高中物理牛顿运动定律解题技巧及练习题
- 格式:doc
- 大小:574.50 KB
- 文档页数:10
第10讲用牛顿运动定律解决问题考情剖析(注:①考纲要求及变化中Ⅰ代表了解和认识,Ⅱ代表理解和应用;②命题难度中的A 代表容易,B代表中等,C代表难)知识整合知识网络基础自测一、动力学的两大基本问题1.已知受力情况求运动情况根据牛顿第二定律,已知物体的__________情况,可以求物体的__________;再知道物体的初始条件(初位置和初速度),根据运动学公式,就可以求出物体在任一时刻的速度和位置,也就求解了物体的运动情况.注意:物体的运动情况是由所受的力及物体运动的初始条件(即初速度的大小和方向)共同决定的.2.已知物体的运动情况,求物体的受力情况.根据物体的运动情况,由运动学公式可以求出加速度,再根据__________可确定物体受的合外力,从而求出未知的力,或与力相关的某些物理量.如:动摩擦因数、劲度系数、力的方向等.二、超重和失重1.实重和视重实重:物体在地球附近受到的实际重力.悬挂于弹簧秤上的物体在____________时,弹簧秤的示数在数值上等于物体的重力,静止于水平支持面上的物体,对支持面的压力在数值上也等于物体的重力.视重:当弹簧秤和悬挂的物体在竖直方向上做________时,此时弹簧秤的示数叫物体的视重,视重不再等于物体的实重.2.超重当物体的加速度方向________时,它对悬挂物(如悬绳,弹簧秤)的拉力或对支持面的压力________实际重力的现象叫超重,亦即视重________实重.3.失重当物体的加速度方向________时,它对悬挂物的拉力或对支持面的压力________实际重力的现象叫失重.即视重________实重.完全失重:物体向下的加速度等于重力加速度时,它对悬挂物或支持面的压力等于____________的现象叫完全失重.它是失重现象中的一个特例.说明:超重和失重并不是物体受的重力增加或减小了,而是由于运动状态的改变,使视重和实重不符的现象.物体的重力并未改变.重点阐述重点知识概述1.两类运动力学基本问题的解题思路图解如下:可见,不论求解哪一类问题,求解加速度是解题的桥梁和纽带,而做好两个分析是解题的关键.2.运用牛顿运动定律解答两类运动力学基本问题的一般方法和步骤是:①取对象——确定研究对象;②画力图——对研究对象进行受力分析(和运动状态分析);③定方向——选取正方向(或建立坐标系),通常以加速度方向为正方向较为适宜;④列方程——根据牛顿运动定律列运动方程,根据运动学公式列方程;⑤解方程——统一单位,求解方程,并对计算结果进行分析检验或讨论.难点释疑1.连接体问题(1)两个(或两个以上)物体组成的系统,我们称之为连接体.连接体的加速度通常是相同的,但也有不同的情况,如一个静止,一个运动.(2)处理连接体问题的方法:整体法与隔离法.要么先整体后隔离,要么先隔离后整体.不管用什么方法解题,所使用的规律都是牛顿运动定律.①整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的外力,应用牛顿第二定律求出加速度(或其他求知量).②隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.③整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.【典型例题1】质量为M的小车放在光滑水平面上,小车上用细线悬挂另一质量为m的小球,且M>m.用一力F水平向右拉小球,使小球和车一起以加速度a向右运动,细线与竖直方向成α角,细线的拉力为F T.若用一力F′水平向左拉小车,使小球和车一起以加速度a′向左运动时,细线与竖直方向也成α角,细线的拉力为F T′,则()甲乙A.a′=a,F T′=F T B.a′>a,F T′=F TC.a′<a,F T′=F T D.a′>a,F T′>F T温馨提示隔离出小球进行受力分析,然后以小车和小球为整体进行受力,再结合牛顿第二定律即可解答本题.记录空间【变式训练1】如图所示,水平地面上有两块完全相同的木块A、B,在水平推力F的作用下运动,用F AB代表A、B间的相互作用力,则()A.若地面是完全光滑的,F AB=FB.若地面是完全光滑的,F AB=F 2C.若地面是有摩擦的,F AB=FD.若地面是有摩擦的,F AB=F 22.多过程问题处理多过程问题时应注意的两个问题(1)任何多过程的复杂物理问题都是由很多简单的小过程构成,上一过程的末是下一过程的初,对每一个过程分析后,列方程,联立求解.(2)注意两个过程的连接处,加速度可能突变,但速度不会突变,速度是联系前后两个阶段的桥梁.如本题中的小球先做匀减速运动到管口,后做平抛运动.【典型例题2】水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1m/s运行,一质量为m=4kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2m,g取10m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.温馨提示N和牛顿第二定律可得第一题,当速度达到传送带速度时匀加速直线运动结束,第(3)问中对应的情景即为行李由A端加速运动到B端时,速度与传送带速度一致.记录空间【变式训练2】如图所示,传送带与地面夹角θ=37°,从A→B长度为16m,传送带以10m/s的速率逆时针转动.在传送带上端A无初速度地放一个质量为0.5kg的物体,它与传送带之间的动摩擦因数为0.5.求物体从A运动到B所需时间是多少?(sin37°=0.6,cos37°=0.8)【典型例题3】如图甲所示,先将物体A固定在斜面上,给A施加沿斜面向上的拉力F=30N,突然释放物体,物体开始运动,2s后再撤去拉力F,物体的v-t图象如图乙所示(取沿斜面向上为正方向,滑动摩擦力等于最大静摩擦力,取物体开始运动为计时起点),试求:甲乙(1)物体A的质量.(2)物体A与斜面间的动摩擦因数.(3)斜面的倾角θ.温馨提示(纵轴表示的量)与自变量(横轴表示的量)的制约关系;(2)看图线本身,识别两个相关量的变化趋势,从而分析具体的物理过程;(3)看交点,分清两相关量的变化范围及给出的相关条件,明确图线与坐标轴的交点、图线斜率、图线与坐标轴围成的“面积”的物理意义.在看懂以上三方面后,进一步弄清“图象与公式”、“图象与图象”、“图象与物体”之间的联系与变通,以便对有关的物理问题作出准确的判断.记录空间【变式训练3】(13年江苏模拟)受水平拉力F作用的物体,在光滑水平面上做直线运动,其v-t图线如图所示,则()A.