高中数学选修2-2微积分基本定理
- 格式:docx
- 大小:261.68 KB
- 文档页数:10
§2 微积分基本定理1.了解微积分基本定理的含义.(难点)2.会利用微积分基本定理求函数的定积分.(重点)[基础·初探]教材整理 微积分基本定理 阅读教材P 82~P 84,完成下列问题. 1.微积分基本定理如果连续函数f (x )是函数F (x )的导函数,即f (x )=F ′(x ),则有⎠⎛a b f (x )dx =F (b )-F (a ).2.定积分和曲边梯形面积的关系设曲边梯形在x 轴上方的面积为S 上,x 轴下方的面积为S 下,则(1) 图4-2-1(1)当曲边梯形的面积在x 轴上方时,如图4-2-1(1),则⎠⎛a b f (x )dx =S 上.(2)当曲边梯形的面积在x 轴下方时,如图4-2-1(2),则⎠⎛ab f (x )dx =-S 下.(2) (3)图4-2-1(3)当曲边梯形的面积在x 轴上方、x 轴下方均存在时,如图4-2-1(3),则⎠⎛a bf (x )dx =S 上-S 下,若S 上=S 下,则⎠⎛ab f (x )dx =0.1.判断(正确的打“√”,错误的打“×”)(1)微积分基本定理中,被积函数f (x )是原函数F (x )的导数.( )(2)应用微积分基本定理求定积分的值时,为了计算方便通常取原函数的常数项为0.( )(3)应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( )【答案】 (1)√ (2)√ (3)√ 2.⎠⎛02π(-sin x )dx 等于( ) A.0 B.2 C.-2D.4【解析】 ⎠⎛02π(-sin x )dx =cos x ⎪⎪⎪2π0=cos 2π-cos 0=0.【答案】 A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:。
4.5定积分与微积分基本定理[读教材·填要点]1.曲边梯形的面积(1)曲边梯形:位于曲线y =f (x )(a ≤x ≤b )和x 轴之间的图形,叫作函数y =f (x )在区间[a ,b ]上的“曲边梯形”.(2)曲边梯形面积的计算方法:化整为零、以直代曲,即把一个曲边梯形分成多个小曲边梯形,再用矩形代替小曲边梯形.2.计算变力所做的功的方法 化整为零,以直代曲. 3.定积分的概念设f (x )是在区间[a ,b ]上有定义的函数,在a ,b 之间取若干分点a =x 0<x 1<x 2<…<x n =b .记小区间[x k -1,x k ]为Δk ,其长度x k -x k -1记作Δx k ,Δx k 中最大的记作d ,再在每个小区间Δk z k ,作和式:∑k =1nf (z k )Δx k . ①如果(不论如何取分点x k 和代表点z k )当d 趋于0时和式①以S 为极限,就说函数f (x )在[a ,b ]上可积,并且说S 是f (x )在[a ,b ]上的定积分,记作S =⎠⎛a bf (x )d x .4.微积分基本定理如果f (x )是在[a ,b ]上有定义的连续函数,F (x )在[a ,b ]上可导并且F ′(x )=f (x ), 则⎠⎛a bf (t )d t =F (b )-F (a ).[小问题·大思维]1.求曲边梯形面积时,对曲边梯形进行“以直代曲”,怎样才能尽量减小求得的曲边梯形面积的误差?提示:为了减小近似代替的误差,需要先分割再分别对每个小曲边梯形“以直代曲”,而且分割的曲边梯形数目越多,得到的面积的误差越小.2.求曲边梯形的面积与计算变速直线运动的路程有哪些相同点?提示:(1)求曲边梯形的面积与求变速直线运动的路程的共同本质是“以直代曲”“以不变代变”的思想方法.(2)求解的方法步骤相同.3.由定积分的定义可知,⎠⎛a b f (x )d x 是一个常数还是一个变量?⎠⎛a bf (x )d x 的值与哪些量有关?提示:由定义可得定积分⎠⎛a bf (x )d x 是一个常数,它的值仅取决于被积函数与积分上、下限,而与积分变量没有关系,即⎠⎛a bf (x )d x =⎠⎛a bf (t )d t =⎠⎛a bf (u )d u .4.如图所示,如何用阴影面积S 1,S 2,S 3表示定积分⎠⎛a bf (x )d x 的值?提示:⎠⎛a bf (x )d x =S 1-S 2+S 3.计算下列定积分:(1) ⎠⎛-13(4x -x 2)d x; (2)⎠⎛12(x -1)5 d x ; (3)⎠⎛12(t +2)d x; (4)⎠⎛121x (x +1)d x . [自主解答] (1)取F (x )=2x 2-x 33,因为F ′(x )=4x -x 2,所以⎠⎛-13(4x -x 2)d x =F (3)-F (-1)=⎝⎛⎭⎫2×32-333-⎣⎡⎦⎤2×(-1)2-(-1)33=203. (2)因为⎣⎡⎦⎤16(x -1)6′=(x -1)5, 所以⎠⎛12(x -1)5d x =F (2)-F (1)=16×(2-1)6-16×(1-1)6=16. (3)取F (x )=(t +2)x ,因为F ′(x )=t +2, 所以⎠⎛12(t +2)d x =F (2)-F (1) =2(t +2)-(t +2)=t +2.(4)f (x )=1x (x +1)=1x -1x +1,取F (x )=ln x -ln(x +1)=ln x x +1, 则F ′(x )=1x -1x +1.所以⎠⎛121x (x +1)d x =⎠⎛12⎝⎛⎭⎫1x -1x +1d x =F (2)-F (1)=ln 43.运用微积分基本定理求定积分时的4个注意点(1)对被积函数要先化简,再求积分;(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和;(3)对于含有绝对值符号的被积函数,要先去掉绝对值号再求积分; (4)注意用“F ′(x )=f (x )”检验积分的对错.1.计算下列定积分:(1)⎠⎛-13(3x 2-2x +1)d x ; (2) ⎠⎛12⎝⎛⎭⎫x -1x d x ; (3) ⎠⎛0π (sin x -cos x )d x ; (4) ⎠⎛02|1-x |d x . 解:(1)取F (x )=x 3-x 2+x , 则F ′(x )=3x 2-2x +1.∴⎠⎛-13(3x 2-2x +1)d x =F (3)-F (-1)=24.(2)取F (x )=12x 2-ln x ,则F ′(x )=x -1x .∴⎠⎛12⎝⎛⎭⎫x -1x d x =F (2)-F (1)=32-ln 2. (3)取F (x )=-cos x -sin x , 则F ′(x )=sin x -cos x .∴⎠⎛0π(sin x -cos x )d x =F (π)-F (0)=2.