溶液表面张力的测量
- 格式:pdf
- 大小:198.26 KB
- 文档页数:6
最⼤泡压法测定溶液的表⾯张⼒(泡压法、滴重法、⽑细管升⾼法)表⾯张⼒的测定——最⼤⽓泡压⼒法、滴重法、⽑细管升⾼法⼀、实验原理:1.最⼤⽓泡压⼒法测定表⾯张⼒(装置如下图所⽰):其中,B是管端为⽑细管的玻璃管,与液⾯相切。
⽑细管中⼤⽓压为P0。
试管A中⽓压为P,当打开活塞E时,C中的⽔流出,体系压⼒P逐渐减⼩,逐渐把⽑细管液⾯压⾄管⼝,形成⽓泡。
当⽓泡在⽑细管⼝逐渐长⼤时,其曲率半径逐渐变⼩,⽓泡达最⼤时便会破裂。
此时⽓泡的曲率半径最⼩,即等于⽑细管半径r,⽓泡承受的压⼒差也最⼤△P=P0-P=2γ/r 此压⼒差可由压⼒计D读出,故γ=r△P/2若⽤同⼀⽀⽑细管测两种不同液体,其表⾯张⼒分别为γ1、γ2,压⼒计测得压⼒差分别为△P1、△P2则:γ1/γ2=△P1/△P2若其中⼀种液体的γ已知,例如⽔,则另⼀种液体的表⾯张⼒可由上式求得。
2.⽑细管⾝升⾼法(装置如下图所⽰):⽑细管法测定表⾯张⼒仪器⽑细管表⾯张⼒⽰意图当⼀根洁净的,⽆油脂的⽑细管浸进液体,液体在⽑细管内升⾼到h⾼度。
在平衡时,⽑细管中液柱重量与表⾯张⼒关系为:2πσrcosθ=πr2gdhσ=gdhr/2cosθ(1)如果液体对玻璃润湿,θ=0,cosθ=1(对于很多液体是这样情况),则:σ=gdhr/2 (2)式中σ为表⾯张⼒;g为重⼒加速度;d为液体密度;r为⽑细管半径。
上式忽略了液体弯⽉⾯。
如果弯⽉⾯很⼩,可以考虑为半球形,则体积应为:πr3 -2/3πr3 =1/3πr3从(2)可得:σ=gdr/2(h+1/3r)(3)更精确些,可假定弯⽉⾯为⼀椭圆球。
(3)式应变为:σ=gdhr/2(1+1/3(r/h)-0.1288(r/h)2+0.1312(r/h)3)(4)3. 滴重法(装置如右图所⽰):从图中可看出,当达到平衡时,从外半径为r的⽑细管滴下的液体重量应等于⽑细管周边乘以表⾯张⼒,即:mg=2πσr (5)式中m为液滴质量;r为⽑细管外半径;σ为表⾯张⼒;g为重⼒加速度。
实验七 溶液表面张力的测定——最大气泡压力法一. 实验目的1. 用最大气泡法测定不同浓度乙醇溶液的表面张力。
2. 了解表面张力的性质, 表面自由能的意义以及表面张力和吸附的关系。
3. 学会镜面法作切线的方法。
二. 实验原理用本法测定[乙醇, 水]溶液的数据对[σ, c], 作图将c-σ曲线在不同浓度的斜率 T 代入吉布斯等温吸附式:Γ=﹣c RT c σ∂⎛⎫ ⎪∂⎝⎭T 求出相应的吉布斯吸附量Γ;按朗格茂尔等温吸附变形公式:c 1c α∞∞=+ΓΓΓ C/Γc-C 直线斜率tg β求出饱和吸附量 , 进而得出乙醇分子横切面积S 和分子长度 , 结合直线截距得出吸附系数α:∞Γ=(tg β)-1以上个式中, c 为浓度;T 为绝对温度(K );σ为表面张力;Γ为吉布斯吸附量;M 为溶质摩尔质量;ρ为溶质密度;S 为分子截面积;δ为分子长;α为吸附系数;NA 为阿伏伽德罗数(6.02×1023/mol );R 为气体常数。
为了求以上参数, 关键是测σ。
表面张力及界面张力, 矢量。
源于凝聚相界面分子受力不平衡, 意为表面的单位长度收缩力。
σ也是在个条件下凝聚系表面相得热力学强度性质, 如果恒温、恒压下扩大单位表面积所需的可逆功, 故亦称为表面自由焓。
1. σ与凝聚相和表面共存接触相种类有关, 还与T,P 有关, 与凝聚相纯度和杂志种类有关。
浓度升高, 溶液的σ有增有减, 随溶质、溶剂而异, 表面活性剂是两亲分子, 他们的水溶液σ随浓度升高先剧降, 后微升, 在渐趋稳定。
σ随c 而变化的本质是溶液表面浓度对体相浓度的偏离, 此现象称为表面吸附。
表面吸附量Γ与浓度有关, 用吉布斯等温方程求出 为σ-c 曲线在指定浓度的斜率。