在t1时刻,拉力F为零B.在0~t1秒内,拉力F大小不断减小C.在t1~t2秒内,拉力F大小不断减小D.在t1~t2秒内,拉力F大小可能先减小后增大易错诊所1.临界性问题(1)临界问题是指物体的运动性质发生突变,要发生而尚未发生改变时的状态.此时运动物体的特殊条件往往是解题的突破口.(2)动力学中的典型临界问题:①接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N=0;②相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值;③绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T=0;④加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.(3)解题技巧:一般先以某个状态为研究的突破点,进行受力分析和运动分析,以临界条件为切入点,根据牛顿运动定律和运动学公式列方程求解讨论.【典型例题4】如图所示,质量为m=1kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=2kg,斜面与物块间的动摩擦因数为μ=0.2,地面光滑,现对斜面体施一水平推力F,要使物块m 相对斜面静止,试确定推力F的取值范围.(g=10m/s2)温馨提示F较小时,物块有相对斜面向下运动的可能性,此时物块受到的摩擦力沿斜面向上;当推力F较大时,物块有相对斜面向上运动的可能性,此时物块受到的摩擦力沿斜面向下.找准备临界状态是求解此题的关键.记录空间【变式训练4】如图所示,一细线的一端固定于倾角为θ=30°的光滑楔形块A的顶端处,细线的另一端拴一质量为m的小球.(1)当楔形块至少以多大的加速度向左加速运动时,小球对楔形块压力为零?(2)当楔形块以a=2g的加速度向左加速运动时,小球对线的拉力为多大?2.超重与失重问题(1)(2)①超重:物体的加速度方向是竖直向上的.物体并不一定是竖直向上做加速运动,也可以是竖直向下做减速运动.失重:物体的加速度方向是竖直向下的,物体既可以是向下做加速运动,也可以是向上做减速运动.②尽管物体不在竖直方向上运动,但只要其加速度在竖直方向上有分量,即a y≠0就可以.当a y的方向竖直向上时,物体处于超重状态;当a y的方向竖直向下时,物体处于失重状态.③当物体处于完全失重状态时,重力只产生使物体具有a=g的加速度效果,不再产生其他效果.④处于超重和失重状态下的液体的浮力公式分别为F浮=ρV排(g+a)和F浮=ρV排(g-a);处于完全失重状态下的液体F浮=0,即液体对浸在液体中的物体不再产生浮力.⑤物体处于超重或失重状态时,物体的重力始终存在,大小也没有变化.⑥发生超重或失重现象与物体的速度无关,只取决于加速度的大小和方向.⑦物体超重或失重的多少是由物体的质量和竖直加速度共同决定的,其大小等于ma.⑧在完全失重的状态下,平时一切由重力产生的物理现象都会完全消失,如单摆停摆、浸在水中的物体不再受浮力、液体柱不再产生压强等.【典型例题5】如图所示,A为电磁铁,C为胶木秤盘,电磁铁A和秤盘C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点.当电磁铁通电,在铁片被吸引上升的过程中,轻绳中拉力F的大小为()A.F=mg B.Mg<F<(M+m)gC.F=(M+m)g D.F>(M+m)g温馨提示记录空间【变式训练5】电梯的顶部挂一个弹簧测力计,测力计下端挂了一个重物,电梯匀速直线运动时,弹簧测力计的示数为10N,在某时刻电梯中的人观察到弹簧测力计的示数变为8N,关于电梯的运动(如图所示),以下说法正确的是(g取10m/s2)()A.电梯可能向上加速运动,加速度大小为4m/s2B.电梯可能向下加速运动,加速度大小为4m/s2C.电梯可能向上减速运动,加速度大小为2m/s2D.电梯可能向下减速运动,加速度大小为2m/s2随堂演练1.火车在长直水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回车上原处,这是因为()A.人跳起后,车厢内空气给他以向前的力,带着他随同火车一起向前运动B.人跳起的瞬间,车厢的地板给他一个向前的力,推动他随同火车一起向前运动C.人跳起后,车在继续向前运动,所以人落下后必是偏后一些,只是由于时间很短,偏后距离太小,不明显而已D.人跳起后直到落地,在水平方向上人和车始终有相同的速度2.物体静止于一斜面上(如图所示),则下列说法正确的是()第2题图A.物体对斜面的压力和斜面对物体的支持力是一对平衡力B.物体对斜面的摩擦力和斜面对物体的摩擦力是一对作用力和反作用力C.物体所受重力和斜面对物体的作用力是一对作用力和反作用力D.物体所受的重力可以分解为沿斜面向下的力和对斜面的压力3.在位于印度安得拉邦斯里赫里戈达岛的萨蒂什·达万航天中心,一枚PSLV—C14型极地卫星运载火箭携带七颗卫星发射升空,成功实现“一箭七星”发射,相关图片如图所示.则下列说法正确的是()第3题图A.火箭发射时,喷出的高速气流对火箭的作用力大于火箭对气流的作用力B.发射初期,火箭处于超重状态,但它受到的重力却越来越小C.高温高压燃气从火箭尾部喷出时对火箭的作用力与火箭对燃气的作用力大小相等D.发射的七颗卫星进入轨道正常运转后,均处于完全失重状态4.两个叠在一起的滑块,置于固定的、倾角为θ的斜面上,如图所示,滑块A、B质量分别为M、m,A与斜面间的动摩擦因数为μ1,B与A之间的动摩擦因数为μ2,已知两滑块都从静止开始以相同的加速度从斜面滑下,滑块B受到的摩擦力()第4题图A.等于零B.方向沿斜面向上C.大小等于μ1mg cosθD.大小等于μ2mg cosθ5.【变式训练4】中若题干条件不变,当细线拉力刚好为零时,则楔形块的加速度多大?运动方向如何?此时小球对楔形块的压力多大?6.如图所示,长为L,内壁光滑的直管与水平地面成30°角固定放置,将一质量为m 的小球固定在管底,用一轻质光滑细线将小球与质量为M=km的小物块相连,小物块悬挂于管口,现将小球释放,一段时间后,小物块落地静止不动,小球继续向上运动,通过管口的转向装置后做平抛运动,小球的转向过程中速率不变.(重力加速度为g)(1)求小物块下落过程中的加速度大小;(2)求小球从管口抛出时的速度大小;(3)试证明小球平抛运动的水平位移总小于2 2L.第6题图7.放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.重力加速度g=10m/s2.求:(1)物块在运动过程中受到的滑动摩擦力的大小;(2)物块在3~6s内的加速度大小;(3)物块与地面间的动摩擦因数.