(4)∵|1-x |=⎩⎪⎨⎪⎧1-x ,0<x <1,x -1,1<x <2,∴取F 1(x )=x -12x 2,0<x <1,F 2(x )=12x 2-x,1<x <2,则F 1′(x )=1-x ,F 2′(x )=x -1.∴⎠⎛02|1-x |d x =F 1(1)-F 1(0)+F 2(2)-F 2(1)=1.已知函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,求x 0的值.[自主解答] 因为f (x )=ax 2+c (a ≠0), 取F (x )=a3x 3+cx ,则F ′(x )=ax 2+c ,所以⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =F (1)-F (0)=a 3+c =ax 20+c . 解得x 0=33或x 0=-33(舍去). 即x 0=33.利用定积分求参数时,注意方程思想的应用.一般地,首先要弄清楚积分变量和被积函数.当被积函数中含有参数时,必须分清常数和变量,再进行计算;其次要注意积分下限不大于积分上限.2.已知f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求f (x )的解析式. 解:设f (x )=ax +b (a ≠0), 取F 1(x )=12ax 2+bx ,∴F 1′(x )=f (x ).则⎠⎛01(ax +b )d x =F 1(1)-F 1(0)=12a +b , ⎠⎛01x (ax +b )d x =⎠⎛01(ax 2+bx )d x , 取F 2(x )=13ax 3+12bx 2且F 2′(x )=ax 2+bx ,则⎠⎛01x (ax +b )d x =F 2(1)-F 2(0)=13a +12b ,由⎩⎨⎧12a +b =5,13a +12b =176.解得a =4,b =3,故f (x )=4x +3.求由抛物线y =x 2-4与直线y =-x +2所围成图形的面积.[自主解答] 由⎩⎪⎨⎪⎧y =x 2-4,y =-x +2,得⎩⎪⎨⎪⎧ x =-3,y =5或⎩⎪⎨⎪⎧x =2,y =0.所以直线y =-x +2与抛物线 y =x 2-4的交点为(-3,5)和(2,0), 设所求图形面积为S ,根据图形可得S =⎠⎛-32[(-x +2)-(x 2-4)]d x =⎠⎛-32(6-x -x 2)d x ,取F (x )=6x -12x 2-13x 3,则F ′(x )=6-x -x 2, ∴S =F (2)-F (-3)=1256.若将本例中“直线y =-x +2”换为“抛物线y =3-34x 2”,如何求解?解:如图所示,设所求图形面积为S ,S =⎠⎛-22⎣⎡⎦⎤⎝⎛⎭⎫3-34x 2-()x 2-4d x =⎠⎛-22⎝⎛⎭⎫7-74x 2d x , 取F (x )=7x -712x 3,则F ′(x )=7-74x 2,∴S =F (2)-F (-2)=563.利用定积分求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形.(2)确定图形范围,通过方程组求出交点的横坐标,确定积分上限和积分下限. (3)确定被积函数及积分变量,确定时可以综合考察下列因素:①被积函数的原函数易求;②较少的分割区域;③积分上限和积分下限比较简单. (4)写出平面图形的面积的定积分表达式.(5)运用微积分基本定理计算定积分,求出平面图形的面积.3.求曲线y =e x ,y =e-x及直线x =1所围成的图形的面积.解:由图可知,积分区间为[0,1],面积S =⎠⎛10()e x -e -x d x ,取F (x )=e x +e -x , 则F ′(x )=e x -e -x , ∴S =F (1)-F (0)=e +1e-2.变速直线运动的物体的速度为v (t )=1-t 2,初始位置为x 0=1,求它在前2秒内所走的路程及2秒末所在的位置.[自主解答] 当0≤t ≤1时,v (t )≥0, 当1≤t ≤2时,v (t )<0. 所以前2秒钟内所走的路程 S =⎠⎛01v (t )d t +⎠⎛12[-v (t )]d t=⎠⎛01(1-t 2)d t +⎠⎛12(t 2-1)d t取F 1(t )=t -13t 3,F 2(t )=13t 3-t ,S =F 1(1)-F 1(0)+F 2(2)-F 2(1)=2.2秒末所在的位置:x 1=x 0+⎠⎛02v (t )d t =1+⎠⎛02(1-t 2)d t =13. 即它在前2秒内所走的路程为2,2秒末所在位置为x 1=13.1.有关路程、位移计算公式路程是位移的绝对值之和,从时刻t =a 到时刻t =b 所经过的路程s 和位移s 1分别为 (1)若v (t )≥0(a ≤t ≤b ),则s =⎠⎛a bv (t )d t ;s 1=⎠⎛a bv (t )d t . (2)若v (t )≤0(a ≤t ≤b ), 则s =-⎠⎛a bv (t )d t ;s 1=⎠⎛a bv (t )d t .(3)在区间[a ,c ]上,v (t )≥0,在区间[c ,b ]上,v (t )<0, 则s =⎠⎛a cv (t )d t -⎠⎛c bv (t )d t ;s 1=⎠⎛a bv (t )d t . 2.求变力做功的方法步骤(1)要明确变力的函数式F (x ),确定物体在力的方向上的位移. (2)利用变力做功的公式W =⎠⎛ab F (x )d x 计算.[注意] 将力与位移的单位换算为牛顿(N)与米(m),功的单位才为焦耳(J).4.一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°角的方向做直线运动,则由x =1运动到x =2时F (x )做的功为( )A. 3 JB.233 JC.433JD .2 3 J解析:W =⎠⎛12F (x )cos 30°d x =⎠⎛1232(5-x 2)d x =32⎝⎛⎭⎫5x -13x 3⎪⎪⎪21=433(J). 答案:C求抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积.[解] 由方程组⎩⎪⎨⎪⎧y 2=2x ,y =4-x ,解出抛物线和直线的交点为(2,2)及(8,-4).法一:选x 作为积分变量,由图可看出S =A 1+A 2.在A 1部分:由于抛物线的上半支方程为y =2x ,下半支方程为y =-2x ,所以S A 1=⎠⎛02[2x -(-2x )]d x =22⎠⎛02x 12d x .取F 1(x )=23x 32,∴S A 1=22[F 1(2)-F 1(0)]=163. S A 2=⎠⎛28[4-x -(-2x )]d x , 取F 2(x )=4x -12x 2+223x 32.∴S A 2=F 2(8)-F 2(2)=383. ∴S =163+383=18.