<0, Γ>0为正吸附, 表面浓度较体浓度高, 达饱和吸附时, Γ趋于饱和吸附量 , 此时两亲分子在溶液表面处于高度有序的竖立密集, 形成单分子膜。
,2. 若将兰格缪尔等温吸附式中的吸附量赋予吉布斯吸附量的特定意义, 则可从其变形式求出 设分子吸附层厚δ, δ即两亲分子长。
学号:************基础物理化学实验报告实验名称:溶液表面张力的测定应用化学二班班级 03 组号实验人姓名: xx同组人姓名:xxxx指导老师:杨余芳老师实验日期: 2013-11-12湘南学院化学与生命科学系一、实验目的1、测定不同浓度正丁醇(乙醇)水溶液的表面张力;2、了解表面张力的性质,表面自由能的意义及表面张力和吸附的关系;3、由表面张力—浓度曲线(σ—c 曲线)求界面上吸附量和正丁醇分子的横截面积S ;4、掌握最大气泡法测定表面张力的原理和技术。
二、实验原理测定液体表面张力的方法很多,如毛细管升高法、滴重法、环法、滴外形法等等。
本实验采用最大泡压法,实验装置如图一所示。
图一中A 为充满水的抽气瓶;B 为直径为0.2~0.3mm 的毛细管;C 为样品管;D 为U 型压力计,内装水以测压差;E 为放空管;F 为恒温槽。
图一 最大泡压法测液体表面张力仪器装置图将毛细管竖直放置,使滴口瓶面与液面相切,液体即沿毛细管上升,打开抽气瓶的活栓,让水缓缓滴下,使样品管中液面上的压力渐小于毛细管内液体上的压力(即室压),毛细管内外液面形成一压差,此时毛细管内气体将液体压出,在管口形成气泡并逐渐胀大,当压力差在毛细管口所产生的作用力稍大于毛细管口液体的表面张力时,气泡破裂,压差的最大值可由U 型压力计上读出。
若毛细管的半径为r ,气泡从毛细管出来时受到向下的压力为:式中,△h 为U 型压力计所示最大液柱高度差,g 为重力加速度,ρ为压力计所贮液体的密度。
气泡在毛细管口所受到的由表面张力引起的作用力为2πr•γ,气泡刚脱离管口时,上述二力相等:g h p p p ρ∆=-=系统大气m ax r g h r p rr πρππ22m ax 2=∆=γπρππr g h r p r 22m ax 2=∆=若将表面张力分别为和的两种液体用同一支毛细管和压力计用上法测出各自的和,则有如下关系:即:对同一支毛细管来说,K 值为一常数,其值可借一表面张力已知的液体标定。
溶液表面张力的测定实验报告一、实验目的1、掌握最大气泡压力法测定溶液表面张力的原理和方法。
2、测定不同浓度正丁醇水溶液的表面张力,计算表面吸附量和表面活性剂分子的横截面积。
3、了解表面张力与溶液浓度之间的关系,加深对表面化学基本概念的理解。
二、实验原理1、表面张力在液体内部,每个分子都受到周围分子的吸引力,合力为零。
但在液体表面,分子受到指向液体内部的合力,使得液体表面有自动收缩的趋势。
要增大液体的表面积,就需要克服这种内聚力而做功。
在温度、压力和组成恒定时,增加单位表面积所做的功即为表面张力,用γ表示,单位为 N·m⁻¹或 mN·m⁻¹。
2、最大气泡压力法将毛细管插入待测液体中,缓慢打开滴液漏斗的活塞,让体系缓慢减压。
当压力差在毛细管端产生的作用力稍大于毛细管口液体的表面张力时,气泡就会从毛细管口逸出。
此时,气泡内外的压力差最大,这个最大压力差可以通过 U 型压力计测量得到。
根据拉普拉斯方程:\(\Delta p =\frac{2\gamma}{r}\)其中,\(\Delta p\)为最大压力差,\(r\)为毛细管半径,\(\gamma\)为液体的表面张力。
对于同一根毛细管,\(r\)是定值。
只要测出\(\Delta p\),就可以算出液体的表面张力\(\gamma\)。
3、表面吸附与吉布斯吸附等温式在一定温度下,溶液的表面张力随溶液浓度的变化而变化。
当溶质能降低溶剂的表面张力时,溶质在表面层中的浓度比溶液内部大,称为正吸附;反之,当溶质能升高溶剂的表面张力时,溶质在表面层中的浓度比溶液内部小,称为负吸附。
