当前位置:文档之家› 溶液表面张力的测量

溶液表面张力的测量

溶液表面张力的测量
溶液表面张力的测量

溶液表面张力的测量

一、实验目的与要求

1.掌握最大气泡压力法测量溶液表面张力的原理和技能。

2.通过对不同浓度乙醇溶液表面张力的测量,计算表面吸附量和乙醇分子的横截面积。

二、实验原理

在液体内部,任何分子周围的吸引力是平衡的,而在液体表面层的分子却不相同,因为表面层的分子一方面受到液体内层的邻近分子的吸引,另一方面受到液体外部气体分子的吸引,而且前者的作用要比后者大,因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力。这种吸引力使表面上的分子向内挤,促成液体的最小表面积。要使液体的表面积增大,就必须反抗分子的内向力而做功,增加分子的位能。所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。通常把增大1㎡所引起的表面自由能的变化△G 称为单位表面的表面能,其单位为J·㎡;而把液体限制其表面及试图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N·m-1。液体单位表面的表面能和它的表面张力在数值上是相等的。

如欲使液体表面积增加△A时,所消耗的可逆功W应该是

-W=△G =σ·△A

液体的表面张力σ与温度有关,温度愈高,表面张力愈小,到达临界温度时,液体与气体不分,表面张力趋于零。液体的表面张力也与液体的纯度有关,在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小,决定于溶质的本性和加入量的多少。

对于纯溶剂而言,其表面层与内部的组成是相同的,但对于溶液来说则不然。当加入溶质后,溶剂的表面张力要发生变化。根据能量最低原则,若溶质能降低溶剂的表面张力,则表面层中溶质的浓度应比溶液内部的浓度大;如果所加溶质能使溶剂的表面张力升高,那么溶液在表面层中的浓度应比溶液内部的浓度低。这种表面浓度与溶液内部浓度不同的现象叫做溶液的表面吸附。在一定的温度和压力下,溶液表面吸附溶质的量与溶液的表面张力和加入的溶质量有关,它们之

间的关系可用吉布斯吸附等温式表示

T

c RT c ?????????

=Γσ 11-1 式中:Γ—吸附量,mol ·m -2;

σ—表面张力,N ·m -1; c—溶液浓度,mol ·L -1。

如果σ随浓度的增加而减少,即T

c ???

?????σ<0,则Γ>0,溶液表面层的浓度大于

溶液内部的浓度,称为正吸附作用;如果σ随浓度的增加而增加,即T

c ???

?????σ>0,

则Γ<0,此时溶液表面层的浓度小于溶液内部的浓度,称为负吸附作用。

从式11-1可看出,只要测量溶液的浓度和表面张力,就可求出各种不同浓度下溶液的吸附量Γ。本实验中,溶液浓度的测量是应用浓度与折射率的对应关系;表面张力的测量是应用最大气泡压力法。

图11-1 最大气泡压力法测量表面张力的装置

1. 抽气用的滴液漏斗;

2. 恒温槽;

3. 支管试管;

4. 毛细管;

5. 微压力差计;

6. 滴液

漏斗

图11-1是最大气泡压力法测量表面张力的装置示意图。将被测液体装于支管试管3中,使毛细管4的下端面与液面相切,液面即沿着毛细管上升,打开滴液漏斗1的活塞进行缓慢抽气,此时由于毛细管内液面上所受的压力(p 大气)大于支管试管中液面上的压力(p

系统

),故毛细管内的液面下降,并从毛细管端缓

慢地逸出气泡,在气泡的形成过程中,由于表面张力的作用,凹液面产生了一个指向液面外的附加压力△p ,因此有如下关系:

Δp =p 大气-p 系统 11-2

附加压力与表面张力σ成正比,与气泡的曲率半径R 成反比,其关系式为: R p σ

2=

? 或p R ?=2

σ 11-3 式中,Δp 为附加压力;σ为表面张力;R 为气泡的曲率半径。

如果毛细管半径很小,则形成的气泡可视为球形的。当气泡开始形成时,表面几乎是平的,这时曲率半径R 最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时曲率半径R 和毛细管半径r 相等,曲率半径达最小值,根据上式这时附加压力达最大值。气泡进一步长大,R 变大,附加压力则变小,直到气泡逸出。

根据式11-3,R =r 时的最大附加压力为: r

p

m

σ

2=

?,这个最大附加压力可

由压力计5直接读出。

实验中,若使用同一支毛细管,则1/2r 是常数,称仪器常数,用K 表示,则:

m p K ??=σ 11-4

如果将已知表面张力的液体作为标准,由实验测得其△p m 后,就可求出K。然后用同一仪器测出各液体的△p m ,通过11-4式计算,即可求出各液体的表面张力(如纯水在不同温度下的表面张力见附表Ⅲ)。

只要测出不同浓度溶液的表面张力,以σ-c 作图,在图的曲线上作不同浓度的切线,把切线的斜率代入吉布斯吸附等温式,即可求出不同浓度时气-液界面上的吸附量Γ。

在一定温度下,吸附量与溶液浓度之间的关系由郎缪尔等温式表示: kc

kc

+Γ=Γ∞

1 11-5 式中:∞Γ—单层饱和吸附量;

k—经验常数,与溶质的表面活性大小有关。 将11-5式写成直线方程,则

∞Γ+Γ=Γk c c 1 11-6

若以

Γ

c

-c 作图可得一直线,由直线斜率即可求出∞Γ。 假若在饱和吸附的情况下,在气液界面上铺满一单分子层,则可利用下式求

得被测物质(溶质)的横截面积S 0。 L

S ?Γ=

∞1

0 11-7 式中:L-阿伏加德罗常数。 三、实验仪器与试剂

1.仪器 表面张力测试仪1套; DP-AW 精密数字压力计─微压力差计;阿贝折光仪一台;毛细管(0.2-0.3mm);恒温装置一套。

2.试剂 无水乙醇;重蒸馏水;待测乙醇水溶液样品(4-6个) 四、实验步骤

1.安装仪器。

(1)仔细洗净支管试管和毛细管,按图11-1所示连接装置。 (2)在滴液漏斗中装满水。

(3)接通微压力差计电源,仪表预热5分钟,同时打开恒温槽装置。

2.仪器常数K 的测量

(1)加入适量的重蒸馏水于支管试管中,加入的量要使毛细管端面与液面相切。再把支管试管浸入恒温槽(须使毛细管处于垂直位置),恒温10min 。

(2)将微压力差计的“采零”按键置零。

(3)打开滴液漏斗活塞进行缓慢抽气,使气泡从毛细管口逸出。调节气泡逸出的速度不超过每分钟20个时,读出微压力差计的最大值△p m ,重复读3次,取其平均值。

3.待测样品表面张力的测量

(1)用待测液淋洗支管试管和毛细管后,加入适量的样品于支管试管中。 (2)按下微压力差计的“采零”键,按仪器常数的测量步骤,分别测定各种未知浓度乙醇溶液的△p m 。

