图1,已知:a=7,c=25,求b;(2)如图2,已知:c=25,a:b=4:3,求a、b.18.如图,要修建一个育苗棚,棚高h=5m,棚宽a=12m,棚的长d为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?19.已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC 于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长20.如图,在吴中区上方山动物园里有两只猴子在一棵树CD上的点B处,且BC=5m,它们都要到池塘A处吃东西,其中一只猴子甲沿树爬至C再沿CA走到离树24m处的池塘A处,另一只猴子乙先爬到树顶D处后再沿缆绳DA线段滑到A处.已知猴子甲所经过的路程比猴子乙所经过的路程多2m,设BD为xm.(1)请用含有x的整式表示线段AD的长为m;(2)求这棵树高有多少米?21.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)画△DEF,DE、EF、DF三边的长分别为1、3、,并判断三角形的形状,说明理由.22.如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区.当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km.(1)如果这艘轮船不改变航向,经过9小时,轮船与台风中心相距多远?它此时是否受到台风影响?(2)如果这艘轮船会受到台风影响,那么从接到警报开始,经过多长时间它就会进入台风影响区?23.阅读下列内容:设a,b,c是一个三角形的三条边的长,且a是最长边,我们可以利用a,b,c三边长间的关系来判断这个三角形的形状:①若a2=b2+c2,则该三角形是直角三角形;②若a2>b2+c2,则该三角形是钝角三角形;③a2<b2+c2,则该三角形是锐角三角形.例如一个三角形的三边长分别是4,5,6,则最长边是6,由于62=36<42+52,故由上面③可知该三角形是锐角三角形,请解答以下问题:(1)若一个三角形的三条边长分别是2,3,4,则该三角形是三角形.(2)若一个三角形的三条边长分别是3,4,x,且这个三角形是直角三角形,则x的值为.(3)若一个三角形的三条边长a=,b=,c=,其中a是最长边,请判断这个三角形的形状,并写出你的判断过程.参考答案一.选择题(共8小题)1.【解答】解:A、32+42=52,是勾股数;B、72+242=252,是勾股数;C、82+152=172,是勾股数;D、52+62≠92,不是勾股数.故选:D.2.【解答】解:由勾股定理的逆定理得,因为D能满足()2+()2=(2)2,所以D是直角三角形.故选:D.3.【解答】解:连接CD,∵中点C竖直向上拉升6cm至D点,∴CD是AB的垂直平分线,∴∠ACD=90°,AC=BC=AB=8cm,AD=BD,在Rt△ACD中,由勾股定理得:AD===10(cm),∴BD=10cm,∴AD+BD=20cm,∵AB=16cm,∴该弹性皮筋被拉长了:20﹣16=4(cm),故选:B.4.【解答】解:当3cm,5cm时两条直角边时,第三边==,当3cm,5cm分别是一斜边和一直角边时,第三边==4,所以第三边可能为4cm或cm.故选:D.5.【解答】解:(1)∵△ABC中,∠A=∠B﹣∠C,∴∠B=∠A+∠C,∵∠A+∠B+∠C=180°,∴∠B=90°,∴△ABC是直角三角形,故本小题符合题意;(2)∵△ABC中,∠A:∠B:∠C=1:1:2,∴可设∠A=x,则∠B=x,∠C=2x,∵∠A+∠B+∠C=180°,∴x+x+2x=180°,解得x=45°,∴∠C=2x=2×45°=90°,∴△ABC是直角三角形,故本小题符合题意;(3)∵△ABC中,a:b:c=1:1:2,∴设a=x,则b=x,c=2x,∵x2+x2=2x2≠(2x)2,即a2+b2≠c2,∴△ABC不是直角三角形,故本小题不符合题意;④∵△ABC中,b2=a2﹣c2,∴b2+c2=a2,∴△ABC是直角三角形,故本小题符合题意.故选:C.6.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选:A.7.【解答】解:如图所示,筷子,圆柱的高,圆柱的直径正好构成直角三角形,∴勾股定理求得圆柱形水杯的最大线段的长度,即=10(cm),∴筷子露在杯子外面的长度至少为13﹣10=3cm,故选:C.8.【解答】解:过点A作AD⊥BC于D,由勾股定理得,BD===15(cm),CD===6(cm),分两种情况:①如图1,BC=CD+BD=21cm,②如图2,BC=BD﹣CD=9cm,故选:B.二.填空题(共8小题)9.【解答】解:AB==2,2<3,∴AB<3,故答案为:<.10.【解答】解:∵直角三角形ABC中,斜边AB=3,∴AC2+BC2=AB2=32=9,∴AB2+AC2+BC2=2AB2=2×9=18;故答案为:18.11.【解答】解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:x2=32+52=34;y2=22+32=13;z2=x2+y2=47;即最大正方形E的面积为:z2=47.故答案为47.12.【解答】解:由勾股定理得,这个直角三角形的斜边长==2(cm)∴这个角三角形的周长=(+5)+(5﹣)+2=10+2,故答案为:(10+2)cm.13.【解答】解:∵直角三角形的两条直角边的长分别为5,12,∴斜边为=13,∵三角形的面积=×5×12=×13h(h为斜边上的高),∴h=.故答案为:.14.【解答】解:∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB =12m,∴AC===13(m),∴这棵树原来的高度=BC+AC=5+13=18(m).答:棵树原来高18m.故答案为:18米.15.【解答】解:连接AC,在Rt△ABC中,AC==,AC2+CD2=5+1=6,AD2=6,则AC2+CD2=AD2,∴△ACD为直角三角形,∴四边形ABCD的面积=×1×2+×1×=1+,故答案为:1+.16.【解答】解:在Rt△ABC中,根据勾股定理知,A1C==4(m),在Rt△ABC中,由题意可得:BC=1.4(m),根据勾股定理知,AC==4.8(m),所以AA1=AC﹣A1C=0.8(米).故答案为:0.8.三.解答题(共7小题)17.【解答】解:(1)b=,(2)设a=4x,b=3x,可得:c==5x=25,解得:x=5,所以a=20,b=15.18.【解答】解:∵h=5m,a=12 m,∴AB==13(m),∴需要塑料薄膜=13×12=156 m2.19.【解答】解:(1)∵∠C=90°,AB=10,AC=8,∴BC==6;(2)∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB﹣BE=10﹣6=4;(3)设CD=DE=x,则AD=8﹣x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8﹣x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD==3.20.【解答】解:(1)设BD为x米,且存在BD+DA=BC+CA﹣2,即BD+DA=27,DA=27﹣x,故答案为:27﹣x;(2)∵∠C=90°∴AD2=AC2+DC2∴(27﹣x)2=(x+5)2+242∴x=2∴CD=5+2=7,答:树高7米21.