2018_2019学年九年级数学下册第二章二次函数2.4二次函数的应用2.4.1最大面积问题同步练习(新版)北师大版
- 格式:doc
- 大小:836.00 KB
- 文档页数:8
第2课时利用二次函数解决利润问题1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.1.经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用.2.发展学生运用数学知识解决实际问题的能力.1.体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.2.认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和人类发展的作用.【重点】1.探索销售中最大利润问题,从数学角度理解“何时获得最大利润”的意义.2.引导学生将简单的实际问题转化为数学问题,并运用二次函数知识求出实际问题的最大(小)值,从而得到解决某些实际生活中最大(小)值问题的思想方法.【难点】能够分析和表示实际问题中变量之间的二次函数关系,并能利用二次函数知识解决某些实际生活中的最大(小)值问题.【教师准备】多媒体课件.【学生准备】复习关于销售的相关量之间的关系及二次函数最值的求法.导入一:【引入】如果你是某企业老总,你最关心的是什么?是的,当然是利润,因为它是企业生存的根本,并且每个企业都想在限定条件内获得更大利润.本节课我们就来探究形如最大利润的问题.[设计意图]开门见山,直入正题,让学生对本节课所要了解的知识一目了然,使他们的学习更有针对性.导入二:请同学们思考下面的问题:某工厂生产一种产品的总利润L(元)是产量x(件)的二次函数L=-x2+2000x-10000,则产量是多少时总利润最大?最大利润是多少?学生分析数量关系:求总利润最大就是求二次函数L=-x2+2000x-10000的最大值是多少.即L=-x2+2000x-10000=-(x2-2000x+10002-10002)-10000=-(x-1000)2+990000.∴当产量为1000件时,总利润最大,最大利润为99万元.【引入】显然我们可以通过求二次函数最大值来确定最大利润,你能利用这种思路求解下面的问题吗?[设计意图]让学生通过对导入问题的解答,进一步强化将实际问题转化为数学模型的意识,使学生感受到“何时获得最大利润”就是在自变量取值范围内,此二次函数何时取得最大值问题.服装厂生产某品牌的T恤衫成本是每件10元.根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示单价每降价0.1元,愿意多经销500件.请你帮助分析,厂家批发单价是多少时可以获利最多?思路一教师引导学生思考下面的问题:1.此题主要研究哪两个变量之间的关系?哪个是自变量?哪个是因变量?生审题后回答:批发价为自变量,所获利润为因变量.2.此题的等量关系是什么?3.若设批发价为x元,该服装厂获得的利润为y元,请完成下面的填空题:(1)销售量可以表示为;(2)每件T恤衫的销售利润可以表示为;(3)所获利润与批发价之间的关系式可以表示为.4.求可以获得的最大利润实质上就是求什么?【师生活动】教师启发学生依次探究问题,根据引导要求学生独立解答后,小组交流,共同解决所发现的问题.解:设批发价为x元,该服装厂获得的利润为y元.由题意得y=(x-10)=(70000-5000x)(x-10)=-5000(x-12)2+20000.∴当x=12时,y=20000.最大∴厂家批发价是12元时可以获利最多.思路二【思考】此题还有其他的解法吗?可以不直接设批发价吗?【师生活动】学生进行小组讨论,师巡视并参与到学生的讨论之中去.组长发言,师生共同订正.解:设降价x元,该服装厂获得的利润为y元.则y=(13-10-x)=(5000+5000x)(3-x)=-5000(x-1)2+20000,=20000.∴当x=1时,y最大13-1=12.∴厂家批发价是12元时可以获利最多.【教师点评】在利用二次函数解决利润的问题时,可以直接设未知数,也可以间接设未知数.[设计意图]让学生回顾列一元二次方程解决“每件商品的销售利润×销售这种商品的数量=总利润”这种类型的应用题,做好知识的迁移,为下一环节的教学做好准备,以便降低学生接受知识的(教材例2)某旅馆有客房120间,每间房的日租金为160元时,每天都客满.经市场调查发现,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间.不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?〔解析〕此题的等量关系是:客房日租金总收入=提价后每间房的日租金×提价后所租出去的房间数.如果设每间房的日租金提高x个10元,那么提价后每间房的日租金为(160+10x)元,提价后所租出去的房间数为(120-6x)间.解:设每间房的日租金提高10x元,则每天客房出租数会减少6x间.设客房日租金总收入为y元,则y=(160+10x)(120-6x),即y=-60(x-2)2+19440.∵x≥0,且120-6x>0,∴0≤x<20.=19440,当x=2时,y最大这时每间客房的日租金为160+10×2=180(元),因此,每间客房的日租金提高到180元时,客房总收入最高,最高收入为19440元.[设计意图]让学生通过对例题的解答,进一步熟悉和掌握本课所学知识,拓宽知识面,使其解题能力和应用能力得到进一步提升.二、利用二次函数图象解决实际问题课件出示:【议一议】还记得本章一开始的“种多少棵橙子树”的问题吗?我们得到表示增种橙子树的数量x(棵)与橙子总产量y(个)的二次函数表达式y=(600-5x)(100+x)=-5x2+100x+60000.问题(1):利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.请同学们在课本第49页图2-11中画出二次函数y=-5x2+100x+60000的图象.要求:同伴合作,画出图象.师课件出示函数图象,供学生参考.问题(2):增种多少棵橙子树,可以使橙子的总产量在60400个以上?看一看:从图象中你们可以发现什么?增种多少棵橙子树,可以使橙子的总产量在60400个以上?请同学们开始小组讨论交流.学生积极思考,合作交流.请代表展示他们的讨论成果:结论1:当x<10时,橙子的总产量随增种橙子树的增加而增加;当x=10时,橙子的总产量最大;当x>10时,橙子的总产量随增种橙子树的增加而减少.结论2:由图象可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60400个以上.能力提升:在分析的过程中,用到了什么数学思想方法?学生迅速得出:用到了数形结合的数学思想方法.[设计意图]让学生绘制该二次函数图象,并利用图象进行直观分析,体会数形结合的思想方法,并感受自变量的取值范围.用二次函数知识解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)利用二次函数求解;(5)检验结果的合理性.1.某商店经营2014年巴西世界杯吉祥物,已知所获利润y(元)与销售的单价x(元)之间的关系为y=-x2+24x+2956.则获利最多为()A.3144元B.3100元C.144元D.2956元解析:利润y(元)与销售的单价x(元)之间的关系为y=-x2+24x+2956,∴y=-(x-12)2+3100.∵-1<0,∴当x=12时,y有最大值,为3100.故选B.2.某旅社有100张床位,每床每晚收费10元时,床位可全部租出;若每床每晚收费提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了投资少而获利大,每床每晚收费应提高()A.4元或6元B.4元C.6元D.8元解析:设每床每晚收费应提高x个2元,获得利润为y元,根据题意得y=(10+2x)(100-10x)=-20x2+100x+1000=-20+1125.∵x取整数,∴当x=2或3时,y最大,当x=3时,每床收费提高6元,床位最少,即投资少,∴为了投资少而获利大,每床每晚收费应提高6元.故选C.3.某产品进货单价为90元,按100元一件出售时,能售500件,如果这种商品每涨1元,其销售量就减少10件,为了获得最大利润,其单价应定为.解析:设应涨价x元,则所获利润为y=(100+x)(500-10x)-90×(500-10x)=-10x2+400x+5000=-10(x2-40x+400)+9000=-10(x-20)2+9000,可见当涨价20元,即单价为100+20=120元时获利最大.