吉布斯吸附等温式为:\(\Gamma =\frac{1}{RT}\frac{d\gamma}{dC}\)其中,\(\Gamma\)为表面吸附量(单位:mol·m⁻²),\(R\)为气体常数(\(8314 J·mol⁻¹·K⁻¹\)),\(T\)为绝对温度,\(C\)为溶液浓度,\(\frac{d\gamma}{dC}\)为表面张力随浓度的变化率。
溶液表面张力测定实验报告溶液表面张力测定实验报告引言:表面张力是液体分子间相互作用力在液体表面上所产生的一种现象,它使得液体表面呈现出收缩的趋势。
溶液表面张力的测定对于理解液体的性质以及液体与其他物质的相互作用具有重要意义。
本实验旨在通过测定溶液的表面张力,探究溶液的特性及其与其他物质的相互作用。
实验目的:1. 了解溶液表面张力的概念和测定方法。
2. 探究不同浓度的溶液对表面张力的影响。
3. 研究溶液与其他物质(如表面活性剂)的相互作用。
实验原理:表面张力可以通过测量液滴的形状来间接测定。
当液滴悬挂在毛细管或玻璃管的末端时,液滴的形状受到两种力的影响:表面张力和重力。
根据Young-Laplace方程,可以得到表面张力与液滴半径和液滴悬挂高度之间的关系。
通过测量液滴的半径和悬挂高度,可以计算出溶液的表面张力。
实验步骤:1. 准备一根干净的玻璃管,并在一端封闭。
2. 将待测溶液注入玻璃管中,并将另一端浸入溶液中,使液滴悬挂在玻璃管末端。
3. 使用显微镜观察液滴的形状,并测量液滴的半径和悬挂高度。
4. 重复以上步骤,测量不同浓度的溶液的表面张力。
实验结果与分析:根据实验测量数据,我们可以计算出不同浓度溶液的表面张力。
通过对比不同溶液的表面张力值,我们可以发现溶液浓度对表面张力的影响。
一般来说,随着溶液浓度的增加,表面张力会减小。
这是因为溶质的存在会降低溶剂分子之间的相互作用力,从而降低表面张力。
此外,我们还可以研究溶液与其他物质的相互作用。
例如,可以将表面活性剂加入溶液中,观察其对表面张力的影响。
表面活性剂能够在液体表面形成一层分子膜,降低液体表面的张力。
因此,加入表面活性剂后,溶液的表面张力会显著降低。
实验结论:通过本实验,我们了解了溶液表面张力的概念和测定方法。
我们发现溶液浓度对表面张力有一定的影响,浓度越高,表面张力越小。
此外,我们还研究了溶液与表面活性剂的相互作用,发现表面活性剂能够显著降低溶液的表面张力。
溶液表面张力的测定的实验报告摘要:本实验通过测定溶液的表面张力来了解溶液的性质和分子间相互作用力。
实验采用了产生泡沫的方法来测定表面张力,并利用浓度变化方法来研究溶液浓度对表面张力的影响。
实验结果表明,溶液的表面张力与溶液浓度呈负相关关系。
引言:溶液表面张力是指液体表面上的分子间相互作用力所产生的张力。
表面张力的大小取决于液体的性质以及其中溶解物的种类和浓度。
表面张力的测定对于研究溶液的性质和分子间相互作用力具有重要意义。
实验方法:1. 实验仪器和试剂本实验使用的仪器有:玻璃管、注射器、容量瓶、计时器等。
试剂有:水、不同浓度的溶液等。
2. 实验步骤(1)制备不同浓度的溶液:分别取一定量的溶质,加入不同体积的溶剂中,摇匀得到不同浓度的溶液。
(2)产生泡沫:将玻璃管的一端浸入溶液中,用注射器吸取一些溶液,再将玻璃管的另一端封住,并快速取出。
(3)计时:在实验开始后,用计时器计时,记录泡沫保持完整的时间。
(4)重复实验:重复以上步骤,记录多组数据。
实验结果与分析:根据实验数据计算出不同浓度溶液的表面张力,并绘制表面张力与浓度的关系曲线。
实验结果显示,随着溶液浓度的增加,表面张力逐渐降低。
这说明溶液浓度的增加可以降低溶液的表面张力。
结论:通过本实验的测定,我们得出了溶液表面张力与溶液浓度呈负相关的结论。
这一结论对于研究溶液的性质和分子间相互作用力有着重要的意义。