法二:选y 作积分变量, 将曲线方程写为x =y 22及x =4-y .S =2-4⎰⎣⎡⎦⎤(4-y )-y 22d y . 取F (y )=4y -y 22-y 36,∴S =F (2)-F (-4)=30-12=18.1.定积分⎠⎛01(2x +e x)d x 的值为( )A .e +2B .e +1C .eD .e -1解析:取F (x )=x 2+e x,则F ′(x )=2x +e x,⎠⎛01(2x +e x )d x =F (1)-F (0)=(1+e)-(0+e 0)=e.答案:C2.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v =gt (g 为常数),则电视塔高为( )A.12g B .g C.32g D .2g解析:取F (x )=12gt 2,则F ′(x )=gt ,所以电视塔高为⎠⎛12gt d t =F (2)-F (1)=2g -12g =32g . 答案:C3.s 1=⎠⎛01x d x ,s 2=⎠⎛01x 2d x 的大小关系是( )A .s 1=s 2B .s 21=s 2C .s 1>s 2D .s 1<s 2解析:⎠⎛01x d x 表示由直线x =0,x =1,y =x 及x 轴所围成的图形的面积,而⎠⎛01x 2d x 表示的是由曲线y =x 2与直线x =0,x =1及x 轴所围成的图形的面积,因为在x ∈[0,1]内直线y =x 在曲线y =x 2的上方,所以s 1>s 2.答案:C4.⎠⎛-12x 4d x =________.解析:∵⎝⎛⎭⎫15x 5′=x 4,取F (x )=15x 5, ∴⎠⎛-12x 4d x =F (2)-F (-1)=15[25-(-1)5]=335. 答案:3355.若⎠⎛01(2x +k )d x =2,则k =________. 解析:取F (x )=x 2+kx ,则F ′(x )=2x +k , ∴⎠⎛01(2x +k )d x =F (1)-F (0)=1+k =2,∴k =1. 答案:16.求由曲线xy =1及直线x =y ,y =3所围成平面图形的面积.解:作出曲线xy =1,直线x =y ,y =3的草图,所求面积为图中阴影部分的面积.求交点坐标:由⎩⎪⎨⎪⎧xy =1,y =3,得⎩⎪⎨⎪⎧x =13,y =3,故A ⎝⎛⎭⎫13,3;由⎩⎪⎨⎪⎧ xy =1,y =x ,得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1(舍去), 故B (1,1);由⎩⎪⎨⎪⎧ y =x ,y =3得⎩⎪⎨⎪⎧x =3,y =3,故C (3,3),故所求面积S =S 1+S 2=⎠⎜⎛131⎝⎛⎭⎫3-1x d x +⎠⎛13(3-x )d x =4-ln 3.一、选择题1.⎠⎛241x d x 等于( ) A .-2ln 2 B .2ln 2 C .-ln 2D .ln 2解析:⎠⎛241x d x =ln 4-ln 2=ln 2. 答案:D2.一物体沿直线运动,其速度v (t )=t ,这个物体在t =0到t =1这段时间内所走的路程为( )A.13B.12C. 1D.32解析:曲线v (t )=t 与直线t =0,t =1,横轴围成的三角形面积S =12即为这段时间内物体所走的路程.答案:B3.如图所示,阴影部分的面积是( ) A .2 3 B .2- 3 C.323D.353解析:S =⎠⎛-31 (3-x 2-2x )d x ,即F (x )=3x -13x 3-x 2, 则F (1)=3-13-1=53,F (-3)=-9+9-9=-9. ∴S =F (1)-F (-3)=53+9=323.答案:C4.定积分⎠⎛-22|x 2-2x |d x =( )A .5B .6C .7D .8解析:|x 2-2x |=⎩⎪⎨⎪⎧x 2-2x ,-2≤x <0,-x 2+2x ,0≤x ≤2, 取F 1(x )=13x 3-x 2,F 2(x )=-13x 3+x 2, 则F 1′(x )=x 2-2x ,F 2′(x )=-x 2+2x .∴⎠⎛-22|x 2-2x |d x =⎠⎛-20 (x 2-2x )d x +⎠⎛02(-x 2+2x )d x =F 1(0)-F 1(-2)+F 2(2)-F 2(0)=8.答案:D二、填空题5.函数y =x -x 2的图象与x 轴所围成的封闭图形的面积等于________.解析:由x -x 2=0,得x =0或x =1.因此所围成的封闭图形的面积为⎠⎛01(x -x 2)d x . 取F (x )=12x 2-13x 3, 则F ′(x )=x -x 2,∴面积S =F (1)-F (0)=16. 答案:166.设函数f (x )=(x -1)x (x +1),则满足∫a 0f ′(x )d x =0的实数a =________.解析:⎠⎛0af ′(x )d x =f (a )=0,得a =0或1或-1,又由积分性质知a >0,故a =1.答案:17.计算⎠⎛02(2x -e x )d x =________. 解析:取F (x )=x 2-e x ,则F ′(x )=2x -e x ,所以⎠⎛02(2x -e x )d x =F (2)-F (0)=5-e 2. 答案:5-e 28.曲线y =1x +2x +2e 2x ,直线x =1,x =e 和x 轴所围成的区域的面积是________.解析:由题意得,所求面积为⎠⎛1e⎝⎛⎭⎫1x +2x +2e 2x d x . 取F (x )=ln x +x 2+e 2x ,则F ′(x )=1x +2x +2e 2x ,所以⎠⎛1e⎝⎛⎭⎫1x +2x +2e 2x d x =F (e)-F (1)=e 2e . 答案:e 2e三、解答题9.计算下列定积分.(1)⎠⎛14⎝⎛⎭⎫2x -1x d x ; (2)⎠⎛01x 1+x 2d x .解:(1)取F (x )=2xln 2-2x , 则F ′(x )=2x -1x . ∴原式=F (4)-F (1)=⎝⎛⎭⎫16ln 2-2ln 2-(24-2)=14ln 2-2. (2)取F (x )=12ln(1+x 2),则F ′(x )=x 1+x 2. ∴⎠⎛01x 1+x 2d x =F (1)-F (0)=12ln 2.10.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g (x )=x 2围成的图形的面积.解:f ′(x )=3x 2-2x +1,∵(1,2)为曲线f (x )=x 3-x 2+x +1上的点,设过点(1,2)处的切线的斜率为k ,则k =f ′(1)=2,∴过点(1,2)处的切线方程为y -2=2(x -1),即y =2x .y =2x 与函数g (x )=x 2围成的图形如图:由⎩⎪⎨⎪⎧y =x 2,y =2x 可得交点A (2,4). ∴y =2x 与函数g (x )=x 2围成的图形的面积S =⎠⎛02(2x -x 2). 取F (x )=x 2-13x 3,则F ′(x )=2x -x 2, ∴S =F (2)-F (0)=43.。