故填120元.4.(2014·沈阳中考)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为元.解析:设最大利润为w元,则w=(x-20)(30-x)=-(x-25)2+25.∵20≤x≤30,x为整数,∴当x=25时,w 有最大值,为25.故填25.5.每年六、七月份,南方某市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.(1)水果商要把荔枝售价至少定为多少才不会亏本?(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元)之间满足关系:m=-10x+120,那么当销售单价定为多少时,每天获得的利润w最大?解:(1)设购进荔枝k千克,荔枝售价定为y元/千克时,水果商才不会亏本,由题意,得y·k(1-5%)≥(5+0.7)k.∵k>0,∴95%y≥5.7,∴y≥6.∴水果商要把荔枝售价至少定为6元/千克才不会亏本.(2)由(1)可知,每千克荔枝的平均成本为6元,由题意得w=(x-6)m=(x-6)(-10x+120)=-10(x-9)2+90,∵a=-10<0,∴当x=9时,w有最大值.∴当销售单价定为9元时,每天可获利润w最大.第2课时用二次函数知识解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)利用二次函数求解;(5)检验结果的合理性.一、教材作业【必做题】1.教材第49页随堂练习.2.教材第50页习题2.9第1,2题.【选做题】教材第50页习题2.9第3题.二、课后作业【基础巩固】1.学校商店销售一种练习本所获得的总利润y(元)与销售单价x(元)之间的函数关系式为y=-2(x-2)2+48,则下列叙述正确的是()A.当x=2时,利润有最大值48元B.当x=-2时,利润有最大值48元C.当x=2时,利润有最小值48元D.当x=-2时,利润有最小值48元2.一件工艺品进价为100元,按标价135元售出,每天可售出100件.若每降价1元出售,则每天可多售出4件.要使每天获得的利润最大,每件需降价()A.5元B.10元C.12元D.15元3.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是元.4.(2015·营口中考)某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.【能力提升】5.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y (单位:万元)与销售量x (单位:辆)之间分别满足:y 1=-x 2+10x ,y 2=2x ,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元6.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低()A.0.2元或0.3元B.0.4元C.0.3元D.0.2元7.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式.若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大?最大利润是多少?8.(2015·汕尾中考)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价/(元/100110120130件)…月销量/200180160140件…已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润;②月销量.(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大?最大利润是多少?【拓展探究】9.(2015·舟山中考)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x 满足下列关系式:y=(1)李明第几天生产的粽子数量为420只?(2)设第x天粽子的成本是p元/只,p与x之间的关系可用如图所示的函数图象来刻画.若李明第x 天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价-成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【答案与解析】1.A(解析:在y=-2(x-2)2+48中,当x=2时,y有最大值,是48.)2.A(解析:设每件降价x元,利润为y元,每件的利润为(135-100-x)元,每天售出的件数为(100+4x)件,=3600.)由题意,得y=(135-100-x)(100+4x)=-4x2+40x+3500=-4(x-5)2+3600,∵a=-4<0,∴当x=5时,y最大3.160(解析:设每张床位提高x个20元,每天收入为y元.则有y=(100+20x)(100-10x)=-200x2+1000x+10000.当x=-==2.5时,可使y有最大值.又x为整数,则当x=2时,y=11200;当x=3时,y=11200.故为使租出的床位少且租金高,每张床收费100+3×20=160(元).)4.22(解析:设定价为x 元,根据题意得平均每天的销售利润y =(x -15)·[8+2(25-x )]=-2x 2+88x -870,∴y =-2x 2+88x -870=-2(x -22)2+98.∵a =-2<0,∴抛物线开口向下,∴当x =22时,y 最大值=98.故填22.)5.D (解析:设在甲地销售x 辆,则在乙地销售(15-x )辆,根据题意得出:W =y 1+y 2=-x 2+10x +2(15-x )=-x 2+8x +30=-(x -4)2+46,∴最大利润为46万元.)6.C (解析:设应将每千克小型西瓜的售价降低x 元.根据题意,得(3-2-x )-24=200.解这个方程,得x 1=0.2,x 2=0.3.∵要减少库存,且200+>200+,∴应将每千克小型西瓜的售价降低0.3元.)7.解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0),由所给函数图象可知解得故y 与x 的函数关系式为y =-x +180.(2)∵y =-x +180,∴W =(x -100)y =(x -100)(-x +180)=-x 2+280x -18000=-(x -140)2+1600.∵a =-1<0,∴当x =140时,W 最大=1600,∴售价定为140元/件时,每天获得的利润最大,最大利润为1600元.8.解:(1)①销售该运动服每件的利润是(x -60)元.②设月销量w 与x 的关系式为w =kx +b ,由题意得解得∴w =-2x +400.∴月销量为(-2x +400)件.(2)由题意得y =(x -60)(-2x +400)=-2x 2+520x -24000=-2(x -130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元.9.解:(1)设李明第n 天生产的粽子数量为420只,由题意可知30n +120=420,解得n =10.答:第10天生产的粽子数量为420只.(2)由图象得当0≤x ≤9时,p =4.1;当9≤x ≤15时,设p =kx +b ,把点(9,4.1),(15,4.7)代入,得解得∴p =0.1x +3.2.①当0≤x ≤5时,w =(6-4.1)×54x =102.6x ,当x =5时,w 最大=513(元);②当5<x ≤9时,w =(6-4.1)×(30x +120)=57x +228,∵x 是整数,∴当x =9时,w 最大=741(元);③当9<x ≤15时,w =(6-0.1x -3.2)×(30x +120)=-3x 2+72x +336,∵a =-3<0,∴当x =-=12时,w 最大=768元.综上所述,第12天的利润最大,最大利润为768元.(3)由(2)可知m =12,m +1=13,设第13天每只粽子提价a元,由题意得w=[6+a-(0.1×13+3.2)](30×13+120)=510(a+1.5),∴510(a+1.5)-768≥48,解得a≥130.1.答:第13天每只粽子至少应提价0.1元.本节课设计了以生活场景引入问题,通过探索思考解决问题的教学思路.