讨论与展望:本实验采用了产生泡沫的方法来测定溶液的表面张力,并通过浓度变化方法研究了溶液浓度对表面张力的影响。
然而,本实验只考虑了溶液浓度对表面张力的影响,还可以进一步研究其他因素对表面张力的影响,如温度、压力等。
此外,本实验只使用了一种溶质,可以尝试使用不同的溶质进行实验,比较它们对表面张力的影响。
结语:通过本实验,我们了解了溶液表面张力的测定方法,并得出了溶液表面张力与溶液浓度呈负相关的结论。
这一实验为进一步研究溶液性质和分子间相互作用力提供了基础。
最大泡压法测量溶液表面张力
哎哟喂,说起这个“最大泡压法”来测溶液的表面张力,那真是个技术活儿,讲究得很!咱们四川人讲究实干,不扯那些虚的。
你想啊,就跟你泡茶一样,水温、茶叶量都得刚刚好,泡出来的味道才巴适。
这表面张力嘛,就像是你倒杯水在桌子上,那水边儿上紧绷绷的,不容易散开,那就是张力在作怪。
现在,我们要用最大泡压法来量它个准头。
咋个整呢?首先,得有个精密的仪器,里头装起待测的溶液,再慢慢往里头打气儿,就像吹泡泡一样。
关键来了,当那个泡泡刚好要破没破的时候,气压达到顶峰,这时候的气压差值,就跟那溶液的表面张力有直接关系。
咱们四川话说就是“卡点子上”,要的就是这个火候。
操作起来,那可得细心又耐心,手一抖,气打多了少了都不行。
数据一出来,嘿,那才是硬道理。
根据这个数据,咱们就能晓得这溶液的表面张力有多大了,对于研究材料啊、化工啊,那都是顶顶重要的。
所以说,这最大泡压法,别看名字听起来玄乎,其实原理简单得很,就是要个精细和准确。
咱们四川人做事,讲究的就是这个“精益求精”,测出来的结果,那自然是杠杠的!。
溶液表面张力测定一 实验目的1. 掌握气泡的最大压力法测定溶液表面张力原理和技术。
2. 测定不同浓度乙醇水溶液的表面张力,计算表面吸附量。
3. 了解超级恒温槽的构造及使用方法。
二 实验原理处于液体表面的分子由于受到液体内部分子与表面层外介质分子的不平衡力作用,具有表面张力。
定义单位长度上沿着表面的切线方向垂直作用于表面的收缩力为表面张力σ,单位。
1m −⋅N p ∆气泡的最大压力法(或最大泡压法)是测定液体表面张力的方法之一。
它的基本原理如下:当玻璃毛细管一端与液体接触,并往毛细管内加压时,可以在液面的毛细管口处形成气泡。
设气泡在形成过程中始终保持球形,则气泡内外的压力差(即施加于气泡的附加压力)与气泡的半径r 、液体表面张力σ之间的关系可由拉普拉斯(Laplace)公式表示,即p =∆ (2-70) rσ2 图2-42 气泡形成过程中其半径的变化情况示意 显然,在气泡形成过程中,气泡半径由大变小,再由小变大(如图2-42中(a)、(b)、(c)所示),而压力差∆p 则由小变大,然后再由大变小。
当气泡半径r 等于毛细管半径R 时,压力差达到最大值∆p max 。
因此 Rp max =∆ (2-71) σ2由此可见,通过测定R 和,即可求得液体的表面张力。
max p ∆由于毛细管的半径较小,直接测量R 误差较大。
通常用一已知表面张力为的液体(如水、甘油等)作为参考液体,在相同的实验条件下,测得相应最大压力差为,则毛细管半径0σmax ,0p ∆max,002p ∆=R σ。
代入上式,求得被测液体的表面张力0,0max max σσp p ∆∆=(2-72) 本实验中用数字式微压差测量计测量压力差∆p 。
在同一温度下,若测定不同浓度c 的溶液表面张力,按吉布斯(Gibbs)吸附等温式可计算溶质在单位界面过剩量,即吸附量:(1)2Γ cRT c d d (1)2σΓ−= (2-73) 式中R 为气体摩尔常数。
溶液表面张力的测定实验报告实验目的:测定溶液的表面张力,探究不同条件对溶液表面张力的影响。
实验原理:表面张力是指液体表面上分子之间的相互吸引力导致的液面收缩的能力。
表面张力大小取决于液体种类、温度等条件。