第7题图第10讲用牛顿运动定律解决问题知识整合基础自测一、 1.受力加速度2.牛顿第二定律二、 1.静止或匀速运动变速运动2.向上大于大于3.向下小于小于零重点阐述【典型例题1】质量为M的小车放在光滑水平面上,小车上用细线悬挂另一质量为m的小球,且M>m.用一力F水平向右拉小球,使小球和车一起以加速度a向右运动,细线与竖直方向成α角,细线的拉力为F T.若用一力F′水平向左拉小车,使小球和车一起以加速度a′向左运动时,细线与竖直方向也成α角,细线的拉力为F T′,则()甲乙A.a′=a,F T′=F T B.a′>a,F T′=F TC.a′<a,F T′=F T D.a′>a,F T′>F T【答案】B【解析】两种情况下对球受力分析如图所示,由甲图可知F-F T sinα=ma①F T cosα=mg②所以F T=mgcosα由乙图知F T′cosα=mg③F T′sinα=ma′④所以F T′=mgcosα,a′=gtanα,故F T′=F T,D错由①②两式得F=ma+mgtanα⑤同时对小车、小球整体分析可知a=Fm+M,将⑤式代入得到a=mgtanαM,因为M>m所以a′>a,故B正确.变式训练1BD【解析】无摩擦时,F AB=F2M×M=F2,A错,B对;当有摩擦时,先整体求加速度F-f=2Ma再隔离对B受力分析,F AB=F-f2M×M+f2=F2,C错,D对,故选BD.【典型例题2】水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1m/s运行,一质量为m=4kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2m ,g 取10m/s 2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处,求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率.【答案】 (1)4N 1m/s 2 (2)1s (3)2s 2m/s 2【解析】 (1)滑动摩擦力F f =μmg =0.1×4×10N =4N ,加速度a =F f m=μg =0.1×10m/s 2=1m/s 2.(2)行李达到与传送带相同速率后不再加速,则v =at 1,t 1=v a =11s =1s.(3)行李始终匀加速运行时间最短,加速度仍为a =1m/s 2,当行李到达右端时,有v 2min =2aL ,v min =2aL =2×1×2m/s =2m/s ,所以传送带对应的最小运行速率为2m/s.行李最短运行时间由v min =at min 得t min =v min a =21s =2s. 变式训练2 2s 【解析】 物体的运动分为两个过程:第一个过程是在物体速度等于传送带速度之前,物体做匀加速直线运动;第二个过程是物体速度等于传送带速度以后的运动.其中速度刚好相同时的点是一个转折点,此后的运动情况要看mgsin θ与所受的最大静摩擦力的关系.若μ<tan θ,则继续向下加速;若μ≥tan θ,则将随传送带一起匀速运动.分析清楚了受力情况与运动情况,再利用相应规律求解即可.本题中最大静摩擦力等于滑动摩擦力大小.物体放在传送带上后,开始阶段,由于传送带的速度大于物体的速度,传送带给物体一个沿传送带向下的滑动摩擦力F ,物体受力情况如图甲所示.物体由静止加速,由牛顿第二定律有mgsin θ+μmg cos θ=ma 1,得a 1=10×(0.6+0.5×0.8)m/s 2=10m/s 2.物体加速至与传送带速度相等需要的时间t 1=v a 1=1010s =1s ,t 1时间内位移x =12a 1t 21=5m.甲乙由于μ<tan θ,物体在重力作用下将继续加速运动,当物体速度大于传送带速度时,传送带给物体一沿传送带向上的滑动摩擦力F′.此时物体受力情况如图乙所示,由牛顿第二定律有mgsin θ-μmg cos θ=ma 2,得a 2=2m/s 2.设后一阶段物体滑至底端所用的时间为t 2,由L -x =vt 2+12a 2t 22解得t 2=1s ,t 2=-11s(舍去).所以物体由A →B 的时间t =t 1+t 2=2s.【典型例题3】 如图甲所示,先将物体A 固定在斜面上,给A 施加沿斜面向上的拉力F =30N ,突然释放物体,物体开始运动,2s 后再撤去拉力F ,物体的v -t 图象如图乙所示(取沿斜面向上为正方向,滑动摩擦力等于最大静摩擦力,取物体开始运动为计时起点),试求:甲乙(1)物体A 的质量.(2)物体A 与斜面间的动摩擦因数.(3)斜面的倾角θ.【答案】 (1)2kg (2)0.5 (3)37° 【解析】 由题图乙可知,0~2s ,物体的加速度为a 1=Δv 1Δt 1=5m/s 2 ① 2s ~3s ,物体的加速度为a 2=-10m/s 2 ② 3s ~5s ,物体的加速度为a 3=-2m/s ③ 由题中图象可知,前3s 内物体沿斜面向上运动,受到的滑动摩擦力沿斜面向下,3s 后物体沿斜面向下运动,则受到的滑动摩擦力变为沿斜面向上,由牛顿运动定律可得0~2s ,F -μmg cos θ-mgsin θ=ma 1 ④ 2s ~3s ,-μmg cos θ-mgsin θ=ma 2 ⑤ 3s ~5s ,μmg cos θ-mgsin θ=ma 3 ⑥ 联立①②③④⑤⑥式解得:m =2kg ,μ=0.5,θ=37°.变式训练3 AB 【解析】 由v -t 图象可知t 1时刻,图线切线斜率为0,此时物体做匀速直线运动,物体水平方向合力为0,则拉力F 为0,A 对;0~t 1秒内,图线切线斜率不断减小,此时物体做加速度不断减小的加速运动,F 不断减小,B 对;同理t 1~t 2秒内,F 不断增大,CD 错;故选AB.【典型例题4】如图所示,质量为m =1kg 的物块放在倾角为θ=37°的斜面体上,斜面质量为M =2kg ,斜面与物块间的动摩擦因数为μ=0.2,地面光滑,现对斜面体施一水平推力F ,要使物块m 相对斜面静止,试确定推力F 的取值范围.(g =10m/s 2)【答案】 14.4N ≤F ≤33.6N 【解析】 (1)设物块处于相对斜面向下滑动的临界状态时的推力为F 1,此时物块受力如图所示,取加速度的方向为x 轴正方向.对物块分析,在水平方向有F N sin θ-μF N cos θ=ma 1 竖直方向有F N cos θ+μF N sin θ-mg =0 对整体有F 1=(M +m)a 1 代入数值得a 1=4.8m/s 2,F 1=14.4N (2)设物块处于相对斜面向上滑动的临界状态时的推力为F 2,对物块分析,在水平方向有F′N sin θ+μF′N cos θ=ma 2,竖直方向有F′N cos θ-μF′N sin θ-mg =0,对整体有F 2=(M +m)a 2代入数值得a 2=11.2m/s 2,F 2=33.6N 综上所述可知推力F 的取值范围为:14.4N ≤F ≤33.6N.