由于本节课较为抽象,学生直接解决比较困难,因此,在导入问题中,让学生初步接触“何时获得最大利润”这一问题,引导学生分析问题,初步掌握数学建模的方法,然后再放手给学生自主解决问题,并充分发挥小组的合作作用,以“兵教兵”的方式突破难点.在教学过程中,重点关注了学生能否将实际问题表示为函数模型,是否能运用二次函数知识解决实际问题并对结果进行合理解释,加强了学生在教师引导下的独立思考和积极讨论的训练,并注意整个教学过程中给予学生适当的评价和鼓励,收到了非常好的教学效果.对学情估计不足.原本认为学生的计算能力不错,但实际在解题过程中却出现了很多问题.今后还要在计算方法和技巧方面对学生多加以指导,加强学生建立函数模型的意识.随堂练习(教材第49页)解:设销售单价为x元(30≤x<50),销售利润为y元,则y=(x-20)[400-20(x-30)]=-20x2+1400x-20000=-20(x-35)2+4500.当x=35时,y=4500.所以当销售单价为35元时,半月内可以获得的利润最大,最大最大利润为4500元.习题2.9(教材第50页)1.解:设旅行团的人数是x人,营业额为y元,则y=[800-10(x-30)]x=-10x2+1100x=-10(x-55)2+30250,当x=55时,y=30250.答:当旅行团的人数为55人时,旅行社可以获得最大的营业额,为30250元.最大值2.解:设销售单价为x(x≥10)元,每天所获销售利润为y元,则y=(x-8)[100-10(x-10)]=-10x2+280x-=360.答:将销售单价定为14元,才能使每天所获销售利润1600=-10(x-14)2+360,所以当x=14时,y最大值最大,最大利润为360元.3.解:y=x2-13x+42.25+x2-11.8x+34.81+x2-12x+36+x2-13.4x+44.89+x2-9x+20.25=5x2-59.2x+178.2=5(x2-11.84x+35.64)=5[(x-5.92)2+0.5936]=5(x-5.92)2+2.968,当x=5.92时,y的值最小,所以大麦穗长的最佳近似长度为5.92cm.利润问题之前已经有所接触,所以学生课前要熟练掌握进价、销售价、利润之间的关系.找出实际问题中的等量关系是前提,会把二次函数的一般式转化为顶点式是保障,而能熟练运用转化的数学思想方法把实际问题转化为数学问题是运用二次函数解决实际应用问题的关键,所以在解题的过程中要及时总结归纳出用二次函数知识解决实际问题的基本思路,并总结出销售利润问题的数学模型,提高解决此类问题的综合能力.某班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x/天1≤x<5050≤x≤90售价/(元/x+4090件)每天销量/200-2x件已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.〔解析〕(1)根据(售价-进价)×数量=利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于4800,可得不等式组,然后解不等式组,可得答案.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000.当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.综上所述,y=(2)当1≤x<50时,二次函数的图象开口向下,二次函数图象的对称轴为直线x=45,=-2×452+180×45+2000=6050.当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000.当x=50时,y最大综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.(3)当20≤x≤60时,即共41天,每天销售利润不低于4800元.。
2.4二次函数的应用同步习题一.选择题1.如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度,他先测出门的宽度AB=8m,然后用一根长为4m的小竹竿CD竖直的接触地面和门的内壁,并测得AC =1m,则门高OE为()A.9m B.C.8.7m D.9.3m2.汽车刹车距离s(m)与速度v(km/h)之间的函数关系是,一辆车速为100km/h 的汽车,刹车距离是()A.1m B.10m C.100m D.200m3.体育加试时,一女生掷实心球,实心球飞行中高度y(m)与水平距离x(m)之间的关系是y=﹣x2+x+.已知女生掷实心球的评分标准如下表:水平距离x(m) 5.6 5.4 5.2 5.0 4.8 4.6 4.4分值(分)151413.513121110该女生在此项目中的得分是()A.14分B.13分C.12分D.11分4.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为()A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.5 5.如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=xm,长方形的面积为ym2,要使长方形的面积最大,其边长x应为()A.m B.6m C.15m D.m6.已知物体下落时间t与下落距离x成以下关系:x=gt2,其中g与纬度的关系如图.若一只熊掉进一个洞深为19.664m的洞,下落时间刚好为2s,这只熊最有可能生活在哪个纬度附近()A.10°B.45°C.70°D.90°7.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC的面积S关于边长c的函数关系式为()A.S=B.S=C.S=D.S=8.据省统计局公布的数据,安徽省2019年第二季度GDP总值约为7.9千亿元人民币,若我省第四季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x,则y 关于x的函数表达式是()A.y=7.9(1+2x)B.y=7.9(1﹣x)2C.y=7.9(1+x)2D.y=7.9+7.9(1+x)+7.9(1+x)29.如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用y=﹣x2+bx+c表示.在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是()A.2m B.4m C.4m D.4m10.记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是()A.y=﹣(x﹣60)2+1825B.y=﹣2(x﹣60)2+1850C.y=﹣(x﹣65)2+1900D.y=﹣2(x﹣65)2+2000二.填空题11.如图,一个涵洞的截面边缘是抛物线形.现测得当水面宽AB=1.6m时,涵洞顶点与水面的距离是2.4m.这时,离开水面1.5m处,涵洞的宽DE为.12.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为m.13.某市民广场有一个直径16米的圆形喷水池,喷水池的周边有一圈喷水头(喷水头高度忽略不计),各方向喷出的水柱恰好在喷水池中心的装饰物OA的顶端A处汇合,水柱离中心3米处达最高5米,如图所示建立直角坐标系.王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的他站立时必须在离水池中心O米以内.14.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m达到警戒水位时,水面CD的宽是10m.如果水位以0.25m/h的速度上涨,那么达到警戒水位后,再过h水位达到桥拱最高点O.15.如图,在△ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF在边BC上,顶点D、G分别在边AB、AC上.设DE=x,矩形DEFG的面积为y,那么y关于x的函数关系式是.(不需写出x的取值范围).三.解答题16.汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素,在一个限速40km/h乙内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了,事后现场测量甲车的刹车距离为12m,乙车的刹车距离超过10m,但小于20m,查有关资料知,甲种车的刹车距离S甲(m)与车速x(km/h)之间有下列关系,S甲=0.1x+0.01x2,乙种车的刹车距离S乙(m)与车速x(km/h)的关系如下图表示,请你就两车的速度方面分析相碰的原因.17.某校的围墙上端由一段段相同的凹曲拱形栅栏组成,如图所示,其拱形图形为抛物线的一部分,栅栏的跨径AB间,按相同的间距0.2米用5根立柱加固,拱高OC为0.6米.以O为原点,OC所在的直线为y轴建立平面直角坐标系,请根据以上的数据,求出抛物线y=ax2的解析式.18.某商店购进了一种小商品,每件进价为2元.经市场预测,销售定价为3元时,可售出200件;现为了减少库存,商店决定采取适当降价措施.经调查发现,销售定价每降低0.1元时,销售量将增多40件.(1)商店若希望获利224元,则应该降价多少元?(2)商店若要获得最大利润,应降价多少元?最大利润是多少?参考答案一.选择题1.解:由题意得,抛物线过点A(﹣4,0)、B(4,0)、D(﹣3,4),设y=a(x+4)(x﹣4),把D(﹣3,4)代入y=a(x+4)(x﹣4),得4=a(﹣3+4)(﹣3﹣4),解得a=﹣,∴y=﹣(x+4)(x﹣4).令x=0得y=,即(0,),∴OE=∴门的高度约为m.故选:B.2.解:由题意知,汽车刹车距离s(m)与速度v(km/h)之间的函数关系是:,当v=100km/h,s=100m.故选:C.3.解:∵一女生掷实心球,实心球飞行中高度y(m)与水平距离x(m)之间的关系是y =﹣,∴当y=0,则0=﹣整理得出;x2﹣x﹣20=0,(x﹣5)(x+4)=0,解得:x1=5,x2=﹣4,∴该女生的成绩为5m,∴结合评分标准得出:该女生在此项目中的得分是13分.故选:B.4.解:新增加的投资额x万元,则增加产值万元.这函数关系式是:y=2.5x+15.故选:C.5.解:根据题意得:y=30﹣(5﹣x)﹣x(12﹣),整理得y=﹣x2+12x,=﹣[x2﹣5x+()2﹣],=﹣(x﹣)2+15,∵∴长方形面积有最大值,此时边长x应为m.故选:D.6.解:∵若一只熊掉进一个洞深为19.664m的洞,下落时间刚好为2s,∴x=19.664,t=2s,代入x=gt2,得:19.664=g×22∴g=9.832,由图可知g=9.83058时,纬度为80,9.832比9.83058略大,∴这只熊最有可能生活在纬度为90附近.故选:D.7.解:∵∠C=90°,BC=a,AC=b,AB=c,∴a2+b2=c2,∵Rt△ABC的面积S,∴S=ab,∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,∴c2+4S=25,∴S=.故选:A.8.解:设平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是:y=7.9(1+x)2.故选:C.9.解:根据题意,得OA=12,OC=4.所以抛物线的顶点横坐标为6,即﹣==6,∴b=2,∵C(0,4),∴c=4,所以抛物线解析式为:y=﹣x2+2x+4=﹣(x﹣6)2+10当y=8时,8=﹣(x﹣6)2+10,解得x1=6+2,x2=6﹣2.则x1﹣x2=4.所以两排灯的水平距离最小是4.故选:D.10.解:设二次函数的解析式为:y=ax2+bx+c,∵当x=55,75,80时,y=1800,1800,1550,∴,解得,∴y与x的函数关系式是y=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000,故选:D.二.填空题11.解:∵抛物线y=ax2(a<0),点B在抛物线上,将B(0.8,﹣2.4),它的坐标代入y=ax2(a<0),求得a=﹣,所求解析式为y=﹣x2.再由条件设D点坐标为(x,﹣0.9),则有:﹣0.9=﹣x2.,解得:x=±,所以宽度为,故答案为:.12.解:以池中心为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.由于在距池中心的水平距离为1m时达到最高,高度为3m,则设抛物线的解析式为:y=a(x﹣1)2+3,代入(3,0)求得:a=﹣(x﹣1)2+3.将a值代入得到抛物线的解析式为:y=﹣(x﹣1)2+3(0≤x≤3);令x=0,则y=﹣+3=2.25.故水管AB的长为2.25m.故答案为:2.25.13.解:设OA右侧的抛物线的解析式为y=a(x﹣3)2+5,∵某市民广场有一个直径16米的圆形喷水池,∴该抛物线过点(8,0),∴0=a(8﹣3)2+5,得a=﹣,∴OA右侧的抛物线的解析式为y=﹣(x﹣3)2+5=x2++,当y=1.8时,1.8=﹣(x﹣3)2+5,得x1=7,x2=﹣1,∵各方向喷出的水柱恰好在喷水池中心的装饰物OA的顶端A处汇合,点A的坐标为(0,),∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心O7米以内,故答案为:7.14.解:设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10,设点B(10,n),点D(5,n+3),由题意:,解得,∴y=﹣x2,当x=5时,y=﹣1,故t==4(h),答:再过4小时水位达到桥拱最高点O.故答案为:4.15.解:∵四边形DEFG是矩形,BC=12,BC上的高AH=8,DE=x,矩形DEFG的面积为y,∴DG∥EF,∴△ADG∽△ABC,∴,得DG=,∴y=x=+12x,故答案为:y=+12x.三.解答题16.解:由图象可以看出:乙种车的刹车距离S乙(m)与车速x(km/h)成正比例关系,则S乙=x,又10<S乙<20,40<v乙<80.再令S甲=0.1x+0.01x2=12,解得:x=30,即v甲=30(km/h).由甲乙的行驶速度分析得知:两车相碰的原因是乙车超速行驶.17.解:由题意可得:OC=0.6m,AB=0.2×6=1.2(m),得点A的坐标为(0.6,0.6),代入y=ax2,得a=,∴抛物线的解析式为y=x2.18.解:(1)设每件小商品应该降价x元,则可售出(200+400x)件,依题意,得:(3﹣2﹣x)(200+400x)=224,整理,得:2x2﹣x+0.12=0,解得:x1=0.3,x2=0.2,∵为了减少库存,∴x=0.3,答:商店若希望获利224元,则应该降价0.3元;(2)设每件应降价y元,利润为w元,w=(3﹣2﹣y)(200+400y)=﹣400y2+200y+200=﹣400(y﹣0.25)2+225,∴当y=0.25时,w取得最大值,此时w=225,即商店若要获得最大利润,应降价0.25元,最大利润是225元.。
2.4 二次函数的应用第1课时利用二次函数解决面积问题类型1 利用二次函数解决简单面积最值问题1.已知一个直角三角形两直角边之和为20 cm,则这个直角三角形的最大面积为(B)A.25 cm2B.50 cm2C.100 cm2D.不确定2.用长8 m的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是(C)A.6425 m2 B.43m2C.83m2 D.4 m23.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x,y分别为(D)A.x=10,y=14B.x=14,y=10C.x=12,y=15D.x=15,y=124.如图,ABCD是一块边长为2 m的正方形铁板,在边AB上选取一点M,分别以AM和MB为边截取两块相邻的正方形板料.当AM的长为1m时,截取两块相邻的正方形板料的总面积最小.5.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体,抽屉底面周长为180 cm,高为20 cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)解:根据题意,得y=20x(90-x).整理,得y=-20x2+1 800x.∵y=-20(x-45)2+40 500,且a=-20<0,∴当x=45时,函数有最大值,y最大=40 500,即当底面的宽为45 cm时,抽屉的体积最大,最大为40 500 cm3.类型2 利用二次函数解决围成图形面积最值问题6.(六盘水中考)如图,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD的最大面积是(C)A.60 m2B.63 m2C.64 m2D .66 m 27.