1.6微积分基本定理1.了解导数与定积分的关系以及微积分基本定理的含义.(重点、易混点) 2.掌握微积分基本定理,会用微积分基本定理求定积分.(重点、难点)[基础·初探]教材整理1微积分基本定理阅读教材P51~P53“例1”以上内容,完成下列问题.1.内容:如果f(x)是区间[a,b]上的__________函数,并且F′(x)=f(x),那么b f(x)d x=__________.⎠⎛a这个结论叫做微积分基本定理,又叫做____________.2.表示:为了方便,常常把F(b)-F(a)记成__________,即b f(x)dx=⎠⎛a______________=______________.【答案】 1.连续F(b)-F(a)牛顿-莱布尼茨公式2.F(x)|b a F(x)|b a F(b)-F(a)1.判断(正确的打“√”,错误的打“×”)(1)微积分基本定理中,被积函数f(x)是原函数F(x)的导数.()(2)应用微积分基本定理求定积分的值时,为了计算方便通常取原函数的常数项为0.()(3)应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.()【答案】(1)√(2)√(3)√2.若a=1(x-2)d x,则被积函数的原函数为()⎠⎛A.f(x)=x-2 B.f(x)=x-2+CC.f(x)=12x2-2x+C D.f(x)=x2-2x【答案】 C3.⎠⎜⎛π2cos x d x=________.【解析】⎠⎜⎛π2cos x d x=sin x⎪⎪⎪⎪π2=sinπ2-sin 0=1.【答案】 1教材整理2 定积分与曲边梯形面积的关系阅读教材P53“例2”以下部分~P54的内容,完成下列问题.设曲边梯形在x轴上方的面积为S上,在x轴下方的面积为S下,则(1)当曲边梯形在x轴上方时,如图1-6-1①,则⎠⎛ab f(x)d x=__________.(2)当曲边梯形在x轴下方时,如图1-6-1②,则⎠⎛ab f(x)d x=________.①②③图1-6-1(3)当曲边梯形在x轴上方、x轴下方均存在时,如图1-6-1③,则⎠⎛ab f(x)d x=______________.特别地,若S上=S下,则⎠⎛ab f(x)d x=______.【答案】(1)S上(2)-S下(3)S上-S下1.如图1-6-2,阴影部分的面积为________.图1-6-2【解析】根据定积分的几何意义知S阴影=-⎠⎜⎛π232πcos x d x=-sin x⎪⎪⎪⎪32ππ2=-⎝⎛⎭⎪⎫sin32π-sinπ2=2.【答案】 22.如图1-6-3,定积分⎠⎛ab f(x)d x的值用阴影面积S1,S2,S3表示为⎠⎛ab f(x)d x=________.图1-6-3【解析】根据定积分的几何意义知⎠⎛ab f(x)d x=S1-S2+S3.【答案】S1-S2+S3[小组合作型]利用微积分基本定理求定积分⎠⎛xA.e+2 B.e+1C.e D.e-1(2)求下列定积分.①⎠⎛12(x2+2x+3)d x;②⎠⎛π2sin2x2d x.【自主解答】(1)⎠⎛1(2x+e x)d x=(x2+e x)⎪⎪⎪1=(12+e)-(02+e0)=1+e-1=e.【答案】 C(2)①⎠⎛12(x2+2x +3)d x =⎠⎛12x2d x +⎠⎛122x d x +⎠⎛123d x =x 33⎪⎪⎪ 21+x 2⎪⎪⎪ 21+3x ⎪⎪⎪21=253.②sin 2x 2=1-cos x 2,而⎝ ⎛⎭⎪⎫12x -12sin x ′=12-12cos x =sin 2x 2, ∴⎠⎜⎛0π2sin 2x 2d x =⎝ ⎛⎭⎪⎫12x -12sin x ⎪⎪⎪π20=π4-12=π-24.求简单的定积分关键注意两点1.掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解.2.精确定位积分区间,分清积分下限与积分上限.[再练一题]1.(1)若⎠⎛01(kx +1)d x =2,则k 的值为( )A .1B .2C .3D .4(2)⎠⎛12x -1x 2d x =________. 【导学号:62952051】【解析】 (1)⎠⎛1(kx +1)d x =⎝⎛⎭⎪⎫12kx 2+x ⎪⎪⎪10=12k +1=2,∴k =2. (2)⎠⎛12x -1x 2d x =⎠⎛12⎝⎛⎭⎪⎫1x -1x 2d x=⎝ ⎛⎭⎪⎫ln x +1x ⎪⎪⎪21=⎝ ⎛⎭⎪⎫ln 2+12-(ln 1+1)=ln 2-12. 【答案】 (1)B (2)ln 2-12求分段函数的定积分计算下列定积分.(1)f (x )=⎩⎪⎨⎪⎧sin x ,0≤x <π2,1,π2≤x ≤2,x -1,2<x ≤4,求⎠⎛04f (x )d x ; (2)⎠⎛02|x 2-1|d x . 【精彩点拨】 (1)按f (x )的分段标准,分成⎣⎢⎡⎭⎪⎫0,π2,⎣⎢⎡⎦⎥⎤π2,2,(2,4]三段求定积分,再求和.(2)先去掉绝对值号,化成分段函数,再分段求定积分. 【自主解答】(1)⎠⎛04f (x )d x =⎠⎛0π2sin x d x +⎠⎜⎛π221d x +⎠⎛24(x -1)d x =(-cos x )⎪⎪⎪π20+x ⎪⎪⎪2π2+⎝ ⎛⎭⎪⎫12x 2-x ⎪⎪⎪42=1+⎝ ⎛⎭⎪⎫2-π2+(4-0)=7-π2.(2)⎠⎛02|x 2-1|d x =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪ 10+⎝ ⎛⎭⎪⎫13x 3-x ⎪⎪⎪21=2.1.本例(2)中被积函数f (x )含有绝对值号,可先求函数f (x )的零点,结合积分区间,分段求解.2.分段函数在区间[a ,b ]上的定积分可分成n 段定积分和的形式,分段的标准可按照函数的分段标准进行.3.带绝对值号的解析式,可先化为分段函数,然后求解.[再练一题]2.计算定积分:⎠⎛-33(|2x+3|+|3-2x|)d x.【解】设f(x)=|2x+3|+|3-2x|,x∈[-3,3],则f(x)=⎩⎪⎨⎪⎧-4x,-3≤x<-32,6,-32≤x≤32,4x,32<x≤3.所以⎠⎛-33(|2x+3|+|3-2x|)d x=⎠⎜⎛-3-32(-4x)d x+⎠⎜⎛-3232 6 d x+⎠⎜⎛3234x d x=-2x2⎪⎪⎪-32-3+6x⎪⎪⎪⎪32-32+2x2⎪⎪⎪⎪332=-2×⎝⎛⎭⎪⎫94-9+6×⎝⎛⎭⎪⎫32+32+2×⎝⎛⎭⎪⎫9-94=45.