【解答】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;故答案为:;(2)如图2所示:△DEF即为所求;∵12+32=()2,∴△DEF是直角三角形.22.【解答】解:(1)∵∠CAB=90°,BC=500,AB=300,∴AC=400km,设经过9小时,轮船到达点F,且航行了40×9=360km,台风中心到达B′,且BG=20×9=180km,∴CF=360,∴AF=40,AG=120km,∴FG==40km,∴轮船与台风中心相距40km,它此时受到台风影响;(2)如图所示:设x小时后,就进入台风影响区,根据题意得出:CE=30x千米,BB′=20x千米,∵BC=500km,AB=300km,AC=400(km),∴AE=400﹣40x,AB′=300﹣20x,∴AE2+AB′2=EB′2,即(400﹣40x)2+(300﹣20x)2=2002,解得:x1=15,x2=7,∴轮船经7小时就进入台风影响区.23.【解答】解:(1)∵42=16>22+32,∴该三角形是钝角三角形,故答案为:钝角,(2)①若4为最长边,则:42=32+x2,解得x=,x=﹣(舍去),②若x最长边,则:x=32+42,得x=5,x=﹣5(舍去),故答案为:5或.(3)∵a2﹣b2﹣c2=x2+3z2﹣x+y2﹣2y+=(x﹣)2+(y﹣1)2+3z2+>0,∴a2>b2+c2,∴该三角形是钝角三角形.。
人教版八年级数学下册第十七章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知Rt△ABC的三边长分别为a,b,c,且∠C=90°,c=37,a=12,则b的值为( )A.50 B.35 C.34 D.262.由下列线段a,b,c不能组成直角三角形的是( )A.a=1,b=2,c= 3 B.a=1,b=2,c= 5C.a=3,b=4,c=5 D.a=2,b=23,c=33.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A.365B.1225C.94D.3344.已知三角形三边长为a,b,c,如果a-6+|b-8|+(c-10)2=0,则△ABC是( ) A.以a为斜边的直角三角形 B.以b为斜边的直角三角形C.以c为斜边的直角三角形 D.不是直角三角形5.(2016·株洲)如图,以直角三角形a,b,c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有( )A.1 B.2 C.3 D.46.设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是( )A.1.5 B.2 C.2.5 D.37.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC交AB于点D,E是垂足,连接CD,若BD=1,则AC的长是( )A.2 3 B.2 C.4 3 D.4,第7题图) ,第9题图),第10题图)8.一木工师傅测量一个等腰三角形的腰、底边和底边上的高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来,应该是( )A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,49.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( )A.12 m B.13 m C.16 m D.17 m10.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一个动点,则PA +PC 的最小值为( )A.132 B.312 C.3+192D .27 二、填空题(每小题3分,共24分) 11.把命题“对顶角相等”的逆命题改写成“如果…那么…”的形式:__ __. 12.平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB 的长为__ __.13.三角形的三边a ,b ,c 满足(a -b)2=c 2-2ab ,则这个三角形是__ __. 14.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0),(0,8).以点A 为圆心,以AB 为半径画弧交x 轴正半轴于点C ,则点C 的坐标为__ __.,第14题图) ,第15题图),第17题图)15.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积之和为__ __.16.有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种__ __棵树.17.如图,OP =1,过P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2;…依此法继续作下去,得OP 2017=__ _.18.在△ABC 中,AB =22,BC =1,∠ABC =45°,以AB 为一边作等腰直角三角形ABD ,使∠ABD =90°,连接CD ,则线段CD 的长为__ _.三、解答题(共66分)19.(8分)如图,在△ABC 中,AD ⊥BC ,AD =12,BD =16,CD =5. (1)求△ABC 的周长;(2)判断△ABC 是否是直角三角形.20.(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN ,使MN =17;(2)在图②中画一个三边长均为无理数,且各边都不相等的直角△DEF.21.(8分)如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.22.(8分)如图,在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于点D,交AB于点E.求证:BE2-EA2=AC2.23.(10分)如图,已知某学校A与直线公路BD相距3000米,且与该公路上的一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?24.(10分)一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?(2)你认为“AD→DB”是最短路线吗?如果你认为不是,请计算出最短的路程.25.(12分)如图,已知正方形OABC的边长为2,顶点A,C分别在x轴的负半轴和y 轴的正半轴上,M是BC的中点,P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是以AP为腰的等腰三角形时,求m的值;人教版八年级数学下册第十七章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知Rt△ABC的三边长分别为a,b,c,且∠C=90°,c=37,a=12,则b的值为( B)A.50 B.35 C.34 D.262.由下列线段a,b,c不能组成直角三角形的是( D)A.a=1,b=2,c= 3 B.a=1,b=2,c= 5C.a=3,b=4,c=5 D.a=2,b=23,c=33.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( A)A.365B.1225C.94D.3344.