实验中通过观察液面收缩高度来测定溶液的表面张力。
实验步骤:1.制备不同浓度的溶液,如0.1mol/L、0.05mol/L、0.01mol/L等。
2.将滴管浸入溶液中,利用毛细现象让溶液上升到滴管口的一定高度。
3.将滴管从溶液中取出,记录溶液表面与滴管口之间的距离。
4.重复以上步骤三次,取平均值。
5.重复以上步骤,在不同温度下测定表面张力。
实验数据:浓度0.1mol/L,室温25℃,液面高度差:0.8mm,0.7mm,0.9mm,平均值为0.8mm。
浓度0.05mol/L,室温25℃,液面高度差:0.5mm,0.6mm,0.4mm,平均值为0.5mm。
浓度0.01mol/L,室温25℃,液面高度差:0.2mm,0.3mm,0.2mm,平均值为0.2mm。
不同温度下的测定数据见下表:温度/℃浓度0.1mol/L 浓度0.05mol/L 浓度0.01mol/L20 1.0mm 0.6mm 0.3mm25 0.8mm 0.5mm 0.2mm30 0.6mm 0.4mm 0.1mm实验结果分析:通过上述数据可以得出以下结论:1.溶液浓度越大,表面张力越大。
2.温度升高,表面张力降低。
3.在浓度相同的情况下,随着温度升高,表面张力降低的速度越快。
实验结论:表面张力是液体表面分子间相互吸引力导致的液面收缩能力。
表面张力大小受到多种因素的影响,如液体种类、浓度、温度等。
通过实验可以得出结论,溶液浓度越大表面张力越大,温度升高表面张力降低。
另外,在相同浓度的情况下,随着温度升高,表面张力降低的速度越快。
溶液表面张力的测量一、实验目的与要求1.掌握最大气泡压力法测量溶液表面张力的原理和技能。
2.通过对不同浓度乙醇溶液表面张力的测量,计算表面吸附量和乙醇分子的横截面积。
二、实验原理在液体内部,任何分子周围的吸引力是平衡的,而在液体表面层的分子却不相同,因为表面层的分子一方面受到液体内层的邻近分子的吸引,另一方面受到液体外部气体分子的吸引,而且前者的作用要比后者大,因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力。
这种吸引力使表面上的分子向内挤,促成液体的最小表面积。
要使液体的表面积增大,就必须反抗分子的内向力而做功,增加分子的位能。
所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。
通常把增大1㎡所引起的表面自由能的变化△G 称为单位表面的表面能,其单位为J·㎡;而把液体限制其表面及试图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N·m-1。
液体单位表面的表面能和它的表面张力在数值上是相等的。
如欲使液体表面积增加△A时,所消耗的可逆功W应该是-W=△G =σ·△A液体的表面张力σ与温度有关,温度愈高,表面张力愈小,到达临界温度时,液体与气体不分,表面张力趋于零。
液体的表面张力也与液体的纯度有关,在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小,决定于溶质的本性和加入量的多少。
对于纯溶剂而言,其表面层与内部的组成是相同的,但对于溶液来说则不然。
当加入溶质后,溶剂的表面张力要发生变化。
根据能量最低原则,若溶质能降低溶剂的表面张力,则表面层中溶质的浓度应比溶液内部的浓度大;如果所加溶质能使溶剂的表面张力升高,那么溶液在表面层中的浓度应比溶液内部的浓度低。
这种表面浓度与溶液内部浓度不同的现象叫做溶液的表面吸附。
在一定的温度和压力下,溶液表面吸附溶质的量与溶液的表面张力和加入的溶质量有关,它们之间的关系可用吉布斯吸附等温式表示Tc RT c ⎟⎠⎞⎜⎝⎛∂∂−=Γσ 11-1 式中:Γ—吸附量,mol ·m -2;σ—表面张力,N ·m -1; c—溶液浓度,mol ·L -1。