变式训练4 (1)3g (2)5mg 【解析】 (1)小球对楔形块恰无压力时受力情况如图所示.由牛顿运动定律,得mgcot θ=ma 0,所以a 0=gcot θ=gcot30°=3g (2)当a =2g 时,由于a>a 0,所以此时小球已离开楔形块,设此时细线与水平方向的夹角为α,则其受力情况如图所示,由牛顿运动定律,得mgcot α=ma ,即cot α=a/g =2,所以F′T =mg/sin α=5mg 或F′T =(mg )2+(ma )2=5mg 根据牛顿第三定律,小球对线的拉力F T ″=F′T =5mg【典型例题5】 如图所示,A 为电磁铁,C 为胶木秤盘,电磁铁A 和秤盘C(包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点.当电磁铁通电,在铁片被吸引上升的过程中,轻绳中拉力F 的大小为( )A .F =mgB .Mg<F<(M +m)gC .F =(M +m)gD .F>(M +m)g【答案】 D 【解析】 方法一 铁片被吸引上升的过程是加速度逐渐增大的加速运动过程,设A 对B 的吸引力为F 1,由于铁片向上加速运动,故有F 1>mg.根据牛顿第三定律可得:B 对A 的吸引力F′1=F 1>mg.由于电磁铁和秤盘处于静止状态,所以有F =F′1+Mg>(M +m)g ,所以选D.方法二 本题可用超重与失重知识快速解决,以A 、B 、C 系统为研究对象,A 、C 静止,铁片B 由静止被吸引而加速上升.则系统的重心加速上升,系统处于超重状态,因此轻绳拉力F>(M +m)g.变式训练5 C 【解析】 由分析可知,物块的加速度a =10N -8N 1kg=2m/s 2,方向向下,所以物块只可能向上减速或向下加速运动,故选C.随堂演练1.D 【解析】 人从跳起到落地的过程中,水平方向不受外力作用,保持着原来所具有的速度做匀速直线运动,所以仍落回车上原处.2.B 【解析】 物体静止于斜面上时,受到重力G ,斜面的支持力F N 和摩擦力F f 三个力作用.其中重力反作用力是物体对地球的引力,支持力的反作用力是物体对斜面的压力,摩擦力的反作用力是物体对斜面的摩擦力,这里有两对平衡力,一对是支持力F N 与重力在垂直斜面方向的分力mg cos θ,另一对是重力沿斜面向下的分力mg sin θ与摩擦力F f .这里一定要注意:物体对斜面的压力是物体与斜面互相挤压,发生形变而产生的弹力,与重力在垂直斜面方向的分力是截然不同的两个力.3.BCD 【解析】 由作用力与反作用力大小相等,可知A 错误,火箭发射初期,因为火箭向上加速运动,故处于超重状态,随着火箭距地球越来越远,所受的重力也越来越小,B 正确;由作用力与反作用力的关系可知C 正确;卫星进入轨道正常运转后,所受的万有引力充当向心力,此时各卫星均处于完全失重状态,D 正确.4.BC 【解析】 把A 、B 两滑块作为一个整体,设其下滑的加速度为a ,由牛顿第二定律有(M +m)g sin θ-μ1(M +m)g cos θ=(M +m)a 得a =g(sin θ-μ1cos θ).由于a<g sin θ,可见B 随着A 一起下滑过程中,必须受到A 对它沿斜面向上的摩擦力,设摩擦力为F B (如图所示),由牛顿第二定律有mg sin θ-F B =ma ,F B =mg sin θ-mg(sin θ-μ1cos θ)=μ1mg cos θ.第4题图第5题图5.33g 向右加速运动或向左减速运动 233mg 【解析】 设细线拉力刚好为零时,楔形块的加速度为a 0′,对小球受力分析如图所示.由牛顿运动定律得mgtan θ=ma′0,所以a 0′=gtan θ=gtan30°=33g ,即细线拉力刚好为零时,楔形块的加速度大小为33g ,方向水平向右.故楔形块向右加速运动或向左减速运动.小球受到的弹力F N =(mg )2+(ma′0)2=233mg.根据牛顿第三定律得小球对楔形块的压力F′N =F N =233mg. 6.(1)2k -12(k +1)g (2)k -22(k +1)gL(k>2) (3)见解析 【解析】 (1)设细线中的张力为F T ,根据牛顿第二定律Mg -F T =Ma F T -mgsin30°=ma 且M =km ,联立解得a =2k -12(k +1)g (2)设M 落地时的速度大小为v ,m 射出管口时速度大小为v 0,M 落地后m 的加速度大小为a 0,根据牛顿第二定律-mgsin30°=ma 0,由匀变速直线运动规律知v 2=2aLsin30°,v 20-v 2=2a 0L(1-sin30°),联立解得v 0=k -22(k +1)gL(k>2) (3)由平抛运动规律x =v 0t ,Lsin30°=12gt 2,解得x =L k -22(k +1),则x<22L 得证. 7.(1)4N (2)2m/s 2 (3)0.4 【解析】 (1)由v -t 图象可知,物块在6~9s 内做匀速运动,由F -t 图象知,6~9s 的推力F 3=4N ,故F f =F 3=4N ① (2)由v -t 图象可知,3~。
(物理)物理牛顿运动定律的应用练习题含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
(3)木板的最小长度L 是0.7m 。
【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。
木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。
1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。
共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。
人教版(新课程标准)高中物理必修1第四章牛顿运动定律单元练习一、单选题1.在水平冰面上,一辆质量为1×103kg的电动雪橇做匀速直线运动,关闭发动机后,雪橇滑行一段距离后停下来,其运动的v-t图象如图所示,那么关于雪橇运动情况以下判断正确的是()A. 关闭发动机后,雪橇的加速度为-2 m/s2B. 雪橇停止前30s内通过的位移是150 mC. 雪橇与水平冰面间的动摩擦因数约为0.03D. 雪橇匀速运动过程中发动机的功率为5×103W30°50kg10m2.如图所示,某段滑雪场的雪道倾角为,质量为的运动员从距底端高为处的雪道上由3m/s2g=10m/s2静止开始匀加速下滑,加速度大小为。