已知三角形三边长为a,b,c,如果a-6+|b-8|+(c-10)2=0,则△ABC是( C) A.以a为斜边的直角三角形 B.以b为斜边的直角三角形C .以c 为斜边的直角三角形D .不是直角三角形5.(2016·株洲)如图,以直角三角形a ,b ,c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S 1+S 2=S 3图形个数有( D )A .1B .2C .3D .46.设a ,b 是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是( D )A .1.5B .2C .2.5D .37.如图,在Rt △ABC 中,∠A =30°,DE 垂直平分斜边AC 交AB 于点D ,E 是垂足,连接CD ,若BD =1,则AC 的长是( A )A .2 3B .2C .4 3D .4,第7题图) ,第9题图),第10题图)8.一木工师傅测量一个等腰三角形的腰、底边和底边上的高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来,应该是( C )A .13,12,12B .12,12,8C .13,10,12D .5,8,49.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m 处,发现此时绳子末端距离地面2 m ,则旗杆的高度为(滑轮上方的部分忽略不计)( D )A .12 mB .13 mC .16 mD .17 m10.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一个动点,则PA +PC 的最小值为( B )A.132 B.312 C.3+192D .27 二、填空题(每小题3分,共24分)11.把命题“对顶角相等”的逆命题改写成“如果…那么…”的形式:__如果两个角相等,那么它们是对顶角__.12.平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB 的长为.13.三角形的三边a ,b ,c 满足(a -b)2=c 2-2ab ,则这个三角形是__直角三角形__. 14.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0),(0,8).以点A 为圆心,以AB 为半径画弧交x 轴正半轴于点C ,则点C 的坐标为__(4,0)__.,第14题图) ,第15题图),第17题图)15.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积之和为__64__.16.有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种__21__棵树.17.如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1=2;再过P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2017=.18.在△ABC中,AB=22,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共66分)19.(8分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.解:(1)可求得AB=20,AC=13,所以△ABC的周长为20+13+21=54(2)∵AB2+AC2=202+132=569,BC2=212=441,∴AB2+AC2≠BC2,∴△ABC不是直角三角形20.(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN,使MN=17;(2)在图②中画一个三边长均为无理数,且各边都不相等的直角△DEF.解:如图:21.(8分)如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.解:在Rt△BDC,Rt△ABC中,BC2=BD2+DC2,AC2=AB2+BC2,则AC2=AB2+BD2+DC2,又因为BD=DC,则AC2=AB2+2CD2=42+2×62=88,∴AC=222,即AC的长为22222.(8分)如图,在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于点D,交AB于点E.求证:BE2-EA2=AC2.解:连接CE,∵ED垂直平分BC,∴EB=EC,又∵∠A=90°,∴EA2+AC2=EC2,∴BE2-EA2=AC223.(10分)如图,已知某学校A与直线公路BD相距3000米,且与该公路上的一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?解:设超市C与车站D的距离是x米,则AC=CD=x米,BC=(BD-x)米,在Rt△ABD 中,BD=AD2-AB2=4000米,所以BC=(4000-x)米,在Rt△ABC中,AC2=AB2+BC2,即x2=30002+(4000-x)2,解得x=3125,因此该超市与车站D的距离是3125米24.(10分)一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A 处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B 处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.(1)如果D 是棱的中点,蜘蛛沿“AD →DB ”路线爬行,它从A 点爬到B 点所走的路程为多少?(2)你认为“AD →DB ”是最短路线吗?如果你认为不是,请计算出最短的路程.解:(1)从点A 爬到点B 所走的路程为AD +BD =42+32+22+32=(5+13)cm (2)不是,分三种情况讨论:①将下面和右面展到一个平面内,AB =(4+6)2+22=104=226(cm );②将前面与右面展到一个平面内,AB =(4+2)2+62=72=62(cm );③将前面与上面展到一个平面内,AB =(6+2)2+42=80=45(cm ),∵62<45<226,∴蜘蛛从A 点爬到B 点所走的最短路程为6 2 cm25.(12分)如图,已知正方形OABC 的边长为2,顶点A ,C 分别在x 轴的负半轴和y 轴的正半轴上,M 是BC 的中点,P(0,m)是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D.(1)求点D 的坐标(用含m 的代数式表示);(2)当△APD 是以AP 为腰的等腰三角形时,求m 的值;解:(1)先证△DBM ≌△PCM ,从中可得BD =PC =2-m ,则AD =2-m +2=4-m ,∴点D的坐标为(-2,4-m ) (2)分两种情况:①当AP =AD 时,AP 2=AD 2,∴22+m 2=(4-m )2,解得m =32;②当AP =PD 时,过点P 作PH ⊥AD 于点H ,∴AH =12AD ,∵AH =OP ,∴OP =12AD ,∴m =12(4-m ),∴m =43,综上可得,m 的值为32或43。