4.待测样品浓度的测量

(1)工作曲线:分别用阿贝折光仪测量10%、20%、30%、40%、50%的各标准乙醇溶液的折射率,作出浓度-折射率的工作曲线。

(2)用阿贝折光仪测量待测溶液的折射率,从工作曲线上找出相应的浓度值。 五、实验结果与讨论

1.实验记录

乙醇标准溶液和待测溶液的折射率

标准溶液质量分数 标准溶液折射率

10% 20% 30% 40% 50%

待测溶液的浓度表面张力

待测溶液

折射率 真实质量分数 △p m

(pa )仪器常数K σ(N ·m -1)水 1号 2号 3号 4号 5号

2.以溶液表面张力σ为纵坐标,乙醇浓度c 为横坐标,绘制σ—c 曲线图。

3.在σ—c 曲线上相应的点做切线,求出各浓度对应的斜率T

c ????????σ,并计算

在各相应浓度的吸附量Γ。

4.用C/Г—C 作图,得一直线,由斜率求出∞Γ。 5.计算乙醇分子的横截面积S 0。 六、实验要点及注意事项

1.仪表每测一次后,再测试前必须按一下“采零”键,以保证所测压力值的准确度。

2.仪器系统不能漏气,所用毛细管必须干净、干燥,应保持垂直,其管口刚好与液面相切。

3.读取压力计的压差时,应取气泡单个逸出时的最大压力差。 4.在测量中,抽气速度不宜过快,应控制在每3s 逸出单个气泡为宜。 七、思考题

1.表面张力为何在恒温槽中进行测量?温度变化对表面张力有何影响?为什么?

2.用最大气泡法测量表面张力时为什么要读最大压力差?如果气泡逸出的很快,或几个气泡一齐出,对实验结果有无影响?

3.哪些因素影响表面张力的测量结果?如何减少以至消除这些因素对实验的影响?

八、附录:

表Ⅰ 20℃下乙醇水溶液的密度

乙醇的质量百分数(%) 10-3ρ/kg·m-3乙醇的质量百分数

(%)

10-3ρ/kg·m-3

0 10 15 20 25 30 35 40 45 50 0.99828

0.98187

0.97514

0.96864

0.96168

0.95382

0.94494

0.93518

0.92472

0.91384

55

60

65

70

75

80

85

90

95

100

0.90258

0.89113

0.87948

0.86766

0.85564

0.84344

0.83095

0.81797

0.80424

0.78934

摘自:International Critical Tables of Numerical Data.Physics,Chemistry and Technology.Ⅲ:116

表Ⅱ乙醇水溶液的混合体积与浓度的关系

(温度为20℃,混合物的质量为100g)

乙醇的质量百分数(%) V混/ml 乙醇的质量百分数

(%)

V混/ml

20 30 40 50 103.24

104.84

106.93

109.43

60

70

80

112.22

115.25

118.56 表Ⅲ不同温度下水的表面张力

t/℃103×σ/N·m-1t/℃103×σ/N·m-1t/℃ 103×σ/N·m-1t/℃103×σ/N·m-1

0 5

10

11

12

13

14

15

16 75.64

74.92

74.22

74.07

73.93

73.78

73.64

73.59

73.34

17

18

19

20

21

22

23

24

25

73.19

73.05

72.90

72.75

72.59

72.44

72.28

72.13

71.97

26

27

28

29

30

35

40

45

50

71.82

71.66

71.50

71.35

71.18

70.38

69.56

68.74

67.91

60

70

80

90

100

110

120

130

66.18

64.42

62.61

60.75

58.85

56.89

54.89

52.84

摘自:John.A.Dean., Lange’s Handbook of Chemistry,1973:10~265

溶液中的吸附作用和表面张力的测定

溶液中的吸附作用和表面张力的测定 ——最大气泡压力法 【摘要】本实验采用最大气泡压力法测定了一系列不同浓度的正丁醇溶液的表面张力,并根据Gibbs吸附公式和Langmuir等温方程式的到了表面张力与溶液吸附作用的关系,用作图法求出了正丁醇分子横截面积,从实验上进一步了解表面张力的性质以及表面张力和吸附的关系,并得到了一个测量表面张力的简单有效而又精确的方法。 【关键词】最大气泡法表面张力吸附作用 一、前言 正丁醇是一种表面活性物质,可以使溶液表面张力下降。利用最大气泡压力法,可以测量出正丁醇溶液的表面张力。根据表面张力与气泡压力的关系,由σ-c曲线可以求出溶液界面上的吸附量和单个正丁醇分子的横截面积(S)。 1、物体表面的分子和内部分子能量也不同,表面层的分子受到向内的拉力,有自动缩小的趋势,表面分子的能量比内部分子大。体系产生新的表面(A)所需耗费功(W)的量,其大小应与A成正比。在等温下形成1m2新的表面所需的可逆功为,称为单位表面的表面能,其单位为N·m-1,通常称为表面张力。 2、纯液体情形下,表面层的组成与内部的组成相同,因此液体降低体系表面自由能的途径是缩小其表面积。对于溶液,溶质会影响表面张力,调节溶质在表面层的浓度来降低表面自由能。根据能量最低

原理,溶质能降低溶液的表面张力时,表面层中溶质的浓度应比溶液内部大。反之同理 。这种表面浓度与溶液里面浓度不同的现象叫“吸附”。 Gibbs 用热力学的方法推导出吸附与溶液的表面张力及溶液的浓度间的关系式 =T c RT c ??? ??- ??σ 当( )?σ ?c T <0时, >0,称为正吸附。反之,( )?σ ?c T >0时, <0,称 为负吸附。 正丁醇溶液浓度极小时,溶质分子平躺在溶液表面上,当浓度增加到一定程度时,被吸附了的表面活性物质分子占据了所有表面形成了单分子的饱和吸附层。 在一定温度下,吸附量与溶液浓度之间的关系由Langmuir 等温方程式表示:ΓΓ=?+?∞K C K C 1 或 C C K ΓΓΓ=+ ∞∞ 1 以 C Γ ~C 作图可得一直线,由直线斜率即可求出Γ∞。在饱和吸附情况下,正丁醇分子在气-液界面上铺满一单分子层,则可求得正丁醇分子的横截面积S N 01 = ∞Γ~ 3、最大气泡压力法:当表面张力仪中的毛细管截面与欲测液面相齐时,液面沿毛细管上升。当此压力差在毛细管端面上产生的作用 力稍大于毛细管口溶液的表面张力时,气泡就从毛细管口逸出。 张力与浓度的关系图

表面张力的测量方法

表面张力的测量方法 英才学院 1236305 张雍淋 6121810519 液体表面张力测量在化学、医药、生物工程等领域具有重要意义, 根据液体表面张力的大小可以确定表面活性并计算表面活性剂在溶液表面的吸附量;在合金液体体系中,借助于表面张力还可以评价金相组织及孕育效果等重要参数。目前,测量液体表面张力系数有毛细上升法、最大气泡压力法、液滴法等。 1. 毛细上升法 这个方法,研究的比较早,在理论和实际上都比较成熟。如图 1所示,干净的毛细管浸入液体内部时,如果液体间的分子力小于液体与管壁间的附着力,则液体表面呈凹形。此时表面张力产生的附加力为向上的拉力,并使毛细管内的液面上升, 直到液柱的重力与表面张 力相平衡。 图 1 212cos ()g r r gh πσθπρρ=- 1()2cos g ghr ρρσθ-=