取重力加速度大小。
该运动员在雪道上下滑的过程中克服摩擦力所做的功为()5000J3000J2000J1000JA. B. C. D.3.运动物体所受空气阻力与速度有关,速度越大,空气阻力就越大。
雨滴形成后从高空落下,最后匀速落向地面。
能反映雨滴在空中运动的整个过程中其速度变化的是()A. B. C. D.4.2020年5月5日,长征五号B运载火箭在海南文昌首飞成功,正式拉开我国载人航天工程“第三步”任务的序幕。
如图,火箭点火后刚要离开发射台竖直起飞时()A. 火箭处于平衡状态B. 火箭处于失重状态C. 火箭处于超重状态D. 空气推动火箭升空5.图为“歼20”战机在珠海航展上进行大仰角沿直线加速爬升的情景,能正确表示此时战机所受合力方向的是()A. ①B. ②C. ③D. ④6.荡秋千是人们平时喜爱的一项休闲娱乐活动。
如图所示,某同学正在荡秋千,A和B分别为运动过程中的最低点和一个最高点。
若忽略空气阻力,则下列说法正确的是()A. 在经过A位置时,该同学处于失重状态B. 在B位置时,该同学受到的合力为零C. 由A到B过程中,该同学的机械能守恒D. 在A位置时,该同学对秋千踏板的压力大于秋千踏板对该同学的支持力7.一质量为1kg的质点静止的处于光滑的水平面上,从t=0时起受到如图所示水平外力F作用,下列说法正确的是()A. 0~2s内外力的平均功率是12.5WB. 第2秒内外力所做的功是4JC. 前2秒的过程中,第2秒末外力的瞬时功率最大D. 第1秒末外力的瞬时功率为6W8.宇航员乘坐宇宙飞船环绕地球做匀速圆周运动时,下列说法正确的是( )A. 宇航员处于完全失重状态B. 宇航员处于超重状态C. 宇航员的加速度等于零D. 地球对宇航员没有引力9.某机动车以恒定的功率在平直公路上行驶,所受的阻力的大小等于车重的0.2倍,机动车能达到的最大速度为20m/s 。
高中物理牛顿运动定律的应用综合题专题训练含答案高中物理牛顿运动定律的应用填空题专题训练含答案姓名:__________班级:__________考号:__________一、填空题(共30题)1、如图所示,在水平方向上加速前进的车厢里,悬挂着小球的悬线与竖直方向保持α=30°角。
同时放在车厢里的水平桌面上的物体A 和车厢保持相对静止,已知A的质量是0.5kg,则A受到摩擦力大小是________N,方向为___________。
(取g=10m/s2)2、如图所示,是一辆汽车在两站间行驶的速度图象。
两站之间是一段平直的公路,汽车所受阻力大小不变,且BC段的牵引力为零,已知汽车的质量为4000kg,则汽车在BC段所受的阻力是________N,3、用水平向右、大小为0.4N的拉力可拉着一个物体在水平面上匀速运动,当用2.0N的水平向左拉力拉着这个物体在同一水平面上从静止开始运动,2s内物体位移是1.6m,则物体运动的加速度为m/s2,物体质量为kg。
4、如图所示,两个用轻线相连的位于光滑水平面上的物块,质量分别为m1和m2,拉力F1和F2方向相反,与轻线沿同一水平直线,且F1>F2。
则两个物块运动的加速度为__________,运动过程中轻线对m2的拉力为__________。
5、如图所示,质量均为的、两球之间系着一根不计质量的弹簧,放在光滑的水平面上,球紧靠竖直墙壁,今用水平力将球向左推压弹簧,平衡后,突然将撤去,在这一瞬间球的加速度大小为??,球的加速度的大小为。
6、两个物块M、N,质量之比和初速度之比都是2∶3,沿同一水平面滑动.它们与水平面间的动摩擦因数之比为2∶1,则它们沿该水平面滑行的最大距离之比是??.7、如图所示,木块A、B静止叠放在光滑水平面上,A的质量为m,B的质量为2m。
现施加水平力F拉B,A、B刚好不发生相对滑动,一起沿水平面运动。
若改为水平力F′拉A,使A、B也保持相对静止,一起沿水平面运动,则F′不得超过。
高中物理牛顿运动定律的应用试题(有答案和解析)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为37θ=︒,传送带AB 足够长,传送带以大小为2m/s υ=的恒定速率顺时针转动。
最新高中物理牛顿第二定律经典例题(精彩4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新高中物理牛顿第二定律经典例题(精彩4篇)练习题从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等。
高中必修二的物理练习题及讲解 ### 高中物理必修二练习题及讲解 #### 练习题一:牛顿运动定律 题目: 一个质量为 \( m \) 的物体在水平面上受到一个水平方向的恒定力 \( F \) 作用,摩擦力忽略不计。求物体在 \( t \) 秒后的位移。
解答: 根据牛顿第二定律,\( F = ma \),其中 \( a \) 是加速度。由于 \( F \) 是恒定的,加速度 \( a \) 也是恒定的。根据初速度为零的匀加速直线运动公式,位移 \( s \) 可以表示为: \[ s = \frac{1}{2}at^2 \] 将 \( a = \frac{F}{m} \) 代入,得到: \[ s = \frac{Ft^2}{2m} \]
#### 练习题二:动能定理 题目: 一个质量为 \( m \) 的物体从静止开始,沿着斜面下滑,斜面与水平面的夹角为 \( \theta \)。若物体下滑过程中受到的摩擦力为 \( f \),求物体下滑到斜面底部时的速度。
解答: 根据动能定理,物体的动能变化等于作用在物体上的外力做的功。物体初始动能为零,最终动能为 \( \frac{1}{2}mv^2 \)。摩擦力做的功为 \( -fs \),其中 \( s \) 是斜面的长度。重力做的功为 \( mgs\sin\theta \)。根据动能定理: \[ \frac{1}{2}mv^2 = mgs\sin\theta - fs \] 解得: \[ v = \sqrt{2g(s\sin\theta - \frac{f}{m})} \]
#### 练习题三:圆周运动 题目: 一个质量为 \( m \) 的物体在水平圆盘上做匀速圆周运动,圆盘半径为 \( R \),物体距离圆心的距离为 \( r \)。求物体所受的向心力。
解答: 匀速圆周运动的向心力 \( F_c \) 由物体的质量 \( m \)、角速度 \( \omega \) 和半径 \( r \) 决定,公式为: \[ F_c = m\omega^2r \] 若圆盘的角速度为 \( \omega \),则物体的角速度也为 \( \omega \)。向心力 \( F_c \) 由圆盘对物体的摩擦力提供,因此: \[ F_c = \mu mg \] 其中 \( \mu \) 是摩擦系数,\( g \) 是重力加速度。将两个表达式相等,解得: \[ \mu = \frac{\omega^2r}{g} \]