人教版八年级下册《第17章勾股定理》单元测试试卷(一)一、认真选一选,你一定很棒!(每题3分,共30分)1,分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组 A.2B.3C.4D.52,已知△ABC 中,∠A =12∠B =13∠C ,则它的三条边之比为( ) A.1∶1∶2 B.1∶3∶2 C.1∶2∶3 D.1∶4∶13,已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( )A.52B.3C.3+2D.334,如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A.12米 B.13米 C.14米 D.15米5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )A.600米B. 800米C.1000米D.不能确定6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( ) A.L 1 B.L 2 C.L 3 D.L 47,如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线ABABC图25m BCAD图1BCED图3左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( ) A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定8,在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是( )A.5,4,3B.13,12,5C.10,8,6D.26,24,109,如图3所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( ) A.1 B.2 C.3 D.210,直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( ) A.182 B.183 C.184 D.185 二、仔细填一填,你一定很准!(每题3分,共24分)11,根据下图中的数据,确定A =_______,B =_______,x =_______.12,直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 13,直角三角形的三边长为连续偶数,则这三个数分别为__________. 14,如图5,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.15,如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________.16,在△ABC 中,AB =8cm ,BC =15cm ,要使∠B =90°,则AC 的长必为______cm. 17,如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是 .图5图418,甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,•两船相距___海里.三、细心做一做,你一定会成功!(共66分)19,古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一个三角形,其中一个角便是直角,请说明这种做法的根据.图620,从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?21,如图7,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?22,(1)四年一度的国际数学家大会日在北京召开,大会会标如图8,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm ,宽为2cm 的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)23,清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S ,则第一步:6S=m;第二步:m =k ;第三步:分别用3、4、5乘以k ,得三边长”.(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.A B 小河东北 牧童小屋 图7图8图924,学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中,如图10,小明从路口A 处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A 处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.参考答案:一、1,B ;2,B ;3,D ;4,A ;5,C .点拨:画出图形,东南方向与西南方向成直角;6,B .点拨:在Rt△ACD 中,AC =2AD ,设AD =x ,由AD 2+CD 2=AC 2,即x 2+52=(2x )2,x所以2x =5.7736;7,A ;8,D .点拨:设斜边为13x ,则一直角边长为5x ,12x ,所以 13x +5x +12x =60,x =2,即三角形分别为10、24、26;9,D .点拨:AE2;10,A . 二、11,15、144、40;12,1360;13,6、8、10;14,24;15,16;16,17;17,:76;18,30.三、19,设相邻两个结点的距离为m ,则此三角形三边的长分别为3m 、4m 、5m ,有(3m )2+(4m )2=(5m )2,所以以3m 、4m 、5m 为边长的三角形是直角三角形. 20,15m.北A图1021,如图,作出A 点关于MN 的对称点A ′,连接A ′B 交MN 于点P ,则A ′B 就是最短路线.在Rt△A ′DB 中,由勾股定理求得A ′B =17km.22,( 1)设直角三角形的两条边分别为a 、b (a >b ),则依题意有22513a b a b +=⎧⎨+=⎩由此得ab =6,(a -b )2=(a+b)2-4ab =1,所以a -b =1,故小正方形的面积为1.(2)如图:23,(1)当S =150时,k =m=1502566S ===5,所以三边长分别为:3×5=15,4×5=20,5×5=25;(2)证明:三边为3、4、5的整数倍,设为k 倍,则三边为3k ,4k ,5k ,•而三角形为直角三角形且3k 、4k 为直角边.其面积S =12(3k )·(4k )=6k 2,所以k 2=6S,k =6S (取正值),即将面积除以6,然后开方,即可得到倍数.24,(1)利用勾股定理求出半径为1950米;(2)小明所走的路程为39×30=3×13×30,小华所走的路程为52×30=4×13×30,根据前面的探索,可知勾股数3、4、5的倍数仍能构成一组勾股数,故所求半径为5×13×30=1950(米).ABDPNM人教版八年级下册《第17章勾股定理》单元测试试卷(二)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25 B .14 C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的,斜边长为10,则它的面积为( )A.10B.15C.20D.303. 如图,已知正方形的面积为144,正方形的面积为169,那么正方形的面积是( )A.313B.144C.169D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt△中,∠°,所以222c b a =+D.