[探究共研型]利用定积分求参数探究⎠⎛【提示】令y=⎠⎛1(x2+cx+c)2d x,则y=⎠⎛1(x4+2cx3+c2x2+2cx2+2c2x+c2)d x=⎝⎛⎭⎪⎫15x5+c2x4+c2+2c3x3+c2x2+c2x⎪⎪⎪1=15+76c +73c 2=73⎝ ⎛⎭⎪⎫c +142-73×116+15.∵73>0,∴当c =-14时,⎠⎛01(x 2+cx +c )2d x 最小.已知f (x )是一次函数,其图象过点(1,4),且⎠⎛01f (x )d x =1,求f (x )的解析式.【精彩点拨】 设出函数解析式,由题中条件建立两方程,联立求解. 【自主解答】 设f (x )=kx +b (k ≠0),因为函数的图象过点(1,4),所以k +b =4.①又⎠⎛01f (x )d x =⎠⎛01(kx +b )d x =⎝ ⎛⎭⎪⎫k 2x 2+bx ⎪⎪⎪10=k 2+b ,所以k 2+b =1. ②由①②得k =6,b =-2,所以f (x )=6x -2.1.含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.2.计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.[再练一题]3.上例中,若把“已知f (x )是一次函数”改为“已知f (x )=ax 2+bx (a ≠0)”,其余条件不变,求f (x )的解析式.【解】 ∵函数的图象过点(1,4),∴a +b =4, ①又⎠⎛01f (x )d x =⎠⎛01(ax 2+bx )d x =⎝ ⎛⎭⎪⎫a 3x 3+b 2x 2⎪⎪⎪10=a 3+b 2,∴a 3+b2=1,②由①②得a =6,b =-2,所以f (x )=6x 2-2x .1.下列值等于1的是( ) A.⎠⎛01x d x B.⎠⎛01(x +1)d x C.⎠⎛011d x D.⎠⎛0112d x 【解析】 选项A ,因为⎝ ⎛⎭⎪⎫x 22′=x ,所以⎠⎛01x d x =x 22⎪⎪⎪10=12;选项B ,因为⎝ ⎛⎭⎪⎫x 22+x ′=x +1,所以⎠⎛01(x +1)d x =⎝ ⎛⎭⎪⎫x 22+x ⎪⎪⎪10=32;选项C ,因为x ′=1,所以⎠⎛011d x =x ⎪⎪⎪10=1;选项D ,因为⎝ ⎛⎭⎪⎫12x ′=12,所以⎠⎛0112d x =12x ⎪⎪⎪10=12.【答案】 C2.⎠⎜⎛-π2π2 (sin x +cos x )d x 的值是( ) A .0 B.π4 C .2 D .4【解析】 ⎠⎜⎛-π2π2 (sin x +cos x )d x =⎠⎜⎛-π2π2sin x d x +⎠⎜⎛-π2π2cos x d x =(-cos x )| π2-π2+sin x⎪⎪⎪⎪π2-π2=2.【答案】 C3.计算⎠⎛01x 2d x =________.【导学号:62952052】【解析】 由于⎝ ⎛⎭⎪⎫13x 3′=x 2,所以⎠⎛01x 2d x =13x 3⎪⎪⎪10=13.【答案】 134.已知2≤⎠⎛12(kx +1)d x ≤4,则实数k 的取值范围为________.【解析】 ⎠⎛12(kx +1)d x =⎝ ⎛⎭⎪⎫12kx 2+x ⎪⎪⎪21=(2k +2)-⎝ ⎛⎭⎪⎫12k +1=32k +1,所以2≤32k +1≤4,解得23≤k ≤2.【答案】 ⎣⎢⎡⎦⎥⎤23,25.已知f (x )=ax +b ,且⎠⎛-11 f 2(x )d x =1,求f (a )的取值范围.【解】 由f (x )=ax +b ,⎠⎛-11 f 2(x )d x =1,得2a 2+6b 2=3,2a 2=3-6b 2≥0,所以-22≤b ≤22,所以f (a )=a 2+b =-3b 2+b +32=-3⎝ ⎛⎭⎪⎫b -162+1912,所以-22≤f (a )≤1912.。
§2 微积分基本定理课时目标 1.了解微积分基本定理的内容与含义.2.会利用微积分基本定理求函数的定积分.微积分基本定理:如果连续函数f (x )是________________________,则有ʃba f (x )d x =__________.一、选择题1.设f (x )在[a ,b ]上连续,且(F (x )+C )′=f (x )(C 为常数),则lim Δx →0F x +Δx -F xΔx等于( )A .F (x )B .f (x )C .0D .f ′(x )2.由曲线y =x 3,直线x =0,x =1及y =0所围成的曲边梯形的面积为( )A .1B.12C.13D.143.220sin cos 22x x dx π⎛⎫ ⎪⎝⎭⎰的值是( )A.π2B.π2+1C .-π2D .04.ʃ0-4|x +3|d x 的值为( ) A .-2B .0C .5D.125.若m =ʃ10e x d x ,n =ʃe 11xd x ,则m 与n 的大小关系是( )A .m >nB .m <nC .m =nD .无法确定6.ʃ421xd x 等于( )A .-2ln 2B .2ln 2C .-ln 2D .ln 2 二、填空题7.ʃ10(2x k+1)d x =2,则k =________. 8.定积分ʃ10x1+x 2d x 的值为________.9.定积分20π⎰1-sin 2x d x 的值为__________.三、解答题10.计算:(1)ʃ5-5(sin 5x +x 13)d x ;(2) 22ππ-⎰(cos 2x +8)d x .11.已知f (x )=a sin x +b cos x ,20π⎰f (x )d x =4,60π⎰f (x )d x =7-332,求f (x )的最大值和最小值.能力提升12.f (x )是一次函数,且ʃ10f (x )d x =5,ʃ10xf (x )d x =176,那么f (x )的解析式是( ) A .4x +3 B .3x +4 C .-4x +2 D .-3x +413.已知ʃ1-1(x 3+ax +3a -b )d x =2a +6且f (t )=ʃt 0(x 3+ax +3a -b )d x 为偶函数,求a ,b .1.用微积分基本定理求定积分,关键是找到满足F ′(x )=f (x )的函数F (x ),即找到被积函数的原函数.2.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)求被积函数是分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和.(3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分. 答 案知识梳理函数F (x )的导函数,即f (x )=F ′(x ) F (b )-F (a ) 作业设计 1.B2.D [曲边梯形面积A =ʃ10x 3d x =⎝ ⎛⎭⎪⎫14x 4|10=14.]3.B [20π⎰⎝⎛⎭⎪⎫sin x 2+cos x 22d x =20π⎰(1+sin x )d x=x |20π+(-cos x )20π=π2+1.] 