某农场拟建三间长方形养牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m ,则这三间长方形养牛饲养室的总占地面积的最大值为144m 2.8.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27 m ,则能建成的饲养室面积最大为75m 2.9.如图,有两面夹角为45°的墙体(∠ABC=45°),且墙AB =3 2 m ,墙BC =10 m ,小张利用8 m 长的篱笆围成一个四边形菜园,如图,四边形BDEF ,DE∥BC,∠E=90°(靠墙部分不使用篱笆),设EF =x m ,四边形BDEF 的面积为S m 2. (1)用含x 的代数式表示BD ,DE 的长;(2)求出S 关于x 的函数关系式,并写出x 的取值范围; (3)求S 的最大值.解:(1)过点D 作DG⊥BC 于点G. ∵DE∥BC,∠E=90°,∴∠EFG=90°. ∴四边形DEFG 是矩形. ∴DG=EF =x ,∵∠ABC=45°,∴BG=x ,BD =2x. 则DE =8-x.(2)S =(DE +BF )·EF 2=-12x 2+8x ,∵2x≤32, ∴0<x≤3.(3)∵S=-12x 2+8x =-12(x -8)2+32.当x <8时,S 随x 的增大而增大, ∵0<x≤3,∴当x =3时,S 取得最大值,最大值为392.10.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB ,BC 两边),设AB =x m. (1)若花园的面积为192 m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值. 解:(1)∵AB=x m ,则BC =(28-x)m , ∴x(28-x)=192. 解得x 1=12,x 2=16. 答:x 的值为12或16.(2)由题意,得S =x(28-x)=-x 2+28x =-(x -14)2+196. ∵在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,∴⎩⎪⎨⎪⎧x≥6,28-x≥15.解得6≤x≤13. ∴当x =13时,S 取最大值为S =-(13-14)2+196=195. 答:花园面积S 的最大值为195 m 2.易错点 求实际问题中的二次函数最值未考虑取值范围11.用一根长为40 cm 的绳子围成一个面积为a cm 2的长方形,那么a 的值不可能为(D) A .20 B .40 C .100 D .120 类型3 利用二次函数解决动态几何面积的最值问题12.如图,在△ABC 中,∠B=90°,AB =12 mm ,BC =24 mm ,动点P 从点A 开始沿边AB 向B 以2 mm/s 的速度移动(不与点B 重合).动点Q 从点B 开始沿边BC 向C 以4 mm/s 的速度移动(不与点C 重合).如果P ,Q 分别从A ,B 同时出发,那么经过3s ,△PBQ 的面积最大. 综合题13.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80 m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为x m ,矩形区域ABCD 的面积为y m 2.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 为何值时,y 有最大值?最大值是多少?解:(1)∵三块矩形区域的面积相等,∴矩形AEFD 面积是矩形BCFE 面积的2倍.∴AE=2BE.设BE =FC =a ,则AE =HG =DF =2a ,∴DF+FC +HG +AE +EB +EF +BC =80,即8a +2x =80.∴a =-14x +10.∴3a=-34x +30.∴y=(- 34x +30)x =-34x 2+30x.∵a=-14x +10>0,∴x<40.则y =-34x 2+30x(0<x <40).(2)∵y=-34x 2+30x =-34(x -20)2+300(0<x <40),且二次项系数为-34<0,∴当x =20时,y 有最大值,最大值为300平方米.第2课时 利用二次函数解决实物抛物线问题类型1 拱桥(隧道)问题1.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-1400(x -80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,且AC⊥x 轴.若OA =10米,则桥面离水面的高度AC 为(B) A .16940米 B.174米 C .16740米 D.154米 2.如图的一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线.以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线表达式是y =-19(x +6)2+4.3.(·绵阳)如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m ,水面下降2 m ,水面宽度增加(42-4) m.类型2 其他建筑物问题4.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x(单位:米)的一部分,则水喷出的最大高度是(A) A .4米 B .3米 C .2米 D .1米5.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为 1.8 m ,他在不弯腰的情况下,在棚内的横向活动范围是3m.6.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点与地面的距离为0.5米.7.(·德州)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了一个圆形喷水池,在水池中心竖直安装了一根高为2 m 的喷水管,它喷出的抛物线形水柱在水池中心的水平距离为1 m 处达到最高,水柱落地处离池中心3 m.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数表达式;(2)求出水柱的最大高度为多少?解:(1)如图所示:以水管与地面交点为原点,原点与水柱落地点所在直线为x 轴,水管所在直线为y 轴,建立平面直角坐标系.设抛物线的表达式为y =a(x -1)2+h , 代入(0,2)和(3,0),得 ⎩⎪⎨⎪⎧4a +h =0,a +h =2.解得⎩⎪⎨⎪⎧a =-23,h =83.∴抛物线的表达式为y =-23(x -1)2+83,即y =-23x 2+43x +2(0≤x≤3).(2)∵y=-23(x -1)2+83(0≤x≤3),∴当x =1时,y 最大=83.答:水柱的最大高度为83 m.类型3 物体运动类问题8.标枪飞行的路线是一条抛物线,不考虑空气阻力,标枪距离地面的高度h(单位:m)与标枪被掷出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 … h8141820201814…下列结论:①标枪距离地面的最大高度大于20 m ;②标枪飞行路线的对称轴是直线t =92;③标枪被掷出9 s 时落地;④标枪被掷出1.5 s 时,距离地面的高度是11 m ,其中正确的结论有(C) A .1个 B .2个 C .3个 D .4个 9.(·滨州)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y =-5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少? (3)在飞行过程中,小球飞行高度何时最大?最大高度是多少? 解:(1)当y =15时,15=-5x 2+20x ,解得x 1=1,x 2=3.答:在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是1 s 或3 s. (2)当y =0时,0=-5x 2+20x , 解得x 1=0,x 2=4, ∵4-0=4,∴在飞行过程中,小球从飞出到落地所用时间是4 s. (3)y =-5x 2+20x =-5(x -2)2+20, ∴当x =2时,y 取得最大值,y 最大=20.答:在飞行过程中,第2 s 时小球飞行高度最大,最大高度是20 m. 