在Rt△中,∠°,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.5cm C.5.5 cmD.1 cm6.在Rt△ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A. B. C. D.7. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B. 3+1 C. 5-1 D. 5+1 8. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm. A.6 B.8 C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( )A.6B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A.B.3C.1D.二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________.15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm, cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC ,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C 2.B 3.A 4.A 5.A6.C7.C8.D9.D 10.A二、11.37012.直角;24 分析:解方程得x1=6,x2=8.∵+=36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.4 cm 分析:过点A作AE⊥BC于点E,AF⊥CD交CD的延长线于点F.易得△ABE≌△ADF,所以AE=AF,进一步证明四边形AECF是正方形,且正方形AECF与四边形ABCD的面积相等,则AE==2(cm),所以AC=AE=×2=4 (cm).14.略15.分析:如图,设这一束光与x轴交于点C,作点B关于x轴的对称点B',过B'作B'D⊥y轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.=·BC·AD≈×7×5.8=20.3≈20.所以S△ABC17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC== =10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C 作CE⊥AD 于点E,由题意得AB=30 m,∠CAD=30°,∠C BD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m. 在Rt△BCE 中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15 m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S △ABC =ab,S △C'A'D'=ab,S 直角梯形A'D'BA =(a+b)(a+b)=(a+b)2,S △ACA'=c 2. (2)由题意可知S △ACA'=S 直角梯形A'D'BA-S △ABC -S △C'A'D'=(a+b)2-ab-ab=(a 2+b 2),而S △ACA'=c 2.所以a 2+b 2=c 2.21.解:(1)MN 不会穿过原始森林保护区.理由如下: 过点C 作CH⊥AB 于点H. 设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°. 在Rt△ACH 中,AH=CH=x m,在Rt△HBC 中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN 不会穿过原始森林保护区.(2)设原计划完成这项工程需要y 天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.人教版八年级下册《第17章勾股定理》单元测试试卷(三)一、选择题(每小题4分,共28分)1.一个直角三角形的斜边长比一条直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.644.如图,一个高1.5m,宽3.6m的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8 mB.3.9 mC.4 mD.4.4 m5. 设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.36.如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L47.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为( )A. B. C. D.二、填空题(每小题5分,共25分)8.定理“全等三角形的对应边相等”的逆命题是,它是命题(填“真”或“假”).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE= .10.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程的平方应该是.11.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.12.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共47分)13.(10分)已知△ABC的三边分别为a,b,c,且a+b=4,ab=1,c=,试判定△ABC 的形状,并说明理由.14.(12分)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长.(2)求△ADB的面积.15.(12分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.(13分) 在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2c2时,△ABC 为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案解析1.【解析】选C.设斜边长为x,则一直角边为x-2,由勾股定理得,x2=(x-2)2+62,解得x=10.2.【解析】选D.由题意设三边长分别为x,x,x,∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.3.【解析】选D.由题意得,直角三角形的斜边为17,一条直角边为15,所以正方形A的面积为172-152=64.4.【解析】选B.设木板的长为xm,由题意知,x2=1.52+3.62,解得x=3.9(m).5.【解析】选D.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5①,∵a,b是直角三角形的两条直角边,∴a2+b2=2.52②,由①②可得ab=3.6.【解析】选B.在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,得x=≈2.8868,2x=5.7736,所以最好选用L.27.