4.C [原式=ʃ-3-4(-x -3)d x +ʃ0-3(x +3)d x =⎝ ⎛⎭⎪⎫-12x 2-3x |-3-4+⎝ ⎛⎭⎪⎫12x 2+3x |0-3=5.] 5.A [∵m =ʃ10e x d x =e x |10=e -1,n =ʃe 11xd x =ln x |e1=ln e -ln 1=1,m -n =e -1-1=e -2>0,∴m >n .]6.D [ʃ421xd x =ln x |42=ln 4-ln 2=ln 2.]7.1解析 ∵ʃ10(2x k +1)d x =ʃ102x k d x +ʃ10d x=2ʃ10x k d x +x |10=2x k +1k +1|10+1 =2k +1+1=2,∴2k +1=1, 即k =1. 8.12ln 2 解析 ∵⎣⎢⎡⎦⎥⎤12ln 1+x 2 ′=x 1+x 2, ∴ʃ10x 1+x 2d x =12ln(1+x 2)|10=12ln 2. 9.2(2-1) 解析 20π⎰cos 2x +sin 2x -2sin x cos x d x=20π⎰ sin x -cos x 2d x =20π⎰|cos x -sin x |d x =40π⎰(cos x -sin x )d x +24ππ⎰(sin x -cos x )d x=(sin x +cos x ) 40π-(cos x +sin x )24ππ=2(2-1).10.解 (1)∵f (x )=sin 5x +x 13,x ∈[-5,5]是奇函数, ∴由定积分的几何意义知 ʃ0-5(sin 5x +x 13)d x =-ʃ50(sin 5x +x 13)d x ,。
1.4.2 微积分基本定理微积分基本定理1.F ′(x )从a 到b 的积分等于F (x )在两端点的取值之差. 2.如果F ′(x )=f (x ),且f (x )在[a ,b ]上可积,则⎠⎛abf (x )d x =F (b )-F (a ). 其中F (x )叫做f (x )的一个原函数.由于[F (x )+c]′=f (x ),F (x )+c 也是f (x)的原函数,其中c 为常数.一般地,原函数在[a ,b ]上的改变量F (b )-F (a )简记作F (x )| ba .因此,微积分基本定理可以写成形式:⎠⎛ab f (x )d x =F (x )| ba =F (b )-F (a ).1.判断(正确的打“√”,错误的打“×”)(1)微积分基本定理中,被积函数f (x )是原函数F (x )的导数.( )(2)应用微积分基本定理求定积分的值时,为了计算方便通常取原函数的常数项为0.( )(3)应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( )[答案] (1)√ (2)√ (3)√2.若a =⎠⎛01(x -2)d x ,则被积函数的原函数为( )A .f (x )=x -2B .f (x )=x -2+C C .f (x )=12x 2-2x +C D .f (x )=x 2-2x[解析] 由微积分基本定理知,f ′(x )=x -2, ∵⎝ ⎛⎭⎪⎫12x 2-2x +C ′=x -2, ∴选C. [答案] C【例1】 (1)定积分⎠⎛0(2x +e )d x 的值为( ) A .e +2 B .e +1 C .e D .e -1(2)求下列定积分.①⎠⎛12(x 2+2x +3)d x ;②⎠⎜⎛0π2sin 2x 2d x . [解析] (1)⎠⎛01(2x +e x )d x =(x 2+e x )| 10=(12+e)-(02+e 0)=1+e -1=e.[答案] C(2)①⎠⎛12(x 2+2x +3)d x=⎠⎛12x 2d x +⎠⎛122x d x +⎠⎛123d x=x 33| 21+x 2| 21+3x | 21=253. ②sin 2x2=1-cos x2,而⎝ ⎛⎭⎪⎫12x -12sin x ′=12-12cos x =sin 2x 2,∴⎠⎜⎛0π2sin 2x 2d x =⎝ ⎛⎭⎪⎫12x -12sin x | π20 =π4-12=π-24.求简单的定积分关键注意两点1.掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解.2.精确定位积分区间,分清积分下限与积分上限.1.(1)若⎠⎛01(kx +1)d x =2,则k 的值为( )A .1B .2C .3D .4(2)⎠⎛12x -1x 2d x =________.[解析] (1)⎠⎛01(kx +1)d x =⎝ ⎛⎭⎪⎫12kx 2+x | 10=12k +1=2,∴k =2.(2)⎠⎛12x -1x 2d x =⎠⎛12⎝ ⎛⎭⎪⎫1x -1x 2d x =⎝ ⎛⎭⎪⎫ln x +1x | 21=⎝ ⎛⎭⎪⎫ln 2+12-(ln 1+1)=ln 2-12. [答案] (1)B (2)ln 2-12(1)f (x )=⎩⎪⎨⎪⎧sin x ,0≤x <π2,1,π2≤x ≤2,x -1,2<x ≤4,求⎠⎛04f (x )d x ;(2)⎠⎛02|x 2-1|d x .[思路探究] (1)按f (x )的分段标准,分成⎣⎢⎡⎭⎪⎫0,π2,⎣⎢⎡⎦⎥⎤π2,2,(2,4]三段求定积分,再求和.(2)先去掉绝对值号,化成分段函数,再分段求定积分.[解] (1)⎠⎛04f (x )d x =⎠⎜⎛0π2sin x d x +⎠⎜⎛π221d x +⎠⎛24(x -1)d x =(-cos x )⎪⎪⎪⎪ π20+x ⎪⎪⎪⎪2π2+⎝ ⎛⎭⎪⎫12x 2-x ⎪⎪⎪42=1+⎝ ⎛⎭⎪⎫2-π2+(4-0)=7-π2.(2)⎠⎛02|x 2-1|d x =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪10+⎝⎛⎭⎪⎫13x 3-x ⎪⎪⎪21=2.1.本例(2)中被积函数f (x )含有绝对值号,可先求函数f (x )的零点,结合积分区间,分段求解.2.分段函数在区间[a ,b ]上的定积分可分成n 段定积分和的形式,分段的标准可按照函数的分段标准进行.3.带绝对值号的解析式,可先化为分段函数,然后求解.2.计算定积分:⎠⎛-33 (|2x +3|+|3-2x |)d x .[解] 设f (x )=|2x +3|+|3-2x |,x ∈[-3,3],则f (x )=⎩⎪⎨⎪⎧-4x ,-3≤x <-32,6,-32≤x ≤32,4x ,32<x ≤3.1.满足F ′(x )=f (x )的函数F (x )唯一吗?提示:不唯一,它们相差一个常数,但不影响定积分的值. 2.如何求对称区间上的定积分?提示:在求对称区间上的定积分时,应首先考虑函数性质和积分的性质,使解决问题的方法尽可能简便.