其中:σ—液体的表面张力;r-毛细管的内径;θ-接触角; ρ 1ρ-液体和气体的密度;h-液柱的高度;g-当地的重力加速度。在 和 g 实际应用中一般用透明的玻璃管,如果玻璃被液体完全润湿,可以近似的认为θ= 0。 毛细上升法是测定表面张力最准确的一种方法,国际上也一直用此方法测得的数据作为标准。应用此方法时,要注意选择管径均匀, 透明干净的毛细管,并对毛细管直径进行仔细的标定;毛细管要经过仔细彻底的清洗,毛细管浸入液体时要与液面垂直。 2.最大气泡压力法 如图 2 所示,向插入液体的毛细管轻轻的吹入惰性气体(如 N 2等)。如果选用的毛细管半径很小,在管口形成的气泡基本上是球形的。并且当气泡为半球时,球的半径最小等于毛细管半径 r ;在其前后曲率半径都比r大,如图2 所示。当气泡为半球时,泡内的压力最大,管内外最大压差可由差压计测量得到。 图2

液体表面张力系数的测定报告

.. . . .. 南昌大学物理实验报告 课程名称:大学物理实验 实验名称:液体表面张力系数的测定 学院:管理学院专业班级: 学生姓名:学号: 实验地点:基础实验大楼608 座位号: 实验时间:第三周星期天下午四点开始 学习参考. .. . .. .

液体表面张力系数的测定实验报告【实验目的】1.了解水的表面性 质,用拉脱法测定室温下水的表面张力系数。.学会使用焦利氏秤测量微小力的原理和方法。2【实验仪器】焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。 【实验原理】 液体表面层内分子相互作用的结果使得液体表面自然收缩.犹如紧张的弹性薄膜。由于液面收缩而产生的沿着切线方向的力称为表面张力。设想在液面上作长为L 的线段,线段两侧液面便有张力f相互作用,其方向与L垂直,大小与线段长度L成正比。即有: ???LF f α称为液体表面张力系数,单位:N/m。 将一表面洁净的长为L、宽为d的矩形金属片(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属片将要脱离液面,即拉起的水膜刚好要破裂时,则有 F=mg+f。其中,F为拉出时所用的力,mg为金属片和带起的水膜的总质量,f 为表面张力。实验中利用金属圆环,则: f=F-mg 【实验步骤】 1.安装好仪器,挂好弹簧.调节底板的三个水平调节螺丝,使焦利秤立柱竖直。在主尺顶部挂入吊钩再安装弹簧和配重圆柱体.使小指针被夹在两个配重圆柱中间,配重圆柱体下端通过吊钩钩住砝码托盘。调整小游标的高度使小游标左侧的基准线大致对准指针,锁紧固定小游标的锁紧螺钉.然后调节微调螺丝使指针与镜子框边的刻线重合.当镜子边框上刻线、指针和指针的像重合时(即称为“三 线对齐”),读出游标0线对应刻度的数值L. 02.测母弹簧的倔强系数K:依次增加1.0g砝码.即将质量为1.0g,2.0g.3.0g,…,9.0g的砝码加在下盘内。调整小游标的高度.每次都重新使三线对齐,分别记下游标0线所指示的读数L1.L2,…,L9;再逐次减少1.0g砝码.调整小游标的高度.每次都重新使三线对齐,分别记下游标。线所指示的读数L9',L8',….L0',取二者平均值,用逐差法求出弹簧的倔强系数。即 ?L L-ii?L i241? (L-?L)?L i5?i5i?05g?K L?学习参考. .. . . .. 值。将洁净的金属圆环挂在弹簧下端的小钩子上,调整小游标的mg)3.测(F一。把装有蒸馏水的烧杯置于焦S高度使三线对齐.记下此时游标0线指示读数0利平台上,调节平台位置,使金属片浸入水中,转动平台旋钮使平台缓缓下降,下降的过程中金属圆环底部会拉成水膜,在水膜还没有破裂时需调节三线对齐,金属圆环刚好脱直到平台稍微下降,然后再使平台下降一点,重复刚才的调节,的值,即为在S,算出△S=S—出液面为止,记下此时游标0线所指示的读数

物理化学_溶液表面张力的测定_实验报告

液体表面张力的测定 龚聪(同组人:郭舒隽) 2012.11.8 摘要 我们采用最大气泡压力法测定了不同浓度正丁醇溶液的表面张力,发现随着溶液浓度的升高,表面张力下降,说明正丁醇是一种表面活性物质。 引言 从毛细管鼓出空气泡时,为了克服溶液因表面张力产生的附加压力,毛细管内的压力(大气压)要高于样品管中的压力。附加压力与表面张力成正比,与气泡的曲率半径成反比: 2p= r σ?(1),其中,p ?为附加压力;σ为表面张力;r 为气泡的曲率半径。若毛细 管很小,则形成的气泡基本上是球形的。当气泡开始形成时,表面几乎是平的,这时气泡的半径r 最大;随着气泡的形成,r 逐渐变小,直到气泡成为半球形时,r 等于毛细管的半径R ,附加压力最大,气泡进一步增大,r 变小,附加压力减小,直到气泡逸出。 最大的附加压力m ax 2=p R σ?(2),表面张力m ax =2 R p σ?(3)。 在测量过程中,我们使毛细管端面与液面相切,这样可以忽略鼓泡所需克服的静压力,表面张力可直接用式(3)计算。 对于同一支毛细管, 2 R 称为仪器常数,可用K 表示。我们用表面张力已知的标准物质 ——水来测定仪器的K 值:22= H O H O K p σ?(4)。式(3)可写为m ax =K p σ??(5)。 实验仪器与试剂 表面张力测定仪1套;100m L 容量瓶8个;500m L 烧杯一个;胶头滴管1个;洗瓶1个;碱式滴定管1支 -1 0.5mol L ?正丁醇溶液 实验装置如下图所示

方法 1. 正丁醇溶液的配制 分别向八支100m L 的容量瓶中加入4、8、12、16、20、28、36和40mL 的-10.5mol L ?正丁醇溶液,定容以配制0.02、0.04、0.06、0.08、0.10、0.14、0.18和0.20-1mol L ?的待测溶液并编号0-8。 2. 仪器常数K 的测定 洗净样品管和毛细管; 样品管中装入适量蒸馏水,调节样品管液面高度,使水面与毛细管端面相切; 打开数字压力计电源开关,旋转滴液漏斗上的活塞,使系统与大气相通,按下数字压力计上的“采零”键。关闭活塞,隔绝大气,打开漏斗活塞,水沿漏斗流下,系统的压力开始减小,此时有气泡从毛细管端逸出。控制出气泡的速度,每出一个气泡,压力计读数由小变大,再由大变小,读取6~7个该过程的最大示数。 3. 测定不同浓度正丁醇水溶液的m ax p ? 按照步骤2,从低浓度到高浓度分别测定正丁醇水溶液的m ax p ?。更换溶液时用待测溶液润洗样品管2~3次。 4. 关闭电源,倒掉所配溶液,用蒸馏水洗涤容量瓶和样品管。整理仪器。 数据 表格 1 计算 在本次实验条件下,标准物质—水在16.4°C 下的表面张力为-3 -1 68.7410N m ??。1 由式(4)得仪器常数22-3-4 3 68.7410 = = =2.18100.315010 H O H O K p σ???? 1 数据来源:《大学化学实验——有机及物理化学实验分册》(天津大学出版社)附录三,附表6-13