【解析】选A.∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB,AC上的距离相等,设为h,则S=×3h+×4h=×△ABC5×,解得h=,S=×3×=BD·,△ABD解得BD=.8.【解析】“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.答案:三边分别对应相等的两个三角形全等真9.【解析】AE=====2.答案:210.【解析】如图,则AG=3.在Rt△APG中,PG2=PA2-AG2=52-32=16.在Rt△PGB中,PB2=PG2+GB2=16+(3+5)2=80.答案:8011.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36 cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9,BC=12,AC=15,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3s时,BP=9-3×1=6,BQ=2×3=6,所以S=BP·BQ=×6×6=18(cm2).△PBQ答案:1812.【解析】当点D与C在AB同侧,BD=AB=2,作CE⊥BD于E,CE=BE=,ED=,由勾股定理得CD=(如图1);当点D与C在AB异侧,BD=AB=2,∠DBC=135°,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理得CD=(如图2).答案:或13.【解析】△ABC是直角三角形,理由:∵(a+b)2=16,a2+2ab+b2=16,ab=1,∴a2+b2=14.又∵c2=14,∴a2+b2=c2.∴△ABC是直角三角形.14.【解析】(1)∵A D平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,AB===10,=AB·DE=×10×3=15.∴S△ADB15.【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得:BC ===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h>70km/h,∴这辆小汽车超速行驶.16.【解析】(1)锐角钝角.(2)> <.(3)∵a=2,b=4,∴2<c<6,且由题意,c为最长边,∴4<c<6,当a2+b2=c2,即c=2时,△ABC是直角三角形,∴当4<c<2时,△ABC是锐角三角形,当2<c<6时,△ABC是钝角三角形.人教版八年级下册《第17章勾股定理》单元测试试卷(四)(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.△ABC,∠C=90°,a=9,b=12,则c=__________.2.△ABC,AC=6,BC=8,当AB=__________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为__________.4.△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=__________.5.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.6.等腰三角形的顶角为120° ,底边上的高为3,则它的周长为__________.7.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.8.等腰三角形的两边长为2和4,则底边上的高为__________.9.若等腰直角三角形斜边长为2,则它的直角边长为_______.10.测得一个三角形花坛的三边长分别为5cm,12cm,•13cm,•则这个花坛的面积是_____.11.已知△ABC的三边a、b、c满足(a-5)2+(b-12)2+c2-26c+169=0,则△ABC 是三角三角形.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_____ .13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.14.若一个三角形的三边长分别为3,4,x ,则使此三角形是直角三角形的x 的值是___ _.二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是( ) A .1,2,B .1,2,C .3,4,5D .6,8,1216.如图,△ABC 中AD ⊥BC 于D ,AB =3,BD =2,DC =1, 则AC 等于( ) A .6B .C .D .417.已知三角形的三边长之比为1∶1∶,则此三角形一定是( ) A .锐角三角形 B .钝角三角形 C .等边三角形D .等腰直角三角形18.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( ) A .4 cmB .8 cmC .10 cmD .12 cm三、解答题(共60分)19.(5分)如图,每个小正方形的边长是1. ①在图中画出一个面积是2的直角三角形; ②在图中画出一个面积是2的正方形.A B C D53652 第13题 第16题第19题②第19题①20.(5分)如图,一次“台风”过后,一根旗杆被台风从离地面米处吹断,倒下的旗杆的顶端落在离旗杆底部米处,那么这根旗杆被吹断裂前至少有多高?21.(5分)在某山区需要修建一条高速公路,在施工过程中要沿直线AB 打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD =150°,∠D =60°,BD =32 k m ,请根据上述数据,求出隧道BC 的长(精确到0.1 k m).22.(6分)如图,△ABC 中,AB =15 cm , AC =24 cm ,∠A =60°.求BC 的长.8.26.9 2.8米9.6米23.(6分)如图,△ABC 中,AB=13,BC=14,AC=15,求BC 边上的高AD .24.(6分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方米B 处,过了秒后,测得小汽车C 与车速检测仪A 间距离为米,这辆小汽车超速了吗?25.(6分)如图,△ABC 中,CD ⊥AB 于D . (1)图中有__________个直角三角形; A .0B .1C .2D .3(2)若AD =12,AC =13则CD =__________. (3)若CD 2=AD ·DB , 求证:△ABC 是直角三角形.26.(6分)小明把一根长为160 cm 的细铁丝剪成三段,将其做成一个等腰三角形风筝的边框ABC ,已知风筝的高AD =40 cm ,你知道小明是怎样弯折铁丝的吗?BC AD 703025027.(7分)去年某省将地处A、B两地的两所大学合成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修建一条笔直公路(即图中的线段),经测量在A地的北偏东60°方向,B地的西偏北方向处有一个半径为0.7千米的公园,问计划修建的这条公路会不会穿过公园?为什么?28.(8分)学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a²+b²=c²,其它的三角形三边也有这样的关系吗?”.