【例3】 已知f (x )是一次函数,其图象过点(1,4),且⎠⎛01f (x )d x =1,求f (x )的解析式.[思路探究] 设出函数解析式,由题中条件建立两方程,联立求解. [解] 设f (x )=kx +b (k ≠0),因为函数的图象过点(1,4),所以k +b =4.① 又⎠⎛01f (x )d x =⎠⎛01(kx +b )d x =⎝ ⎛⎭⎪⎫k 2x 2+bx ⎪⎪⎪10=k 2+b ,所以k 2+b =1.②由①②得k =6,b =-2,所以f (x )=6x -2.1.含有参数的定积分可以与方程、函数或不等式综合起来考查,利用微积分基本定理计算定积分是解决此类综合问题的前提.2.计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.上例中,若把“已知1.下列值等于1的是( ) A.⎠⎛01x d xB.⎠⎛01(x +1)d xC.⎠⎛011d xD.⎠⎛0112d x[解析] 选项A ,因为⎝ ⎛⎭⎪⎫x 22′=x ,所以⎠⎛01x d x =x 22| 10=12;选项B ,因为⎝ ⎛⎭⎪⎫x 22+x ′=x +1,所以⎠⎛01(x +1)d x =⎝ ⎛⎭⎪⎫x 22+x | 10=32;选项C ,因为x ′=1,所以⎠⎛011d x =x | 10=1;选项D ,因为⎝ ⎛⎭⎪⎫12x ′=12,所以⎠⎛0112d x =12x | 10=12.[答案] C2.⎠⎜⎜⎛-π2π2(sin x +cos x )d x 的值是( )A .0 B.π4 C .2 D .4 [解析]⎠⎜⎜⎛-π2π2 (sin x +cos x )d x =⎠⎜⎜⎛-π2π2sin x d x +[答案] C3.计算⎠⎛01x 2d x =________.[解析] 由于⎝ ⎛⎭⎪⎫13x 3′=x 2,所以⎠⎛01x 2d x =13x 3| 10=13.[答案] 13 4.⎠⎛49x (1+x )d x 等于________.[解析] ⎠⎛49x (1+x )d x =⎠⎛49(x +x )d x =⎝ ⎛⎭⎪⎫23x 32+12x 2⎪⎪⎪94 =⎝ ⎛⎭⎪⎫23×932+12×92-⎝ ⎛⎭⎪⎫23×432+12×42 =4516. [答案] 45165.已知f (x )=ax +b ,且⎠⎛-11f 2(x )d x =1,求f (a )的取值范围.[解] 由f (x )=ax +b ,⎠⎛-11f 2(x )d x =1,得2a 2+6b 2=3,2a 2=3-6b 2≥0,所以-22≤b ≤22,所以f (a )=a 2+b =-3b 2+b +32=-3⎝ ⎛⎭⎪⎫b -162+1912,所以-22≤f (a )≤1912.。
§微积分基本定理已知函数()=,()=.问题:() 和()有何关系?提示:′()=().问题:利用定积分的几何意义求的值.提示:=.问题:求()-()的值.提示:()-()=×-×=.问题:你得出什么结论?提示:()=()-(),且′()=().问题:由()与()-()之间的关系,你认为导数与定积分之间有什么联系?提示:()=()-(),其中′()=().微积分基本定理如果连续函数()是函数()的导函数,即()=′(),则有定理中的式子称为牛顿—莱布尼茨公式,通常称()是()的一个原函数.在计算定积分时,常常用记号()来表示()-(),于是牛顿—莱布尼茨公式也可写作()=()=()-().微积分基本定理揭示了导数与定积分之间的关系,即求定积分与求导互为逆运算,求定积分时只需找到导函数的一个原函数,就可以代入公式求出定积分.[例]计算下列各定积分:()(+);()( +);().[思路点拨]先求被积函数的原函数,然后利用微积分基本定理求解.[精解详析]()∵(+)′=+,∴(+)=(+)=+=.()∵( +)′=+,∴( +)=( +)=--π.()∵′=-,∴==+=.[一点通]应用微积分基本定理求定积分时,首先要求出被积函数的一个原函数,在求原函数时,通常先估计原函数的类型,然后求导数进行验证,在验证过程中要特别注意符号和系数的调整,直到原函数()的导函数′()=()为止(一般情况下忽略常数),然后再利用微积分基本定理求出结果.=.解析:=-=.答案:.求下列函数的定积分:()(++);()( - );().解:()(++)=++=++=.()( - )=-=(- )-=.()=+=+=×-×+-=+ ..求下列定积分:();() (-)·(-).解:()=),。
微积分基本定理第一课时一、教学目标:了解牛顿-莱布尼兹公式二、教学重难点:牛顿-莱布尼兹公式三、教学方法:探析归纳,讲练结合四、教学过程(一)、复习:定积分的概念及计算(二)、探究新课我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。
我们必须寻求计算定积分的新方法,也是比较一般的方法。
变速直线运动中位置函数与速度函数之间的联系设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥),则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为21()T T v t dt ⎰。
另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即21()T T v t dt ⎰=12()()S T S T - 且()()S t v t '=。
对于一般函数()f x ,设()()F x f x '=,是否也有()()()ba f x dx Fb F a =-⎰若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。
定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()ba f x dx Fb F a =-⎰证明:因为()x Φ=()xa f t dt ⎰与()F x 都是()f x 的原函数,故()F x -()x Φ=C(a x b ≤≤)其中C 为某一常数。
令x a =得()F a -()a Φ=C ,且()a Φ=()aa f t dt ⎰=0即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()xa f t dt ⎰ 令xb =,有()()()ba f x dx Fb F a =-⎰ 为了方便起见,还常用()|ba F x 表示()()Fb F a -,即()()|()()bb a a f x dx F x F b F a ==-⎰该式称之为微积分基本公式或牛顿—莱布尼兹公式。
[学习目标] 1.了解导数和微积分的关系.2.掌握微积分基本定理.3.会用微积分基本定理求一些函数的定积分.