如果σ随浓度的增加而减少,即Tc ⎟⎠⎞⎜⎝⎛∂∂σ<0,则Γ>0,溶液表面层的浓度大于溶液内部的浓度,称为正吸附作用;如果σ随浓度的增加而增加,即Tc ⎟⎠⎞⎜⎝⎛∂∂σ>0,则Γ<0,此时溶液表面层的浓度小于溶液内部的浓度,称为负吸附作用。
从式11-1可看出,只要测量溶液的浓度和表面张力,就可求出各种不同浓度下溶液的吸附量Γ。
本实验中,溶液浓度的测量是应用浓度与折射率的对应关系;表面张力的测量是应用最大气泡压力法。
图11-1 最大气泡压力法测量表面张力的装置1. 抽气用的滴液漏斗;2. 恒温槽;3. 支管试管;4. 毛细管;5. 微压力差计;6. 滴液漏斗图11-1是最大气泡压力法测量表面张力的装置示意图。
将被测液体装于支管试管3中,使毛细管4的下端面与液面相切,液面即沿着毛细管上升,打开滴液漏斗1的活塞进行缓慢抽气,此时由于毛细管内液面上所受的压力(p 大气)大于支管试管中液面上的压力(p系统),故毛细管内的液面下降,并从毛细管端缓慢地逸出气泡,在气泡的形成过程中,由于表面张力的作用,凹液面产生了一个指向液面外的附加压力△p ,因此有如下关系:Δp =p 大气-p 系统 11-2附加压力与表面张力σ成正比,与气泡的曲率半径R 成反比,其关系式为: R p σ2=∆ 或p R ∆=2σ 11-3 式中,Δp 为附加压力;σ为表面张力;R 为气泡的曲率半径。
如果毛细管半径很小,则形成的气泡可视为球形的。
当气泡开始形成时,表面几乎是平的,这时曲率半径R 最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时曲率半径R 和毛细管半径r 相等,曲率半径达最小值,根据上式这时附加压力达最大值。
气泡进一步长大,R 变大,附加压力则变小,直到气泡逸出。
根据式11-3,R =r 时的最大附加压力为: rpmσ2=∆,这个最大附加压力可由压力计5直接读出。
实验中,若使用同一支毛细管,则1/2r 是常数,称仪器常数,用K 表示,则:m p K ∆⋅=σ 11-4如果将已知表面张力的液体作为标准,由实验测得其△p m 后,就可求出K。
然后用同一仪器测出各液体的△p m ,通过11-4式计算,即可求出各液体的表面张力(如纯水在不同温度下的表面张力见附表Ⅲ)。
只要测出不同浓度溶液的表面张力,以σ-c 作图,在图的曲线上作不同浓度的切线,把切线的斜率代入吉布斯吸附等温式,即可求出不同浓度时气-液界面上的吸附量Γ。
在一定温度下,吸附量与溶液浓度之间的关系由郎缪尔等温式表示: kckc+Γ=Γ∞1 11-5 式中:∞Γ—单层饱和吸附量;k—经验常数,与溶质的表面活性大小有关。
将11-5式写成直线方程,则∞∞Γ+Γ=Γk c c 1 11-6若以Γc-c 作图可得一直线,由直线斜率即可求出∞Γ。
假若在饱和吸附的情况下,在气液界面上铺满一单分子层,则可利用下式求得被测物质(溶质)的横截面积S 0。
LS ⋅Γ=∞10 11-7 式中:L-阿伏加德罗常数。
三、实验仪器与试剂1.仪器 表面张力测试仪1套; DP-AW 精密数字压力计─微压力差计;阿贝折光仪一台;毛细管(0.2-0.3mm);恒温装置一套。
2.试剂 无水乙醇;重蒸馏水;待测乙醇水溶液样品(4-6个) 四、实验步骤1.安装仪器。
(1)仔细洗净支管试管和毛细管,按图11-1所示连接装置。
(2)在滴液漏斗中装满水。
(3)接通微压力差计电源,仪表预热5分钟,同时打开恒温槽装置。
2.仪器常数K 的测量(1)加入适量的重蒸馏水于支管试管中,加入的量要使毛细管端面与液面相切。
再把支管试管浸入恒温槽(须使毛细管处于垂直位置),恒温10min 。
(2)将微压力差计的“采零”按键置零。
(3)打开滴液漏斗活塞进行缓慢抽气,使气泡从毛细管口逸出。
调节气泡逸出的速度不超过每分钟20个时,读出微压力差计的最大值△p m ,重复读3次,取其平均值。