综合题10.(教材P48习题T3变式)如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的平面直角坐标系,抛物线可以用y =-16x 2+bx +c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172m.(1)求抛物线的函数表达式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m ,宽为4 m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m ,那么两排灯的水平距离最小是多少米?解:(1)由题意得:点B 的坐标为(0,4),点C 的坐标为(3,172),代入表达式,得⎩⎪⎨⎪⎧4=-16×02+b×0+c ,172=-16×32+b×3+c.解得⎩⎪⎨⎪⎧b =2,c =4.∴该抛物线的函数表达式为y =-16x 2+2x +4.∵y=-16x 2+2x +4=-16(x -6)2+10,∴拱顶D 到地面OA 的距离为10 m.(2)抛物线的对称轴为直线x =6,汽车宽4 m ,当x =6+4=10时,y =-16×102+2×10+4=223>6,∴这辆货车能安全通过.(3)当y =8时,-16x 2+2x +4=8,即x 2-12x +24=0,解得x 1=6+23,x 2=6-2 3.∴两排灯的水平距离的最小值为6+23-(6-23)=43(m).第3课时利用二次函数解决利润问题类型1 简单销售问题中的最大利润1.某公司的生产利润原来是a万元,经过连续两年的增长达到了y万元,如果每年增长的百分率都是x,那么y与x的函数关系是(D)A.y=x2+aB.y=a(x-1)2C.y=a(1-x)2D.y=a(1+x)22.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,可卖出(350-10x)件商品,则商品所获利润y元与售价x元之间的函数关系为(B)A.y=-10x2-560x+7 350B.y=-10x2+560x-7 350C.y=-10x2+350xD.y=-10x2+350x-7 3503.生产节性产品的企业,当它的产品无利润时就会及时停产.现有一生产节性产品的企业,其一年中获得的利润y和月份n之间的函数关系式为y=-n2+14n-24,则该企业一年中应停产的月份是(C) A.1月、2月、3月 B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月4.我市某镇的一种特产由于运输原因,只能长期在当地销售.当地政府对该特产的销售投资与收益的关系为:每投入x万元,可获得利润P=-1100(x-60)2+41(万元).每年最多可投入100万元的销售投资,则5年所获利润的最大值是205万元.5.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为25元.类型2 每……每……问题6.喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x元(x为正整数),每星期销售该商品的利润为y元,则y与x的函数表达式为(A)A.y=-10x2+100x+2 000B.y=10x2+100x+2 000C.y=-10x2+200xD.y=-10x2-100x+2 0007.一件工艺品的进价为100元,标价135元出售,每天可售出100件,根据销售统计,一件工艺品每降价1元,则每天可多售出4件,要使每天获得的利润最大,则每件需降价(B) A .3.6元 B .5元 C .10元 D .12元8.某水果店销售一批水果,每箱进价为40元,售价为60元,每天可卖50箱,则一天的销售利润为1__000元.由于积压时间不能太长,所以该店决定降价售出,若每降价5元,则每天可多售出10箱.若现在售价为x 元(40<x <60),则现在每天可多卖出(120-2x)箱,每天共卖出(170-2x)箱,每箱的利润为(x -40)元,即每天的总利润为(x -40)(170-2x)元.9.(教材P50习题T2变式)某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.设果园增种x 棵橘子树,果园橘子总个数为y 个,则果园里增种10棵橘子树,橘子总个数最多.10.(·衡阳)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示. (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少? 解:(1)设y 与x 的函数关系式为y =kx +b.将(10,30),(16,24)代入,得⎩⎪⎨⎪⎧10k +b =30,16k +b =24.解得⎩⎪⎨⎪⎧k =-1,b =40.∴y 与x 的函数关系式为y =-x +40(10≤x≤16). (2)根据题意知,W =(x -10)y =(x -10)(-x +40) =-x 2+50x -400 =-(x -25)2+225. ∵a=-1<0,∴当x <25时,W 随x 的增大而增大, ∵10≤x≤16,∴当x =16时,W 取得最大值,最大值为144.答:当每件销售价为16元时,每天的销售利润最大,最大利润是144元.11.(·安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元; ②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为W 1,W 2(单位:元).(1)用含x 的代数式分别表示W 1,W 2;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少? 解:(1)第二期培植的盆景比第一期增加x 盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意,得W 1=(50+x)(160-2x)=-2x 2+60x +8 000,W 2=19(50-x)=-19x +950.(2)W =W 1+W 2=-2x 2+60x +8 000+(-19x +950)=-2x 2+41x +8 950.∵-2<0,-412×(-2)=10.25,x 为整数, ∴当x =10时,W 最大,W 最大=-2×102+41×10+8 950=9 160(元).12.某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y 1(元)与销售时间第x 月之间存在如图1所示(一条线段)的变化趋势,每千克成本y 2(元)与销售时间第x 月满足函数表达式y 2=mx 2-8mx +n ,其变化趋势如图2所示.(1)求y 2的表达式;(2)第几月销售这种水果,每千克所获得的利润最大?最大利润是多少?解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7.解得⎩⎪⎨⎪⎧m =18,n =638.∴y 2的表达式为y 2=18x 2-x +638(1≤x≤12). (2)设y 1=kx +b.∵函数y 1的图象过(4,11),(8,10)两点,∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10.解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的表达式为y 1=-14x +12(1≤x≤12). 设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638) =-18x 2+34x +338, ∴w=-18(x -3)2+214(1≤x≤12). ∴当x =3时,w 取最大值214. 答:第3月销售这种水果,每千克所获得的利润最大,最大利润是214元/千克.。
X>O时,函数值y随X的增取得最小值,最小值y=______
根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)
各组选派代表发表意见,全班交流,达成共识:从“形”的方面看,函数y=x2-x
强化练习:
作业必做教科书P31:1-9
学生活动:学生先自主分析,然后小组讨论交流。
教师归纳:2.归纳二次函数三种解析式的实际应用。
表示毛利润S;②试问销售单价定为多少
相似多边形的特征:相似多边形的对应角相等,对应边的比相等.