知识点一 导数与定积分的关系 f(x)dx等于函数f(x)的任意一个原函数F(x)(F′(x)=f(x))在积分区间[a,b]上的改变量F(b)-F(a). 以路程和速度之间的关系为例解释如下: 如果物体运动的速度函数为v=v(t),那么在时间区间[a,b]内物体的位移s可以用定积分表示为s=v(t)dt.另一方面,如果已知该变速直线运动的路程函数为s=s(t),那么在时间区间[a,b]内物体的位移为s(b)-s(a),所以有v(t)dt=s(b)-s(a).由于s′(t)=v(t),即s(t)为v(t)的原函数,这就是说,定积分v(t)dt等于被积函数v(t)的原函数s(t)在区间[a,b]上的增量s(b)-s(a). 思考 函数f(x)与其一个原函数的关系: (1)若f(x)=c(c为常数),则F(x)=cx;
(2)若f(x)=xn(n≠-1),则F(x)=1n+1·xn+1;
(3)若f(x)=1x,则F(x)=ln x(x>0);
(4)若f(x)=ex,则F(x)=ex;
(5)若f(x)=ax,则F(x)=axln a(a>0且a≠1); (6)若f(x)=sin x,则F(x)=-cos x; (7)若f(x)=cos x,则F(x)=sin x. 知识点二 微积分基本定理 一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么f(x)dx=F(b)-F(a). 思考 (1)函数f(x)的原函数F(x)是否唯一? (2)用微积分基本定理计算简单定积分的步骤是什么? 答案 (1)不唯一. (2)①把被积函数f(x)变为幂函数、正弦函数、余弦函数、指数函数等初等函数与常数的和或差; ②用求导公式找到F(x),使得F′(x)=f(x); ③利用微积分基本定理求出定积分的值.
题型一 求简单函数的定积分 例1 计算下列定积分. (1)3dx;(2)(2x+3)dx; (3) (4x-x2)dx;(4)(x-1)5dx. 解 (1)因为(3x)′=3,
所以3dx=(3x) 21=3×2-3×1=3. (2)因为(x2+3x)′=2x+3,
所以(2x+3)dx=(x2+3x) 20 =22+3×2-(02+3×0)=10. (3)因为
2x2-
x3
3′=4x-x2,
所以 (4x-x2)dx=2x2-x33 3-1 =2×32-333-2×-12--133=203.
(4)因为
1
6x-16′=(x-1)5,
所以 (x-1)5dx
=16(x-1)6 21 =16(2-1)6-16(1-1)6=16.
反思与感悟 (1)用微积分基本定理求定积分的步骤: ①求f(x)的一个原函数F(x); ②计算F(b)-F(a). (2)注意事项: ①有时需先化简,再求积分; ②若F(x)是f(x)的原函数,则F(x)+C(C为常数)也是f(x)的原函数.随着常数C的变化,f(x)有无穷多个原函数,这是因为F′(x)=f(x),则[F(x)+C]′=F′(x)=f(x)的缘故.因为
a
bf(x)dx
=[F(x)+C]|ba=[F(b)+C]-[F(a)+C]=F(b)-F(a)=F(x)|ba,所以利用f(x)的原函数计算定积
分时,一般只写一个最简单的原函数,不用再加任意常数C了. 跟踪训练1 求下列函数的定积分:
(1)x+1x2dx;(2)x(1+x)dx.
解 (1)
x+
1
x2dx
=
1
2
x2+2+
1
x2dx
=12x2dx+122dx+
1
2
1
x2dx
=13x3 21+2 x 21 +-12 21 =13×(23-13)+2×(2-1)-12-1 =296.
(2)49x(1+x)dx
=
4
9(x+x)dx
=23xx+12x2 94 =23×9×3+12×92-23×4×2+12×42 =2716.
题型二 求分段函数的定积分
例2 求函数f(x)= x3,x∈[0,1,x2,x∈[1,2,2x,x∈[2,3]在区间[0,3]上的定积分. 解 由定积分的性质知: 03f(x)dx=01f(x)dx+12f(x)dx+2
3f(x)dx
=01x3dx+12x2dx+
2
32xdx
=x44 10+x33 21+2xln 2 32 =14+83-13+8ln 2-4ln 2 =3112+4ln 2.
反思与感悟 (1)分段函数在区间[a,b]上的定积分可分成几个定积分的和的形式.(2)分段的标准是确定每一段上的函数表达式,即按照原函数分段的情况分就可以. 跟踪训练2 求下列定积分: (1)02|x2-1|dx;(2) 0π21-sin 2xdx.
解 (1)∵y=|x2-1|= 1-x2,0≤x<1,x2-1,1≤x≤2, ∴02|x2-1|dx=01(1-x2)dx+12(x2-1)dx
=x-x33 10+x33-x 21 =1-13+83-2-13-1 =2. (2) 0π21-sin 2xdx
=
0π
2|sin x-cos x|dx
=
0π
4 (cos x-sin x)dx+π4π2 (sin x-cos x)dx
=(sin x+cos x) π40+(-cos x-sin x) π2π4 =22+22-1+(-1)--22-22 =22-2.
题型三 定积分的简单应用 例3 已知f(a)=01 (2ax2-a2x)dx,求f(a)的最大值.
解 ∵23ax3-12a2x2′=2ax2-a2x, ∴01 (2ax2-a2x)dx=23ax3-12a2x2 10 =23a-12a2, 即f(a)=23a-12a2=-12a2-43a+49+29 =-12a-232+29, ∴当a=23时,f(a)有最大值29.
反思与感悟 定积分的应用体现了积分与函数的内在联系,可以通过积分构造新的函数,进而对这一函数进行性质、最值等方面的考查,解题过程中注意体会转化思想的应用. 跟踪训练3 已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f′(0)=0,
0
1f(x)dx=-2,求a、
b、c的值. 解 由f(-1)=2,得a-b+c=2.① 又f′(x)=2ax+b,∴f′(0)=b=0,② 而01f(x)dx=01 (ax2+bx+c)dx
=13ax3+12bx2+cx 10 =13a+12b+c,
∴13a+12b+c=-2,③
由①②③式得a=6,b=0,c=-4.
1.0π4cos 2xcos x+sin xdx等于( ) A.2(2-1) B.2+1 C.2-1 D.2-2 答案 C 解析 结合微积分基本定理,得
0π4cos2x-sin2xcos x+sin xdx=0π
4 (cos x-sin x)dx=(sin x+cos x)
π4
0=2-1.
2.下列定积分的值等于1的是( ) A.01xdx B.01(x+1)dx C.011dx D.0112dx 答案 C 解析 01xdx=12x2 10=12,01(x+1)dx=12x2+x 10=12+1=32,011dx=x 10=1,
0
1
1
2dx
=12x 10=12.故选C.
3.02x2-23xdx= . 答案 43 解析 02x2-23xdx=02x2dx-
0
2
2
3xdx
=x33 20-x23 20=83-43=43.
4.设函数f(x)= x2+1,0≤x<1,3-x,1≤x≤2,则02f(x)dx= . 答案 176 解析 02f(x)dx=01(x2+1)dx+
1
2(3-x)dx
=x33+x 10+3x-x22 21=176.
5.已知函数f(x)为偶函数,且06f(x)dx=8,则-66 f(x)dx= . 答案 16 解析 因为函数f(x)为偶函数, 且06f(x)dx=8,所以-66f(x)dx=2
0
6f(x)dx=16.
1.求定积分的一些常用技巧 (1)对被积函数,要先化简,再求积分. (2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分. 2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x轴下方的图形面积要取定积