3.待测样品表面张力的测量(1)用待测液淋洗支管试管和毛细管后,加入适量的样品于支管试管中。
(2)按下微压力差计的“采零”键,按仪器常数的测量步骤,分别测定各种未知浓度乙醇溶液的△p m 。
4.待测样品浓度的测量(1)工作曲线:分别用阿贝折光仪测量10%、20%、30%、40%、50%的各标准乙醇溶液的折射率,作出浓度-折射率的工作曲线。
(2)用阿贝折光仪测量待测溶液的折射率,从工作曲线上找出相应的浓度值。
五、实验结果与讨论1.实验记录乙醇标准溶液和待测溶液的折射率标准溶液质量分数 标准溶液折射率10% 20% 30% 40% 50%待测溶液的浓度表面张力待测溶液折射率 真实质量分数 △p m(pa )仪器常数K σ(N ·m -1)水 1号 2号 3号 4号 5号2.以溶液表面张力σ为纵坐标,乙醇浓度c 为横坐标,绘制σ—c 曲线图。
3.在σ—c 曲线上相应的点做切线,求出各浓度对应的斜率Tc ⎟⎠⎞⎜⎝⎛∂∂σ,并计算在各相应浓度的吸附量Γ。
4.用C/Г—C 作图,得一直线,由斜率求出∞Γ。
5.计算乙醇分子的横截面积S 0。
六、实验要点及注意事项1.仪表每测一次后,再测试前必须按一下“采零”键,以保证所测压力值的准确度。
2.仪器系统不能漏气,所用毛细管必须干净、干燥,应保持垂直,其管口刚好与液面相切。
3.读取压力计的压差时,应取气泡单个逸出时的最大压力差。
4.在测量中,抽气速度不宜过快,应控制在每3s 逸出单个气泡为宜。
七、思考题1.表面张力为何在恒温槽中进行测量?温度变化对表面张力有何影响?为什么?2.用最大气泡法测量表面张力时为什么要读最大压力差?如果气泡逸出的很快,或几个气泡一齐出,对实验结果有无影响?3.哪些因素影响表面张力的测量结果?如何减少以至消除这些因素对实验的影响?八、附录:表Ⅰ 20℃下乙醇水溶液的密度乙醇的质量百分数(%) 10-3ρ/kg·m-3乙醇的质量百分数(%)10-3ρ/kg·m-30 10 15 20 25 30 35 40 45 50 0.998280.981870.975140.968640.961680.953820.944940.935180.924720.913845560657075808590951000.902580.891130.879480.867660.855640.843440.830950.817970.804240.78934摘自:International Critical Tables of Numerical Data.Physics,Chemistry and Technology.Ⅲ:116表Ⅱ乙醇水溶液的混合体积与浓度的关系(温度为20℃,混合物的质量为100g)乙醇的质量百分数(%) V混/ml 乙醇的质量百分数(%)V混/ml20 30 40 50 103.24104.84106.93109.43607080112.22115.25118.56 表Ⅲ不同温度下水的表面张力t/℃103×σ/N·m-1t/℃103×σ/N·m-1t/℃ 103×σ/N·m-1t/℃103×σ/N·m-10 510111213141516 75.6474.9274.2274.0773.9373.7873.6473.5973.3417181920212223242573.1973.0572.9072.7572.5972.4472.2872.1371.9726272829303540455071.8271.6671.5071.3571.1870.3869.5668.7467.916070809010011012013066.1864.4262.6160.7558.8556.8954.8952.84摘自:John.A.Dean., Lange’s Handbook of Chemistry,1973:10~265。