让我们来做一个实验:(1)在下列方框(1)中任意画出一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).(2)在下列方框(2)中任意画出一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:.参考答案 一、填空题1.15 2.10 3.3cm 4.1∶∶2 5. 6.12+6 7. 96 8.910.30cm 2 11.直角 12.A A 不是直角三角形,B、C 、D 是直角三角形 13.2+2 14. 5或 二、选择题15.D 16.B 17.D 18.C 三、解答题19.略解 20.10米 21.7 k m 22.21 cm 23.5 24.超速了 25.(1)C ;(2)5;(3)略 26.AB =AC =50 cm ,BC =60 cm 27.不会穿过公园 28.(1)最后一格填“>”;(2)最后一格填“<”;(3)当三角形为锐角三角形时,三边满足 a ²+b ²>c ²;当三角形为钝角三角形时,三边满足 a ²+b ²<c ²新人教版八年级下册《第17章勾股定理》单元测试试卷(五)(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)33136031537 (1) (2)1.已知直角三角形的两边分别为3、4,则第三边为___ __.2.如图所示,某风景名胜区为了方便游人参观,计划从主峰A 处架设一条缆车线路到另一山峰C 处,若在A 处测得∠EAC =30°,两山峰的底部BD 相距900米,则缆车线路AC 的长为_______米.3.已知,如图所示,Rt△ABC 的周长为4+2,斜边AB 的长为2,则Rt△ABC •的面积为_____. 4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.•当电工师傅沿梯上去修路灯时,梯子下滑到了B ′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯______米.5.在△ABC 中,∠C=90°, AB =5,则++=_______. 6.已知三角形三边长为正整数,则此三角形是________三角形.7.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,•A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是_________.8.如图,是北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 .332AB 2AC 2BC n n n n n n ,122,22,1222++++第2题 第3题第4题3220A第7题9.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 10.直角三角形的三边长为连续偶数,则这三个数分别为__________. 11.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有___米.12.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .13.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 . 14.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .二、选择题(共4小题,每题3分,共12分)15.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5B .25C .D .5或16.已知Rt△ABC 中,∠C=90°,若a +b =14cm ,c =10cm ,则Rt△ABC 的面积是 ( ) A .24cm 2B .36cm 2C .48cm 2D .60cm 217.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121B .120C .90D .不能确定18.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小7760 12014060BAC第8题第11题第12题第13题图红和小颖家的直线距离为 ( )A .600米 B. 800米 C. 1000米 D. 不能确定 三、解答题(共60分)19.(5分)如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,问这棵树有多高?20.(5分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?21.(5分)已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F•处,•如果AB =8cm ,BC =10cm ,求EC 的长.22.(6分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走1.5km ,遇到障碍后又往西走2km ,再折回向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏.问登陆点A 与宝藏埋藏点B 之间的距离是多少?23.(6分)如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?24.(6分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB =90°,AC =80米,BC =60米,若线段CD 是一条小渠,且D 点在边AB 上,已知水渠的造价为10元/米,问D 点在距A 点多远处时,水渠的造价最低?最低造价是多少?25.(6分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?小河26.(6分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?” 请用学过的数学知识回答这个问题.27.(7分)如图,甲乙两船从港口A 同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C 岛,乙船到达B 岛.若C 、B 两岛相距60海里,问乙船的航速是多少?28.(8分)如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以 千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域.(1)A 市是否会受到台风的影响?写出你的结论并给予说明; (2)如果A 市受这次台风影响,那么受台风影响的时间有多长?。
第十七章 勾股定理
一、填空题
1.等腰三角形的腰长5 cm,底长8 cm,则底边上的高为 3 cm .
2.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等”写出它的逆命题 如果两个三角形的面积相等,那么这两个三角形全等 .该逆命题是 假 命题(填“真”或“假”).
3. 在Rt △ABC 中, ∠C=90°,AB=15,BC:AC=3:4,则BC= 9 。
4.△ABC 的两边分别为5,12,另一边c 为奇数,且a+b+c 是3的倍数,则c 应为 13 ,此三角形为 直角 三角形.