反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相。
二次函数的应用一课一练·基础闯关题组最优化问题1.(教材变形题·P49随堂练习)某产品进货单价为90元,按100元一件出售时,能售出500件,若每件涨价1元,则销售量就减少10件.则该产品能获得的最大利润为( )A.5 000元B.8 000元C.9 000元D.10 000元【解析】选C.设单价定为x元,总利润为W,则可得销量为500-10,单件利润为:(x-90),由题意得,W==-10x2+2400x-135000=-10+9000,所以当x=120时,W取得最大,为9000元.2.已知某店铺出售的毛绒玩具每件的进价为30元,在某段时间内若以每件x元(30≤x≤50,且x为整数)出售,可卖出(50-x)件,若要使该店铺销售该玩具的利润最大,每件的售价为世纪金榜导学号18574073( )【解析】选B.设总利润为y,由题意,得y=,∴y=-x2+80x-1500,∴y=-+100.∴-1<0,∴x=40时,y最大=100.3.一枚炮弹射出x秒后的高度为y米,且y与x之间的关系为y=ax2+bx+c(a≠0),若此炮弹在第3.2秒与第5.8秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )【解析】选D.∵炮弹在第3.2秒与第5.8秒时的高度相等,∴抛物线的对称轴方程为x=4.5.∵4.6s最接近4.5s,∴当x=4.6s时,炮弹的高度最高.4.某超市销售某种玩具,进货价为20元.根据市场调查:在一段时间内,销售单价是30元时,销售量是400件,而销售单价每上涨1元,就会少售出10件玩具,超市要完成不少于300件的销售任务,又要获得最大利润,则销售单价应定为__________元. 世纪金榜导学号18574074【解析】设销售单价应定为x元,根据题意可得:利润===-10x2+900x-14000=-10+6250,∵超市要完成不少于300件的销售任务,∴400-10≥300,解得:x≤40.即x=40时,销量为300件,此时利润最大为:-10+6250=6000(元),故销售单价应定为40元.答案:405.(2017·某某中考)某商场购进一批单价为20元的日用商品.如果以单价30元销售,那么半月内可销售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是________元时,才能在半月内获得最大利润.世纪金榜导学号18574075 【解析】设销售单价为x元,销售利润为y元.根据题意,得:y=(x-20)[400-20(x-30)]=(x-20)(1000-20x)=-20x2+1400x-20000=-20(x-35)2+4500,∵-20<0,∴x=35时,y有最大值.答案:356.(2017·某某中考)某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式.(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.【解析】(1)根据题意得:y=40[70x-35(20-x)]+130×35(20-x)=-350x+63000.(2)因为70x≥35(20-x),解得x≥,又因为x正整数,且x≤20.所以7≤x≤20,且x为正整数.因为-350<0,所以y的值随着x的值增大而减小,所以当x=7时,y取最大值,最大值为-350×7+63000=60550. 答:安排7名工人进行采摘,13名工人进行加工,才能使一天的销售收入最大,最大收入为60550元.7.(2017·某某市模拟)有一种螃蟹,从河里捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式.(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于x的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额-收购成本-费用),最大利润是多少?【解析】(1)由题意知:P=30+x.(2)由题意知:活蟹的销售额为(30+x)元,死蟹的销售额为200x元.∴Q=+200x=-10x2+900x+30000.(3)设总利润为L=Q-30000-400x=-10x2+500x,=-10=-10=-10(x-25)2+6250.当x=25时,总利润最大,最大利润为6250元.(2017·某某模拟)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.世纪金榜导学号18574076投资量x(万元) 2种植树木利润y1(万元) 4种植花卉利润y2(万元) 2(1)分别求出利润y1与y2关于投资量x的函数关系式.(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少? (3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的X围.【解析】(1)设y1=kx,由表格数据可知,函数y1=kx的图象过(2,4),∴4=k·2,解得:k=2,故利润y1关于投资量x的函数关系式是y1=2x(x≥0)设y2=ax2.由表格数据可知,函数y2=ax2的图象过(2,2),∴2=a·22,解得:a=,故利润y2关于投资量x的函数关系式是y2=x2(x≥0).(2)因为投入种植花卉m万元(0≤m≤8),则投入种植树木(8-m)万元, W=2(8-m)+m2=m2-2m+16=+14,∵a=>0,0≤m≤8,∴当m=2时,W的最小值是14,∵a=>0,∴当m>2时,W随m的增大而增大.∵0≤m≤8,∴当m=8时,W的最大值是32.答:他至少获得14万元利润,他能获取的最大利润是32万元.(3)根据题意,当W=22时,+14=22,解得:m=-2(舍)或m=6,故:6≤m≤8.。
课时作业(十五)[第二章 4 第1课时最大面积问题]一、选择题1.2017·南通一模为搞好环保,某公司准备修建一个长方体的污水处理池,矩形池底的周长为100 m,则池底的最大面积是( )A.600 m2 B.625 m2C.650 m2 D.675 m22.用长8 m的铝合金条制成如图K-15-1所示形状的矩形窗框,这个窗户的最大透光面积为( )图K-15-1A.6425m2 B.43m2C.83m2 D.4 m2二、填空题3.如图K-15-2,在长度为1的线段AB上取一点P,分别以AP,BP为边作正方形,则这两个正方形面积之和的最小值为________.图K-15-24.某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图K-15-3),已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为________m2.链接听课例题归纳总结图K-15-35.如图K-15-4,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A 开始沿AB方向以2 mm/s的速度向点B移动(不与点B重合),动点Q从点B开始沿BC方向以4 mm/s的速度向点C移动(不与点C重合).如果P,Q分别从A,B两点同时出发,那么经过________s,四边形APQC的面积最小.图K-15-46.某工厂大门是抛物线形水泥建筑,如图K-15-5,大门地面宽为4 m,顶部距离地面的高度为4.4 m,现有一辆满载货物的汽车欲通过大门,其装货宽度为2.4 m,该车要想通过此门,装货后的最大高度应是________m.图K-15-5三、解答题7.如图K-15-6所示,矩形ABCD的两边长AB=18 cm,AD=4 cm,点P,Q分别从点A,B同时出发,点P在边AB上沿AB方向以每秒2 cm的速度匀速运动,点Q在边BC上沿BC方向以每秒1 cm的速度匀速运动.当其中一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y cm2.(1)求y关于x的函数表达式,并写出x的取值范围;(2)求△PBQ的面积的最大值.链接听课例题归纳总结图K-15-68.2018·福建在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知矩形菜园的边AD靠墙,其中AD≤MN,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.9.