溶液表面张力测定实验报告

学号:201114120222 基础物理化学实验报告 实验名称:溶液表面张力的测定 应用化学二班班级 03 组号 实验人姓名: xx 同组人姓名:xxxx 指导老师:杨余芳老师 实验日期: 2013-11-12 湘南学院化学与生命科学系 一、实验目的

1、测定不同浓度正丁醇(乙醇)水溶液的表面张力; 2、了解表面张力的性质,表面自由能的意义及表面张力和吸附的关系; 3、由表面张力—浓度曲线(σ—c 曲线)求界面上吸附量和正丁醇分子的横截面积S ; 4、掌握最大气泡法测定表面张力的原理和技术。 二、实验原理 测定液体表面张力的方法很多,如毛细管升高法、滴重法、环法、滴外形法等等。本实验采用最大泡压法,实验装置如图一所示。 图一中A 为充满水的抽气瓶;B 为直径为0.2~0.3mm 的毛细管;C 为样品管;D 为U 型压力计,内装水以测压差;E 为放空管;F 为恒温槽。 图一 最大泡压法测液体表面张力仪器装置图 将毛细管竖直放置,使滴口瓶面与液面相切,液体即沿毛细管上升,打开抽气瓶的活栓,让水缓缓滴下,使样品管中液面上的压力渐小于毛细管内液体上的压力(即室压),毛细管内外液面形成一压差,此时毛细管内气体将液体压出,在管口形成气泡并逐渐胀大,当压力差在毛细管口所产生的作用力稍大于毛细管口液体的表面张力时,气泡破裂,压差的最大值可由U 型压力计上读出。 若毛细管的半径为r ,气泡从毛细管出来时受到向下的压力为: 式中,△h 为U 型压力计所示最大液柱高度差,g 为重力加速度,ρ为压力计所贮液体的密度。 气泡在毛细管口所受到的由表面张力引起的作用力为2πr?γ,气泡刚脱离管口时,上述二力相等: 若将表面张力分别为和的两种液体用同一支毛细管和压力计用上法测出各 g h p p p ρ?=-=系统大气m ax r g h r p rr πρππ22m ax 2=?=γπρππr g h r p r 22m ax 2 =?=g h r ργ?=2

液体表面张力系数的测量1

实验报告 班级微电子101姓名贺鸿浩学号10105110 日期2011.10.24 室温26.2℃气压102.29kpa成绩教师 实验名称液体表面张力系数的测量 【实验目的】 1.了解液体表面性质 2.学习采用液体表面张力系数测定仪的使用方法 3.学习用拉脱法测表面张力系数的原理和方法 【实验仪器】 液体表面张力测定装置、砝码盘和砝码、圆环型吊片、卡尺、温度计 图1液体表面张力测定装置 【实验原理】 1. 拉脱法 测量一个已知周长的金属圆环或金属片从待测液体表面脱离时所需的拉力,从而求得该液体表面张力系数的方法称为拉脱法。所需的拉力是由液体表面张力、环的内外径及液体材质、纯度等因素决定。 2. 吊环法和吊片法比较 (1)吊环法:使用金属细线制成吊环时,在液膜被拉破的瞬间接触角不接近于零,此时所测得的力是表面张力向下的分量,因而所得表面张力系数误差较大,必须用修正公式对测量结果进行修正。 (2)吊片法:虽然液膜被拉破的瞬间接触角趋近于零,但在具体测量时,由于吊片在拉脱

过程中容易发生倾斜,实验时吊片的长度上限为3—4cm ,而在测量力时,则希望力大 一点,有利于提高测量精确度。 (3)片状吊环:新设计有一定厚度的片状吊环。经过对不同直径吊环的多次试验,发现当 吊环直径等于或略大于 3.3cm 时,在液膜被拉破的瞬间液体与金属环之间的接触角接 近于零,此时接触面总周长约为20cm 左右。在保持接触角为零时,能得到一个 较大的待测力。 3. 实验原理 使用片状吊环,在液膜拉破前瞬间,考虑一级近似,认为液体的表面张力为: f = f 1 + f 2 = αл(D 1+ D 2) 这里α为表面张力系数,D 1、D 2分别为吊环的外径和内径。 片状吊环在液膜拉破前瞬间有: 此时传感器受到的拉力F 1和输出电压U 1成正比,有: U 1 = BF 1 片状吊环在液膜拉破后瞬间有: F 2 = mg 同样有 U 2 = BF 2 片状吊环在液膜拉破前后电压的变化值可表示为: U 1- U 2 = △U = B · △F = B (F 1- F 2)= B αл(D 1+ D 2) 由上式可以得到液体的表面张力系数为:1212() U U B D D απ-=+ 这里U 1:液膜拉断前瞬间电压表的读数,U 2:膜拉断后瞬间电压表的读数 实验内容(用拉脱法测量水的表面张力): 1.力敏传感器进行定标,用最小二乘法作直线拟合,求 出传感器灵敏度B 。 2.游标卡尺测量金属圆环的内、外直径。 3.金属环状吊片挂在传感器的小钩上,调节升降台,将 液体升至靠近环片的下沿,观察环状吊片下沿与待测液面 是否平行,将金属环状吊片取下后,调节吊片上的细丝, 使吊片与待测液面平行。(注意 :吊环中心、玻璃皿中心 最好与转轴重合。) 4.调节容器下的升降台,使其渐渐上升,将环片的下沿部分全部浸没于待测液体。然后反 向调节升降台,使液面逐渐下降。这时,金属环片和液面间形成一环形液膜,出现“浸润” 现象,继续下降液面,测出环形液膜即将拉断前一瞬间数字电压表读数值 U1和液膜拉断后 一瞬间数字电压表读数值U2。(注意 :液膜断裂应发生在转动的过程中,而不是开始转动 或转动结束时,因为此时振动较厉害,应多次重复测量。) 【实验步骤】 1.开机预热(15分钟) 2.将水盛入玻璃器皿内(1cm 左右),用双面胶与升降台面贴紧固定。 3.将砝码盘挂在力敏传感器的钩上 图2液膜的收缩