5. 一座桥长24米,一艘小船自桥北头出发,向正南方向驶去,因水流原因,到达南岸后,发现已偏离桥南头10米,则小船实际行驶了 26 米。
6. 如图,一菜农要修建一个育苗棚,棚宽BE=2m ,棚高AE=1.5m ,长BC=20m 。
AE 所在的墙面与地面垂直,现要在棚顶覆盖一种农用塑料薄膜,请你为他计算一下,共需多少这种塑料薄膜 50 m 2。
二、选择题
7.在下列长度的四组线段中,不能组成直角三角形的是( D ). A .40,41,9===c b a B .25,5===c b a C .5:4:3::=c b a D . 15,12,11===c b a 8.下列三角形一定不是直角三角形的是( C ) (A)三角形的三边长分别为5,12,13 (B)三角形的三个内角比为1∶2∶3 (C)三边长的平方比为3∶4∶5 (D)其中有两个角互余
9.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2米,则树高为( C )
(A)√5 米 (B)√3 米 (C)(√5+1)米 (D)3米
10.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( A ) (A)7.5平方千米 (B)15平方千米 (C)75平方千米 (D)750平方千米
11.如图所示,圆柱的高AB=3,底面直径BC=3,现有一只蚂蚁想从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( C )
(A)3√1+π (B)3√2 (C)
3√4+π
2
2
(D)3√1+π2
12.在△ABC 中,∠A,∠B,∠C 的对边分别为a,b,c,且(a+b)(a-b)=c 2,则( A ) (A)∠A 为直角
(B)∠C 为直角
(C)∠B 为直角 (D)不是直角三角形
13.如图,点P 是以AB 为半径的圆弧与数轴的交点,则数轴上点P 表示的实数是( D )
(A)-2 (B)-2.2
(C)-√10 (D)-√10+1
14.设三角形的三边长分别等于下列各组数,能构成直角三角形的是( D ) (A)13,14,1
5 (B)4,5,
6 (C)5,6,10
(D)6,8,10
15.如图,在平面直角坐标系中,点P 坐标为(-4,3),以点B(-1,0)为圆心,以BP 的长为半径画弧,交x 轴的负半轴于点A,则点A 的横坐标介于( A )
(A)-6和-5之间 (B)-5和-4之间 (C)-4和-3之间 (D)-3和-2之间
16.在直角三角形中,若勾为3,股为4,则弦为( A ) (A)5 (B)6 (C)7 (D)8 二、解答题
17.如图,在△ABC 中,∠A=30°,AC=2√3,∠B=60°,求点C 到AB 的距离和△ABC 的面积.
解:过点C 作CD ⊥AB,则∠ADC=90°, 因为∠A=30°,AC=2√3, 所以CD=√3,
在△ABC 中,因为∠A=30°,∠B=60°, 所以∠ACB=90°, 在Rt △ABC 中,设BC=x,
则AB=2x,
因为AB 2=BC 2+AC 2, 所以(2x)2=x 2+(2√3)2, x=2,
所以S △ABC =1
2AC ·BC=1
2×2√3×2=2√3.
18.如图所示的一块地,AD=8 m,CD=6 m,∠ADC=90°,AB=26 m,BC=24 m.求这块地的面积.
解:连接AC,则△ADC 为直角三角形, 因为AD=8,CD=6, 所以AC=10.
在△ABC 中,AC=10,BC=24,AB=26. 因为102+242=262, 所以△ABC 也是直角三角形.
所以这块地的面积为S=S △ABC -S △ADC =1
2
AC ·BC-1
2
AD ·CD=1
2
×10×24-1
2
×
8×6=120-24=96 m 2.所以这块地的面积为96 m 2 .
19. 如图, 一架方梯长25米,斜靠在一面墙上,梯子底端离墙7米。
(1)这个梯子的顶端离地面有多高?
(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?
答案.(1)4米;(2)20'=OB , ∴152025'22=-=
OA ∴='AA 15-7=8 (米)
20.如图,△ABC 中,已知AB=AC,D 是AC 上的一点,CD=9,BC=15,BD=12.
(1)证明:△BCD 是直角三角形. (2)求△ABC 的面积. (1)证明:∵CD=9,BD=12,
∴CD 2+BD 2=92+122=81+144=225. ∵BC=15, ∴BC 2=152=225. ∴CD 2+BD 2=BC 2.
∴△BCD 是直角三角形,且∠BDC=90°(勾股定理逆定理). (2)解:设AD=x,则AC=x+9. ∵AB=AC, ∴AB=x+9. ∵∠BDC=90°, ∴∠ADB=90°.
在Rt △ADB 中,由勾股定理得 AB 2=AD 2+BD 2, ∴(x+9)2=x 2+122, 解得x=7
2.
∴AC=AD+CD=7
2+9=25
2. ∴S △ABC =1
2AC ·BD=1
2×252×12=75.
21.如图(1),在△ABC 中,BC=a,AC=b,AB=c,若∠C=90°,则有a 2+b 2=c 2;如图(2),△ABC 为锐角三角形时,小明猜想a 2+b 2>c 2,理由如下:
设CD=x,在Rt △ADC 中,AD 2=b 2-x 2,
在Rt△ADB中,AD2=c2-(a-x)2,
则b2-x2=c2-(a-x)2,所以a2+b2=c2+2ax,
因为a>0,x>0,所以2ax>0,所以a2+b2>c2,
所以当△ABC为锐角三角形时a2+b2>c2.
所以小明的猜想是正确的.
(1)请你猜想,当△ABC为钝角三角形时,a2+b2与c2的大小关系;
(2)证明你猜想的结论是否正确.
温馨提示:在图(3)中,作AC边上的高.
(1)解:若△ABC是钝角三角形,∠C为钝角,
则有a2+b2<c2.
(2)证明:如图,过点B作BD⊥AC,
交AC的延长线于点D.
设CD为x,在Rt△BCD中,有DB2=a2-x2,
在Rt△ABD中,有DB2=c2-(b+x)2,
所以a2-x2=c2-(b+x)2,
整理得a2+b2+2bx=c2,
因为b>0,x>0,
所以2bx>0,
所以a2+b2<c2.。