(物理)物理牛顿运动定律的应用练习题含答案一、高中物理精讲专题测试牛顿运动定律的应用1.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L 1=2.5 m 、L 2=2 m .传送带始终保持以速度v 匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m =2 kg ,g 取10 m/s 2.求:(1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】(1)滑块在平板上做匀减速运动,加速度大小:a 1=1mgmμ=3 m/s 2由于μ1mg>2μ2mg故平板做匀加速运动,加速度大小:a 2=122mg mgmμμ-⨯=1 m/s 2设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分)L 2+x =vt -12a 1t 2 对平板:v′=a 2tx =12a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3=mgmμ=5 m/s 2若滑块在传送带上一直加速,则获得的速度为: v 1112a L 5 m/s<6 m/s 即滑块滑上平板的速度为5 m/s设滑块在平板上运动的时间为t′,离开平板时的速度为v″,平板位移为x′ 则v″=v 1-a 1t′ L 2+x′=v 1t′-12a 1t′2 x′=12a 2t′2联立以上各式代入数据解得:t′1=12s ,t′2=2 s(t′2>t ,不合题意,舍去) 将t′=12s 代入v″=v -a 1t′得:v″=3.5 m/s.2.如图所示,长木板B 质量为m 2=1.0 kg ,静止在粗糙的水平地面上,长木板左侧区域光滑.质量为m 3=1.0 kg 、可视为质点的物块C 放在长木板的最右端.质量m 1=0.5 kg 的物块A ,以速度v 0=9 m /s 与长木板发生正碰(时间极短),之后B 、C 发生相对运动.已知物块C 与长木板间的动摩擦因数μ1=0.1,长木板与地面间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,整个过程物块C 始终在长木板上,g 取10 m /s 2.(1)若A 、B 相撞后粘在一起,求碰撞过程损失的机械能. (2)若A 、B 发生弹性碰撞,求整个过程物块C 相对长木板的位移.【答案】(1)13.5J (2)2.67m 【解析】(1)若A 、B 相撞后粘在一起,由动量守恒定律得1012()m v m m v =+由能量守恒定律得 22101211()22E m v m m v ∆=-+ 解得损失的机械能 21201213.52()m m v E J m m ∆==+ (2)A 、B 发生完全弹性碰撞,由动量守恒定律得101122m v m v m v =+由机械能守恒定律得222101122111222m v m v m v =+ 联立解得 1210123/m m v v m s m m -==-+, 1201226/m v v m s m m ==+之后B 减速运动,C 加速运动,B 、C 达到共同速度之前,由牛顿运动定律, 对长木板: 2231321-()m m g m g m a μμ+-= 对物块C : 1332m g m a μ=设达到共同速度过程经历的时间为t ,212v a t a t += 这一过程的相对位移为22121211322x v t a t a t m ∆=+-= B 、C 达到共同速度之后,因12μμ<,二者各自减速至停下,由牛顿运动定律, 对长木板: 2231323-()m m g m g m a μμ++=对物块C :1334-m g m a μ=这一过程的相对位移为 2222243()()1223a t a t x m a a ∆=-=-- 整个过程物块与木板的相对位移为 1282.673x x x m m ∆=∆-∆== 点睛:此题是多研究对象、多过程问题,过程复杂,分析清楚物体的运动过程,应用牛顿第二定律、运动学公式、动量守恒定律、机械能守恒定律即可正确解题.3.如图所示,质量为m=2kg 的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg ,地面光滑,现对斜面体施一水平推力F ,要使物块m 相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s 2)(1)若斜面与物块间无摩擦力,求m 加速度的大小及m 受到支持力的大小; (2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F 的取值.(此问结果小数点后保留一位) 【答案】(1)7.5m/s 2;25N (2)28.8N≤F≤67.2N 【解析】 【分析】(1)斜面M 、物块m 在水平推力作用下一起向左匀加速运动,物块m 的加速度水平向左,合力水平向左,分析物块m 的受力情况,由牛顿第二定律可求出加速度a 和支持力.(2)用极限法把F 推向两个极端来分析:当F 较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F 较大(足够大)时,物块将相对斜面向上滑,因此F 不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F 的取值范围. 【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得: mgtanθ=ma得 a=gtanθ=10×tan37°=7.5m/s 2 m 受到支持力20N=25N cos cos37N mg F θ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F 1,此时物块的受力如下图所示:对物块分析,在水平方向有 Nsinθ﹣μNcosθ=ma 1 竖直方向有 Ncosθ+μNsinθ﹣mg=0 对整体有 F 1=(M+m )a 1 代入数值得a 1=4.8m/s 2 ,F 1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F 2, 对物块分析,在水平方向有 N ′sin θ﹣μN′cos θ=ma 2 竖直方向有 N ′cos θ﹣μN ′sin θ﹣mg =0 对整体有 F 2=(M +m )a 2 代入数值得a 2=11.2m/s 2 ,F 2=67.2N综上所述可以知道推力F 的取值范围为:28.8N≤F ≤67.2N . 