液体表面张力系数的测量

液体表面力系数的测定 表面力是液体表面的重要特性,它类似于固体部的拉伸应力,这种应力存在于极薄的表面层,是液体表面层分子力作用的结果。液体表面层的分子有从液面挤入液的趋势,从而使液体有尽量缩小其表面的趋势,整个液面如同一拉紧了的弹性薄膜,我们把这种沿着液体表面,使液面收缩的力称为表面力。作用于液面单位长度上的表面力,称为液体的表面力系数,测定液体表面力系数的方法有:拉脱法、毛细管法、最大气泡压力法等。本实验采用拉脱法测定表面力系数。实验目的: 1、了解液体表面性质。 2、熟悉用拉脱法测定表面力系数的方法。 3、熟悉用焦利弹簧秤测量微小力的方法。 实验仪器: 焦利弹簧秤,被测液体,游标卡尺,矩形金属框,烧杯,砝码及托盘等 实验原理: 1、面力的由来 假设液体表面附近分子的密度和部一样,它们的间距大体上在势能曲线的最低点,即相互处在平衡的位置上。由图(1)可以看出,分子间的距离从平衡位置拉开时,分子间的吸引力先加大后减小,在这儿只涉及到吸引力加大的一段,如图(2)所示,设想部某个分子A欲向表面迁徙,它必须排开分子1、2,并克

服两侧分子3、4和后面分子5对它的吸引力 用势能的概念来说明,就是它处在图(3)左边的势阱中,需要有大小为Ed的 激活能才能越过势垒,跑到表面去。然而表面某个分子B要想挤向部,它只需排 开分子1'、'和克服两侧分子3'、4'的吸引力即可,后面没有分子拉它。所以它所处 I 的势阱(图(3)中右边的那个)较浅,只要较小的激活能Ed就可越过势垒,潜入液体部。这样一来,由于表面分子向扩散比部分子向表面扩散来得容易,表面分子会变得稀疏了,其后果是它们之间的距离从平衡位置稍为拉开了一些,于是相互之间产生的吸引力加大了,这就是图(3)右边所示的情况。此时分子B需克服分子3'、'对它的吸引力比刚才大,从而它的势阱也变深了,直到Ed变得和E d 一样时,外扩散达到平衡。所以在平衡状态下液体表面层的分子略为稀疏,分子间距比平衡位置稍大,在它们之间存在切向的吸引力。这便是表面力的由来。 在刚才的讨论中未考虑液面外是否有气体。如果有,则分子B背后有气 体的分子拉它,这显然会使上述差距减小,从而减小表面力。事实也确实如此。

溶液表面张力的测定(拉环法)

溶液表面张力的测定(拉环法) 一实验目的 (1)了解表面自由能、表面张力的意义及表面张力与吸附的关系。(2)通过测定不同浓度乙醇水溶液的表面张力,计算吉布斯表面吸附量和乙醇分子的横截面积,掌握拉环法测定表面张力的原理和技术。二实验原理 (1)表面张力 在温度、压力、组成恒定时,每增加单位表面积,体系的吉布斯自由能的增值称为表面吉布斯自由能(J·m-2),用γ表示。也可以看作是垂直作用在单位长度相界面上的力,即表面张力(N·m-1)。位表面层上分子比同数量内层分子引起体系自由能的增加量称为比表面自由能。比表面和表面张力在数值和量纲上一致,故常用表面张力度量比表面自由能。 (2)影响表面张力的因素 液体的表面张力与温度有关,温度越高,表面张力越小。液体的表面张力与液体的浓度有关,在溶剂中加入溶质,表面张力就会发生变化。 (3)表面张力与吸附量的关系 表面张力的产生是由于表面分子受力不均衡引起的,当加入一种物质后,对某些溶液(包括内部和表面)及固体的表面结构会带来强烈的影响,则必然引起表面张力的改变。如果溶质加入能降低表面吉布斯自由能时,边面层溶质浓度比内部大;反之增加表面吉布斯自由

能时,则溶液在表面的浓度比内部小。由此可见,在指定温度和压力下,溶质的吸附量与溶液的表面张力有关,即吉布斯等温吸附方程: Γ= -(dγ/dc)T(c/RT) 其中Γ为溶质的表面超额,c 为溶质的浓度,γ为溶液的表面张力 a若dγ/dc<0,Γ>0,为正吸附,表面层溶质浓度大于本体溶液,溶质是表面活性剂。 b若dγ/dc>0,Γ<0,为负吸附,表面层溶质浓度小于本体溶液,溶质是非表面活性剂。 溶液的饱和吸附量: c/Γ= c/Γ∞+1/KΓ∞ 分子的截面积: S B = 1/(Γ∞L) L=6.02×1034 (4)吊环法测表面张力的原理 测表面张力的方法很多,有毛细管上升法,滴重法,最大气泡压力法,吊环法等。吊环法是将吊环浸入溶液中,然后缓缓将吊环拉出溶液,在快要离开溶液表面时,溶液在吊环的金属环上形成一层薄膜,随着吊环被拉出液面,溶液的表面张力将阻止吊环被拉出,当液膜破裂时,吊环的拉力将达到最大值。自动界面张力仪将记录这个最大值P。按照公式校正后,可以得出溶液的表面张力数值γ。校正因子: F=0.7250+(0.01452P/C2D+0.04534-1.679r/R)1/2式中P:界面张力仪显示读数值mN·m-1

液体表面张力系数的测量

液体表面张力系数的测定 表面张力是液体表面的重要特性,它类似于固体内部的拉伸应力,这种应力存在于极薄的表面层内,是液体表面层内分子力作用的结果。液体表面层的分子有从液面挤入液内的趋势,从而使液体有尽量缩小其表面的趋势,整个液面如同一张拉紧了的弹性薄膜,我们把这种沿着液体表面,使液面收缩的力称为表面张力。作用于液面单位长度上的表面张力,称为液体的表面张力系数,测定液体表面张力系数的方法有:拉脱法、毛细管法、最大气泡压力法等。本实验采用拉脱法测定表面张力系数。 实验目的: 1、了解液体表面性质。 2、熟悉用拉脱法测定表面张力系数的方法。 3、熟悉用焦利弹簧秤测量微小力的方法。 实验仪器: 焦利弹簧秤,被测液体,游标卡尺,矩形金属框,烧杯,砝码及托盘等 实验原理: 1、面张力的由来 假设液体表面附近分子的密度和内部一样,它们的间距大体上在势能曲线的最低点,即相互处在平衡的位置上。由图(1)可以看出,分子间的距离从平衡位置拉开时,分子间的吸引力先加大后减小,在这儿只涉及到吸引力加大的一段,如图(2)所示,设想内部某个分子A欲向表面迁徙,

它必须排开分子1、2,并克服两侧分子3、4和后面分子5对它的吸引力。 用势能的概念来说明,就是它处在图(3)左边的势阱中,需要有大小为d E 的激活能才能越过势垒,跑到表面去。然而表面某个分子B 要想挤向 内部,它只需排开分子' ' 21、 和克服两侧分子' ' 43、的吸引力即可,后面没有分子拉它。所以它所处的势阱(图(3)中右边的那个)较浅,只要较小的激活能 ' d E 就可越过势垒,潜入液体内部。这样一来,由于表面分子向内 扩散比内部分子向表面扩散来得容易,表面分子会变得稀疏了,其后果是它们之间的距离从平衡位置稍为拉开了一些,于是相互之间产生的吸引力 加大了,这就是图(3)右边所示的情况。此时分子B 需克服分子' ' 43、 对它的吸引力比刚才大,从而它的势阱也变深了,直到 ' d E 变得和d E 一样时,内外 扩散达到平衡。所以在平衡状态下液体表面层内的分子略为稀疏,分子间距比平衡位置稍大,在它们之间存在切向的吸引力。这便是表面张力的由来。