如图K-15-7,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC 边上,点E ,F 分别在AB ,AC 上,AD 交EF 于点H .(1)求证:AH AD =EF BC;(2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求出最大面积.图K -15-710.如图K -15-8①是一个拱形桥,该拱形桥及河道截面的示意图如图②所示,该示意图由抛物线的一部分ABC (B 是该抛物线的顶点)和矩形的三边AO ,OD ,CD 组成.已知河底OD 是水平的,OD =10 m ,CD =8 m ,点B 到河底的距离是点A 到河底的距离的1.5倍.以OD 所在的直线为x 轴,OA 所在的直线为y 轴建立平面直角坐标系.(1)求点B 的坐标及抛物线的表达式;(2)一行人走在该拱形桥上面,他不小心把帽子掉进了河里的点M 处(漂在河面上),该行人在A 处用一根2.5 m 长的木棍恰好能钩到距离点E 1.5 m 的帽子,求此时河水的高度.图K -15-8动点探究题如图K -15-9,抛物线y =-12x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (-1,0),C (0,2).(1)求抛物线的表达式.(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出点P 的坐标;如果不存在,请说明理由.(3)E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,△CBF 的面积最大?求出△CBF 的最大面积及此时点E 的坐标.图K -15-9详解详析【课时作业】 [课堂达标]1.[解析] B 设矩形的一边长为x m ,则其邻边长为(50-x )m ,若面积为S m 2,则 S =x (50-x )=-x 2+50x =-(x -25)2+625. ∵-1<0,∴S 有最大值.当x =25时,S 有最大值为625. 故选B.2.[解析] C 设窗框水平的边长为x m ,则竖直的边长为8-3x2 m ,∴S =8-3x 2·x =-32x 2+4x =-32(x -43)2+83(0<x <83).∴当x =43时,S 最大值=83,即这个窗户的最大透光面积是83 m 2.3.[答案] 12[解析] 设AP =x ,则PB =1-x .根据题意,得这两个正方形面积之和为x 2+(1-x )2=2x 2-2x +1=2⎝ ⎛⎭⎪⎫x -122+12.因为a =2>0,所以当x =12时,这两个正方形面积之和有最小值,最小值为12.故答案为12.4.[答案] 1445.[答案] 3[解析] 设P ,Q 同时出发后,经过的时间为t s(0<t <6),四边形APQC 的面积为S mm 2,则有S =S △ABC -S △PBQ =12×12×24-12×4t ×(12-2t )=4t 2-24t +144=4(t -3)2+108.∵4>0,∴当t =3时,S 取得最小值.6.[答案] 2.816[解析] 建立如图所示的平面直角坐标系,设抛物线的表达式为y =ax 2,由题意得:点A 的坐标为(2,-4.4),∴-4.4=4a ,解得a =-1.1,∴抛物线的表达式为y =-1.1x 2,当x =1.2时,y =-1.1×1.44=-1.584,∴线段OB 的长为1.584 m ,∴BC =4.4-1.584=2.816(m),∴装货后的最大高度为2.816 m ,故答案为2.816.7.[解析] 先运用三角形的面积公式求出y 关于x 的函数表达式,然后运用公式法或配方法把函数表达式化成顶点式,再根据x 的取值范围求所得函数的最大值,进而解决问题.解:(1)∵S △PBQ =12PB ·BQ ,PB =AB -AP =18-2x ,BQ =x ,∴y =12(18-2x )x ,即y =-x 2+9x (0<x ≤4).(2)由(1)知y =-x 2+9x , ∴y =-(x -92)2+814.∵当0<x ≤92时,y 随x 的增大而增大,而0<x ≤4,∴当x =4时,y 最大值=20,即△PBQ 的面积的最大值是20 cm 2.8.[解析] (1)设AB =x m ,则BC =(100-2x )m ,利用矩形的面积公式得到x (100-2x )=450,解方程得x 1=5,x 2=45,然后计算100-2x 后与20进行大小比较即可得到AD 的长;(2)设AD =y m ,利用矩形面积公式得到S =12y (100-y ),配方得到S =-12(y -50)2+1250,讨论:当a ≥50时,根据二次函数的性质得S 的最大值为1250;当0<a <50时,则当0<y ≤a 时,根据二次函数的性质得S 的最大值为50a -12a 2.解:(1)设AB =x m ,则BC =(100-2x )m ,根据题意得x (100-2x )=450,解得x 1=5,x 2=45. 当x =5时,100-2x =90>20,不合题意,舍去; 当x =45时,100-2x =10.答:所利用旧墙AD 的长为10 m. (2)设AD =y m ,∴S =12y (100-y )=-12(y -50)2+1250,若a ≥50,则当y =50时,S 的最大值为1250;若0<a <50,则当0<y ≤a 时,S 随y 的增大而增大,当y =a 时,S 的最大值为50a -12a 2. 综上所述,当a ≥50时,矩形菜园ABCD 面积的最大值为1250平方米;当0<a <50时,矩形菜园ABCD 面积的最大值为(50a -12a 2)平方米.9.解:(1)证明:在矩形EFPQ 中,EF ∥PQ , ∴∠AEF =∠B ,∠AFE =∠C , ∴△AEF ∽△ABC .又∵AD ⊥BC ,EF ∥PQ ,∴AH ⊥EF , ∴AH AD =EF BC .(2)设矩形EFPQ 的面积为y . ∵AH AD =EFBC ,∴AH 4=x5, ∴AH =45x ,∴DH =4-45x ,∴y =-45x 2+4x =-45(x -52)2+5(0<x <5).又∵a =-45<0,∴当x =52时,y 有最大值5.即当x =52时,矩形EFPQ 的面积最大,最大面积为5.10.解:(1)由题意可得:AO =CD =8 m ,所以点B 的纵坐标为1.5×8=12,则点B 的坐标为(5,12).设抛物线的表达式为y =a (x -5)2+12, 将A (0,8)代入表达式,得8=a (0-5)2+12,解得a =-425,故抛物线的表达式为y =-425(x -5)2+12,即y =-425x 2+85x +8. (2)连接AM ,由题意可得AM =2.5 m ,EM =1.5 m ,在Rt △AEM 中,AE =AM 2-EM 2=2(m), 则EO =8-2=6(m),故此时河水的高度为6 m. [素养提升][解析] (1)把A (-1,0),C (0,2)代入y =-12x 2+bx +c 列方程组即可;(2)先求出CD 的长,分两种情形:①当CP =CD 时,②当DC =DP 时,分别求解即可; (3)求出直线BC 的表达式,设E (m ,-12m +2),则F (m ,-12m 2+32m +2),构建二次函数,利用二次函数的性质即可解决问题.解:(1)把A (-1,0),C (0,2)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧-12-b +c =0,c =2,解得⎩⎪⎨⎪⎧b =32,c =2,∴抛物线的表达式为y =-12x 2+32x +2.(2)存在.如图①, ∵C (0,2),D (32,0),∴OC =2,OD =32,CD =OD 2+OC 2=52.当CP =CD 时,可得P 1(32,4).②当CD =DP 时,可得P 2(32,52),P 3(32,-52).综上所述,满足条件的点P 的坐标为(32,4)或(32,52)或(32,-52).(3)如图②,对于抛物线y =-12x 2+32x +2,当y =0时,-12x 2+32x +2=0,解得x 1=4,x 2=-1,∴B (4,0).由B (4,0),C (0,2)得直线BC 的表达式为y =-12x +2.设E (m ,-12m +2),则F (m ,-12m 2+32m +2),∴EF =(-12m 2+32m +2)-(-12m +2)=-12m 2+2m =-12(m -2)2+2.∵-12<0,∴当m =2时,EF 有最大值2, 此时E 是BC 的中点,即当点E 运动到BC 的中点时,△CBF 的面积最大, △CBF 的最大面积=12×4×2=4,此时E (2,1).。