【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.4.如图所示,质量为M =10kg 的小车停放在光滑水平面上.在小车右端施加一个F =10N 的水平恒力.当小车向右运动的速度达到2.8m/s 时,在其右端轻轻放上一质量m =2.0kg 的小黑煤块(小黑煤块视为质点且初速度为零),煤块与小车间动摩擦因数μ=0.20.假定小车足够长.(1)求经过多长时间煤块与小车保持相对静止 (2) 求3s 内煤块前进的位移 (3)煤块最终在小车上留下的痕迹长度 【答案】(1) 2s (2) 8.4m (3) 2.8m 【解析】 【分析】分别对滑块和平板车进行受力分析,根据牛顿第二定律求出各自加速度,物块在小车上停止相对滑动时,速度相同,根据运动学基本公式即可以求出时间.通过运动学公式求出位移. 【详解】(1)根据牛顿第二定律,刚开始运动时对小黑煤块有:1N F ma μ=F N -mg =0代入数据解得:a 1=2m/s 2 刚开始运动时对小车有:2N F F Ma μ-=解得:a 2=0.6m/s 2经过时间t ,小黑煤块和车的速度相等,小黑煤块的速度为:v 1=a 1t车的速度为:v 2=v +a 2t解得:t =2s ;(2)在2s 内小黑煤块前进的位移为:21114m 2x a t ==2s 时的速度为:11122m/s 4m/s v a t ==⨯=此后加速运动的加速度为:235m/s 6F a M m ==+ 然后和小车共同运动t 2=1s 时间,此1s 时间内位移为:2212321 4.4m 2x v t a t =+=所以煤块的总位移为:128.4m x x +=(3)在2s 内小黑煤块前进的位移为:21114m 2x a t ==小车前进的位移为:21116.8m 2x v t a t '=+=两者的相对位移为:m 1 2.8x x x '∆=-=即煤块最终在小车上留下的痕迹长度2.8m . 【点睛】该题是相对运动的典型例题,要认真分析两个物体的受力情况,正确判断两物体的运动情况,再根据运动学基本公式求解.5.如图所示,一质量M =40kg 、长L =2.5m 的平板车静止在光滑的水平地面上. 一质量m =10kg 可视为质点的滑块,以v 0=5m/s 的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.4,取g=10m/s2.(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;(2)计算说明滑块能否从平板车的右端滑出.【答案】(1),(2)恰好不会从平板车的右端滑出.【解析】根据牛顿第二定律得对滑块,有,解得对平板车,有,解得.设经过t时间滑块从平板车上滑出滑块的位移为:.平板车的位移为:.而且有解得:此时,所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.答:滑块与平板车的加速度大小分别为和.滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.点睛:对滑块受力分析,由牛顿第二定律可求得滑块的加速度,同理可求得平板车的加速度;由位移关系可得出两物体位移间相差L时的表达式,则可解出经过的时间,由速度公式可求得两车的速度,则可判断能否滑出.6.图示为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A、B 两端相距3m ,另一台倾斜,传送带与地面的倾角θ= 37°,C、D 两端相距4.45m,B、C相距很近。
物理牛顿运动定律的应用专项习题及答案解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
高中物理牛顿运动定律的应用试题(有答案和解析)一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。
高中物理牛顿运动定律解题技巧及练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图甲所示,一倾角为37°,长L=3.75 m的斜面AB上端和一个竖直圆弧形光滑轨道BC相连,斜面与圆轨道相切于B处,C为圆弧轨道的最高点。t=0时刻有一质量m=1 kg的物块沿斜面上滑,其在斜面上运动的v–t图象如图乙所示。已知圆轨道的半径R=0.5 m。(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:
(1)物块与斜面间的动摩擦因数μ; (2)物块到达C点时对轨道的压力FN的大小;
(3)试通过计算分析是否可能存在物块以一定的初速度从A点滑上轨道,通过C点后恰好能
落在A点。如果能,请计算出物块从A点滑出的初速度;如不能请说明理由。
【答案】(1)μ=0.5 (2) F'N=4 N (3) 【解析】 【分析】 由图乙的斜率求出物块在斜面上滑时的加速度,由牛顿第二定律求动摩擦因数;由动能定理得物块到达C点时的速度,根据牛顿第二定律和牛顿第三定律求出)物块到达C点时对轨道的压力FN的大小;物块从C到A,做平抛运动,根据平抛运动求出物块到达C点时的速度,物块从A到C,由动能定律可求物块从A点滑出的初速度; 【详解】 解:(1)由图乙可知物块上滑时的加速度大小为 根据牛顿第二定律有: 解得 (2)设物块到达C点时的速度大小为vC,由动能定理得:
在最高点,根据牛顿第二定律则有: 解得: 由根据牛顿第三定律得: 物体在C点对轨道的压力大小为4 N (3)设物块以初速度v1上滑,最后恰好落到A点
物块从C到A,做平抛运动,竖直方向: 水平方向: 解得,所以能通过C点落到A点 物块从A到C,由动能定律可得: 解得: 2.如图甲所示,一长木板静止在水平地面上,在0t时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动vt图象如图所示.已知小物块与长木板的质量均为1mkg,小物块与长木板间及长木板与地面间均有摩擦,经1s后小物块与长木板相对静
止210/gms,求:
1小物块与长木板间动摩擦因数的值;
2在整个运动过程中,系统所产生的热量.