溶液表面张力的测定详解

学号:201214140123 基础物理化学实验报告 实验名称:溶液表面张测定 12届药学班级1组号 实验人姓名:李楚芳 同组人姓名:罗媛,兰婷 指导老师:邓斌 实验日期:2014-05-30

湘南学院化学与生命科学系 一、 实验目的: 1.加深理解表面张力的性质,表面吉布斯能的意义以及表面张力和吸附的关系。 2. 掌握最大气泡法测定表面张力的原理和技术。 二、 主要实验原理,实验所用定律、公式以及有关文献数据: 当加入溶质后,溶剂的表面张力要发生变化。根据能量最低原理,若溶液质能降低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的浓度大;如果所加溶质能使溶剂的表面张力增加,那么,表面层溶液质的浓度应比内部低。这种现象为溶液的表面吸附。用吉布斯公式(Gibbs )表示: T c σ )d d (RT c Γ- = (1)式 式中,Г为表面吸附量(mol.m -2);σ为表面张力(J.m -2);T为绝对温度(K);C为溶液浓度(mol/L );)(dc d σ T 表示在一定温度下表面张力随浓度的改变率。

当 )( dc d σ T < 0,Г>0,溶质能增加溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为正吸附作用。 )( dc d σ T >0,Г<0,溶质能增加溶剂的表面张力,溶液表面层的 浓度小于内部的浓度,称为负吸附作用。 可见,通过测定溶液的浓度随表面张力的变化关系可以求得不同浓度下溶液的表面吸附量。 本实验采用最大气泡压力法测定正丁醇水溶液的表面张力值。将欲测表面张力的液体装入试管中,使毛细管的端面与液面相切,液体即沿毛细管上升,直到液柱的压力等于因表面张力所产生的上升力为止。若管内增加一个与此相等的压力,毛细管内液面就会下降,直到在毛细管端面形成一个稳定的气泡;若所增加的压力稍大于毛细管口液体的表面张力,气泡就会从毛细管口被压出。可见毛细管口冒出气泡的需要增加的压力与液体的表面张力成正比。 σ=K △p 式中K 与毛细管的半径有关,对同一支毛细管是常数,可由已知表面张力的液体求得。本实验通过蒸馏水来测得。 由实验测得不同浓度时的表面张力,以浓度为横坐标,表面张力为纵坐标,得σ-c 图,过曲线上任一点作曲线的切线和水平线交纵坐标于b1,b2两点,则曲线在该点的斜率为 c b b c 0b b d d 2121c σ--=--=

液体表面张力系数的测定实验报告

液体表面张力系数的测定一 实验目的1 学习用界面张力仪测微小力的原理和方法。2 深入了解液体表面张力的概念,并测定液体的表面张力系数二 实验原理1 液体表面张力 由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面积有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。2 液体表面张力系数的测量原理 图1 如图1,将一表面洁净的矩形金属薄片浸入水中,使其底边保持水平,然后将其轻轻提起,则其附近液面呈现如图示的形状,则时,f 方向趋向垂直向下。在金属片脱0→?离液体前,受力平衡条件为(1)mg f F +=而(2))(2d l f +=α则(3))(2d l mg F +-=α若用金属环替代金属片,则(3)式变为

(4))(21d d mg F +-=πα式中d1,d2为圆环的内外直径。若用补偿法消除mg 的影响,即mg F f -=则(4)式可写为(5))(21d d f +=πα即为液体表面张力系数。三 实验仪器液体界面张力仪、标准砝码、环形测件、玻璃杯、镊子、纯净水、小纸片四 实验内容及步骤1 仪器调整。调整仪器水平,刻度盘归零。 2调零。将小纸片放在金属环上,调整调零旋扭,通过放大镜观察,指针、指针的像及红线三线重合。 3 绘制质量标准曲线分别在小纸片上放100mg 、300 mg 、500 mg 、700 mg 、 1000 mg 的砝码,记下对应的刻度盘的示数。以所加砝码的质量作为横坐标,刻度盘的示数作为纵坐标,绘制质量标准曲线。 4 测量纯净水的表面张力系数调零。用玻璃杯盛大约2/3的水,放在样品座上,调节样品座的高度,使金属环刚好浸过水面。左手调节样品座下面的螺丝,使样品座缓慢的下降,右手调节蜗轮旋扭。两手调节的同时,眼睛观察三线始终重合,直到环把水膜拉破为止。记下刻度盘示数M’。为了消除随机误差,共测五次。 6 将M’在质量标准曲线上查得水作用在金属环上的表面张力,按式(5)计算出mg f =水的表面张力系数。五 数据记录及处理1 金属环的直径外径 : 内径:mm d )001.0670.19(1±=mm d )001.0470.18(1±=定设备调试高中资料试

实验液体的表面张力测定(滴重法)

实验D-13 滴重法测定液体的表面张力 实验目的 用滴重法测量液体的表面张力,学会用校正因子表,迭代计算毛细管的半径。 实验原理 当液体在滴重计(滴重计市售商品名屈氏粘力管)口悬挂尚未下滴时: r :若液体润湿毛细管时为外半径,若不润湿时应使用内半径。 σ: 液体的表面张力。 m :液滴质量(一滴液体)。 g ;重力加速度,当采用厘米.克.秒制时为 981cm /S 2 但从实际观察可知,测量时液滴并未全部落下,有部分收缩回去,故需对上式进行校正: m ’为滴下的每滴液体质量(用分析天平称量)。 f 称为哈金斯校正因子,它是r /v 1/3 的函数;v 是每滴液体的体积;可由每滴液体的质 量除液体密度得到。在上式中r 和f 是未知数,可采用已知表面张力的液体(如蒸馏水)做实验,采用迭代法得到: 设每滴水质量为m ’,体积为v ;先用游标卡尺量出滴重计管端的外直径D ;可得半 径r 0;用r 0作初值;求得r 0/ v 1/3 ;查哈金斯校正因子表(插值法)得f 1;用水的表面 张力σ和f 1代入12'r f m g πσ=;求的第一次迭代结果r 1;再由r 1/ v 1/3 查表得f 2 ;再代 入: 22'r f m g πσ=求得第二次迭代值r 2,同法再由r 2/ v 1/3 代入查表求f 3 ,这样反复迭代 直至相邻两次迭代值的相对误差:┃(r i-1-r i )/ r i ┃≤eps (eps 表示所需精度,如1‰)这时的r 就是要求的结果,记录贴在滴重管上的标签上,半径就标定好了。 求得半径r 后,对待测液体只要测得每滴样品重和密度,就可由r/ v 1/3查表得f ;由: 2'r f m g πσ= 就可求得样品的表面张力。 纯水的表面张力见最大泡压法实验;水和酒精的密度数据见恒温技术与粘度实验。 仪器与药品 屈氏粘力管一根。测液体比重用比重瓶一个。游标卡尺一根(公用)。50ml 和100ml 烧杯各一个。酒精,表面活性剂溶液(每组一个,实验室编好号)。 实验步骤 1.用游标卡尺测量滴重计的外半径。测量酒精从上刻度到下刻度滴下液滴的总质量W 和滴数

溶液表面张力的测定(精)

溶液表面张力的测定-最大气泡法 Determination of Surface Tension Using Maxinum Bubble Pressure Method 一、实验目的及要求 1.掌握最大气泡法测定表面张力的原理和技术。 2. 学会以镜面法作切线,并利用吉布斯吸附公式计算不同浓度下正丁醇溶液的表面吸附量。 3. 求正丁醇分子截面积和饱和吸附分子层厚度。 二、实验原理 在液体的内部任何分子周围的吸引力是平衡的。可是在液体表面层的分子却不相同。因为表面层的分子,一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,而且前者的作用要比后者大。因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力(如图1所示)。 这种吸引力使表面上的分子向内挤促成液体的最小面积。要使液体的表面积增大就必须要反抗分子的内向力而作功增加分子的位能。所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。通常把增大一平方米表面所需的最大功A或增大一平方米所引起的表面自由能的变化值 图1 分子间作用力示意图 ΔG称为单位表面的表面能其单位为J.m-3。而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N.m-1。 液体单位表面的表面能和它的表面张力在数值上是相等的。欲使液体表面积加△S时,所消耗的可逆功A为: 液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。液体的表面张力也与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决 定于溶质的本性和加入量的多少。当加入溶质后,溶剂的表面张力要发生变化,。根据能量最低原理,若溶液质能降低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的

表面张力测量

表面张力测量 表面张力的张力和几个测量技术文献中描述的。最常见的方法如下。最精确的固有的这些技术是测量半月板的重量。因此,它是真正的平衡决定了测量数据的质量。这也就是为什么kibron优于所有竞争的张力,没有例外。然而,这仅仅是一个秘密kibron无与伦比的性能:本产品改变了表面张力的测量也因为利用最精确的测量技术。 在杆上的最大拉力(都没有üy-padday)-方法的选择 (Society远跨我71:1919—1931,1974)。这种高精度的变种都没有üY法padday等人开发。 该技术是很简单的:细杆(而不是一个环或板)浸入样品,然后拔出和最大的力的测量。探针的直径是不相关的,只有直径变化需要重新调整。这是自动和快速的所有kibron仪器。当进行校准使用液体与一个已知的表面张力不需要校正。弯月面的重量只取决于表面张力,杆的直径,和液体的密度(见padday等人。上面的文章)。 经过多年的经验,我们可以证实,这是毫无疑问的记录表面张力的绝对是最准确的方法,用于kibron的高精度张力。对kibron技术精度良好的示范是当测量表面张力小的变化(见PDF 的便携式,低成本的张力,灵敏度测试aquapi)。值得注意的是,低成本aquapi实际上节拍的顶线的性能,我们的竞争对手便宜的张力!最后但并非最不重要的,不同的环和Wilhelmy板,棒的方法也适用于高粘度液体:油,聚合物,涂料等,用于kibron最先进的新的张力,ez-pi加。 看看它是如何工作的:aquapi行动 杆与环? 重要的是,精确的几何dyneprobes生产开发的kibron使浮力不必要的修正,不像使用环的方法时。这是因为在最大点拉没有部分探头浸入液体。 无与伦比的灵敏度,优异的分辨率(优于0.2毫克),和kibron的天平很低的噪声允许使用非常小的直径的棒,用纯净水给半月板只有11.8毫克。值得注意的是,我们的一些竞争对手提供铂棒的小样本体积的测量和显示的数据与杆和张力测量,揭示了较大的散射。然而,他们的数据仅仅反映了其平衡噪声及其铂棒质量差,质量差,进一步体现其整体制造质量差。它也使环张力,这是杜没有üY-Ring这应该作为一个参考公司规定。这没有任何意义。毕竟,正如预期的环和杆产生相同的表面张力值(见这里的比较)。环只是用都没有üY因为他所掌握的平衡不敏感。在本质上,该padday等人之间唯一的区别。和杜无üY是探测器的几何方法。高灵敏度的平衡,不需要大的半月板和允许使用小型杆。 总结,较环杆具有以下优点: 小的样本量(最小50微升)可以测量。 无需浮力修正(环这是强制性的)。 同时高粘度样品(油,涂料,聚合物等)的autopi准确测量。 弯曲等损伤没有问题。这是众所周知的环的用户以及为什么公司销售设备校正环几何。然而,那些熟悉的技术也知道,修复受损的戒指是很困难的。铂是软的,它是扭曲环的几何形状使它无用的很容易。 杆可清洗也自动,在kibrondelta-8和autopi,不需要一本生灯炬。 杆允许被测表面张力很快(约20秒),表现为aquapi。

液体表面张力测定实验

[实验目的] 1.用拉脱法测量室温下液体的表面张力系数 2.学习力敏传感器的定标方法 [实验原理] 测量一个已知周长的金属片从待测液体表面脱离时需要的力,求得该液体表面张力系数的实验方法称为拉脱法.若金属片为环状吊片时,考虑一级近似,可以认为脱离力为表面张力系数乘上脱离表面的周长,即 F=α·π(D1十D2 ) (1) 式中,F为脱离力,D1,D2分别为圆环的外径和内径,α为液体的表面张力系数. 硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥,当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正此,即 △U=KF (2) 式中,F为外力的大小,K为硅压阻式力敏传感器的灵敏度,△U为传感器输出电压的大小。 [实验装置] 图1-1为实验装置图,其中,液体表面张力测定仪包括硅扩散电阻非平衡电桥的电源和测量电桥失去平衡时输出电压大小的数字电压表.其他装置包括铁架台,微调升降台,装有力敏传感器的固定杆,盛液体的玻璃皿和圆环形吊片,实验证明,当环的直径在3cm附近而液体和金属环接触的接触角近似为零时.运用公式(1)测量各种液体的表面张力系数的结果较为正

确。 [实验内容] 一、必做部分 1、力敏传感器的定标 每个力敏传感器的灵敏度都有所不同,在实验前,应先将其定标,步骤如下:打开仪器地电源开关,将仪器预热。(2)在传感器梁端头小钩中,挂上砝码盘,调节电子组合仪上的补偿电压旋钮,使数字电压表显示为零。(3)在砝码盘上分别如0.5g、1.0g、1.5g、2.0g、2.5g、3.0g等质量的砝码,记录相应这些砝码力F作用下,数字电压表的读数值U.(4)用最小二乘法作直线拟合,求出传感器灵敏度K. 2、环的测量与清洁 (1)用游标卡尺测量金属圆环的外径D1和内径D2 (关于游标卡尺的使用方法请阅实验1) (2)环的表面状况与测量结果有很大的关系,实验前应将金属环状吊片在NaOH溶液中浸泡20-30秒,然后用净水洗净。 3、液体的表面张力系数 (1)将金属环状吊片挂在传感器的小钩上,调节升降台,将液体升至靠近环片的下沿,观察环状吊片下沿与待测液面是否平行,如果不平行,将金属环状片取下后,调节吊片上的细丝,使吊片与待测液面平行。 (2)调节容器下的升降台,使其渐渐上升,将环片的下沿部分全部浸没于待测液体,