【答案】(1)0.7(2)40.5J 【解析】 【分析】 1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运
动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值. 2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能
量守恒求热量. 【详解】 1长木板加速过程中,由牛顿第二定律,得
121
2mgmgma
;
11m
vat
;
木板和物块相对静止,共同减速过程中,由牛顿第二定律得
22
22mgma;
220m
vat
;
由图象可知,2/mvms,11ts,2
0.8ts 联立解得1
0.7
2小物块减速过程中,有:
13
mgma
;
031m
vvat
;
在整个过程中,由系统的能量守恒得
20
1
2Qmv
联立解得40.5QJ 【点睛】 本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.
3.如图所示,质量为M=0.5kg的物体B和质量为m=0.2kg的物体C,用劲度系数为k=100N/m的竖直轻弹簧连在一起.物体B放在水平地面上,物体C在轻弹簧的上方静止
不动.现将物体C竖直向下缓慢压下一段距离后释放,物体C就上下做简谐运动,且当物体C运动到最高点时,物体B刚好对地面的压力为0.已知重力加速度大小为g=10m/s2.试求:
①物体C做简谐运动的振幅; ②当物体C运动到最低点时,物体C的加速度大小和此时物体B对地面的压力大小. 【答案】①0.07m②35m/s2 14N 【解析】 【详解】 ①物体C放上之后静止时:设弹簧的压缩量为0x. 对物体C,有:0mgkx
解得:0x=0.02m
设当物体C从静止向下压缩x后释放,物体C就以原来的静止位置为平衡位置上下做简谐运动,振幅A=x 当物体C运动到最高点时,对物体B,有:0
()MgkAx
解得:A=0.07m ②当物体C运动到最低点时,设地面对物体B的支持力大小为F,物体C的加速度大小为a. 对物体C,有:0
()kAxmgma
解得:a=35m/s2 对物体B,有:0
()FMgkAx
解得:F=14N 所以物体B对地面的压力大小为14N
4.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37o角,皮带的AB部分长5.8Lm,皮带以恒定的速率4/vms按图示方向传送,若在B端无初速度地放置一个质量50mkg的救灾物资(P可视为质点),P与皮带之间的动摩擦因数0.5(取210/gms,sin370.6)
o
,
求:
1物资P从B端开始运动时的加速度.
2物资P到达A端时的动能.
【答案】1物资P从B端开始运动时的加速度是210/.2ms物资P到达A端时的动能是900J. 【解析】 【分析】 (1)选取物体P为研究的对象,对P进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度; (2)物体p从B到A的过程中,重力和摩擦力做功,可以使用动能定律求得物资P到达A端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】 (1)P刚放上B点时,受到沿传送带向下的滑动摩擦力的作用,sinmgFma;cosNFmgNFF其加速度为:
2
1sincos10/aggms
(2)解法一:P达到与传送带有相同速度的位移210.82vsma
以后物资P受到沿传送带向上的滑动摩擦力作用 根据动能定理:22
11
sin22AmgFLsmvmv
到A端时的动能219002kAAEmvJ
解法二:P达到与传送带有相同速度的位移210.82vsma 以后物资P受到沿传送带向上的滑动摩擦力作用, P的加速度
2
2sincos2/aggms
后段运动有:222212Lsvtat, 解得:21ts, 到达A端的速度226/A
vvatms
动能219002kAAEmvJ
【点睛】 传送带问题中,需要注意的是传送带的速度与物体受到之间的关系,当二者速度相等时,即保持相对静止.属于中档题目.
5.如图甲所示,质量为m=2kg的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F,t1=0.5s时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m/s2,sin37°=0.6,cos37°=0.8.求:
(1)物体与斜面间的动摩擦因数μ (2)拉力F的大小
(3)物体沿斜面向上滑行的最大距离s. 【答案】(1)μ=0.5 (2) F=15N (3)s=7.5m 【解析】 【分析】 由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t图象面积求解位移. 【详解】
(1)由图象可知,物体向上匀减速时加速度大小为:
2
2
10510/10.5ams
此过程有:mgsinθ+μmgcosθ=ma2
代入数据解得:μ=0.5
(2)由图象可知,物体向上匀加速时加速度大小为:a1=210/0.5ms=20m/s2
此过程有:F-mgsinθ-μmgcosθ=ma1
代入数据解得:F=60N