液体表面张力系数的测定doc.DOC

佛山科学技术学院实验室开放基金项目 研究报告 项目名称:液体表面张力系数的测定 申请者:李京玲吕咏思朱家欢蔡小玲朱绍进刘本明所在学院:理学院 指导老师: 类别: ■自然科学类学术论文 ?哲学社会科学类社会调查报告和学术论文 ?科技发明制作A □科技发明制作B

液体表面张力系数的测定 姓名:李京玲吕咏思朱家欢蔡小玲朱绍进刘本明班级:10物理学(师范) 摘要: 关键词:液体表面张力 引言 有时候,我们会觉得很奇怪,为什么有的笑昆虫能在液体上自由自在的行走?为什么银针能在水面上浮着而不沉下去呢?为什么少量水银在干净的玻璃版上会收缩成球冠状,而水却会扩张开来?等等的这些原因,激起我们想要研究液体表面张力的动力。 【实验目的】 1.掌握用焦利秤测量微小力的原理和方法。 2.用拉脱法测量室温下水的表面张力系数。 【实验仪器】 约利弹簧秤、砝码、烧杯、金属框、游标卡尺等。 【实验原理】 液体分子之间存在分子力,其有效作用半径约10-8cm。液体表面层内的分子所处的环境和液体内部分子不同。液体内部每个分子四周都被同类的其他分子所包围,它受到周围分子的合力为零。但处于液体表面层内的分子,由于液体上方为气相,分子数很少,因而表面层内每个分子受到向上的引力比向下的引力少,合力不为零,即液体表面处于张力状态。表面分子有从液面挤入液体内部的倾向,使液面自然收缩,直到处于动态平衡,即在同一时间内脱离液面挤入液体内部的分子数和因热运动而到达液面的分子数相等为止。因而,在没有外力作用时液滴总是呈球形,即是其表面积缩到最小。 表面张力的大小可以用表面张力系数来描述。 设在液面上作一厂为L的线段,此线段两侧的液体之间存在着互相牵引的力f,这种力的方向恒与线段垂直,大小与线段长度L成正比,即 F=ɑL (1) 其比例系数ɑ为液体表面张力系数,定义为作用在单位长度上的表面张力,单位为N/m。实验证明,表面张力系数ɑ的大小与液体的种类、纯度、温度和它上方的气体成分有关,温度越高,液体中所含杂质越多,则表面张力系数越小。

表面张力的测定实验报告分析

浙江万里学院生物与环境学院 化学工程实验技术实验报告 实验名称:溶液表面张力的测定 (1)实验目的 1、掌握最大气泡法测定表面张力的原理和技术 2、通过对不同浓度正丁醇溶液表面张力的测定,加深对表面张力、表面自由能和表面吸附量关系的理解 3、学习使用Matlab 处理实验数据 (2) 实验原理 1、 表面自由能:从热力学观点看,液体表面缩小是一个自发过程,这是使体系总的自由能减小的过程。如欲使液体产生新的表面A ?,则需要对其做功。功的大小应与A ?成正比:-W=σA ? 2、 溶液的表面吸附:根据能量最低原理,溶质能降低溶液的表面张力时,表面层中溶质的浓度应比 溶液内部大,反之,溶质使溶液的表面张力升高时,它在表面层中的浓度比在内部的浓度低。这种表面浓度与溶液里面浓度不同的现象叫“吸附”。显然,在指定温度和压力下,吸附与溶液的表面张力及溶液的浓度有关。Gibbs 用热力学的方法推导出它们间的关系式 T c RT c )(??- =Γσ (1)当00,溶质能减少溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为正吸附,此类物质叫表面活性物质。(2)当0>??? ????T c σ时,Γ<0,溶质能增加溶剂的表面张力,溶 液表面层的浓度小于内部的浓度,称为负吸附,此类物质叫非表面活性物质。由 T c RT c )(??- =Γσ 可知:通过测定溶液的浓度随表面张力的变化关系可以求得不同浓度下溶液的表面吸附量。 3、 饱和吸附与溶质分子的横截面积:吸附量Γ浓度c 之间的关系,有Langmuir 等温方程 式表示:c K c K ·1·+Γ=Γ ∞

液体表面张力系数测定实验报告

液体表面张力系数的测量 【实验目的】 1、 掌握用砝码对硅压阻式力敏传感器定标的方法,并计算该传感 器的灵敏度 2、 了解拉脱法测液体表面张力系数测定仪的结构、测量原理和使 用方法,并用它测量纯水表面张力系数。 3、 观察拉脱法测量液体表面张力系数的物理过程和物理现象,并 用物理学概念和定律进行分析研究,加深对物理规律的认识 4、 掌握读数显微镜的结构、原理及使用方法,学会用毛细管测定 液体的表面张力系数。 5、 利用现有的仪器,综合应用物理知识,自行设计新的实验内容。 【实验原理】 一、拉脱法测量液体的表面张力系数 把金属片弯成如图 1(a )所示的圆环状,并将该圆环吊挂在灵敏的测力计上,如图 1(b )所示,然后把它浸到待测液体中。当缓缓提起测力计(或降低盛液体的器皿)时,金属圆环就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一个最大值 F (当超过此值时,液膜即破裂),则 F 应是金属圆环重力 mg 与液膜拉引金属圆环的表面张力之和。由于液膜有两个表面,若每个表面的力为f L a = (L 为圆形液膜的周长),则有 2F mg L s =+ (2) 所以 2F mg L s -= (3)

圆形液膜的周长L 与金属圆环的平均周长,L 相当,若圆环的内、外直径分别为1,2D D 。则圆形液膜的周长 L ≈L ’=p (D 1+D 2)/2 (4) 将(4)式代入(3)式得() 12F mg D D s p -=- (5) 硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥。当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正比。即U K F D =D (6) 式中,ΔF 为外力的大小;K 为硅压阻式力敏传感器的灵敏度,单位为 V/N ;ΔU 为传感器输出电压的大小。 二、毛细管升高法测液体的表面张力系数 1一只两端开口的均匀细管(称为毛细管)插入液体,当液体与该管润湿且接触角小于90°时,液体会在管内上升一定高度。而当接触角大于 90°时,液体在管内就会下降。这种现象被称为毛细现象。 本实验研究玻璃毛细管插入水中的情形。如图 2 所示,f 为 表面张力,其方向沿着凹球面的切线方向,大小为 2 f r p s =,其中

相关主题
文本预览
相关文档 最新文档