二元一次方程组专项练习—解答题(单独)
- 格式:doc
- 大小:813.50 KB
- 文档页数:17
实用文档标准二元一次方程组练习题一.解答题(共16小题) 1.解下列方程组 (1)(2)(3))(6441125为已知数a a y x ay x ⎩⎨⎧=-=+ (4)(5)(6).(7)(8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9)(10) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x2.求适合的x ,y 的值.3.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值. (3)当x 为何值时,y=3?1.解下列方程组(1)(2);(3);(4)(5).(6)(7)(8)(9)(10);2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.word版本二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x ﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.word版本专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x ,y 的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.word 版本(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.word版本10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y )+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.word版本专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;word版本2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.word版本。
单元测试(四) 二元一次方程组(时间:45分钟满分:100分) 一、选择题(每小题3分,共24分)1.已知3,2xy=-=⎧⎨⎩是方程2x+ky=4的一个解,则k的值是( )A.2B.3C.4D.52.方程3x+2y=15的自然数解有( )A.1个B.2个C.3个D.无数个3.若a+b=3,a-b=7,则ab=( )A.-10B.-40C.10D.404.方程组224x yx y-=+=⎧⎨⎩,的解是( )A.12xy==⎧⎨⎩B.31xy==⎧⎨⎩C.2xy==-⎧⎨⎩D.2xy==⎧⎨⎩5.如果3a7x b y+7和-7a2-4y b2x是同类项,那么x,y的值是( )A.x=-3,y=2B.x=2,y=-3C.x=-2,y=3D.x=3,y=-26.以二元一次方程组37,1x yy x+=-=⎧⎨⎩的解为坐标的点(x,y)在平面直角坐标系的( )A.第一象限B.第二象限C.第三象限D.第四象限7.小亮解方程组2212x yx y+=-=⎧⎨⎩●,的解为5xy==⎧⎨⎩,★,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为( )A.82==⎧⎨⎩●★B.82==-⎧⎨⎩●★C.82=-=⎧⎨⎩●★D.82=-=⎨-⎧⎩●★8.成渝路内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇.相遇时,小汽车比小客车多行驶20千米.设小汽车和客车的平均速度分别为x千米/小时和y千米/小时,则下列方程组正确的是( )A.207717066x yx y+=+=⎧⎪⎨⎪⎩B.207717066x yx y-=+=⎧⎪⎨⎪⎩C.207717066x yx y+=-=⎧⎪⎨⎪⎩D.77170 667720 66x yx y+=-=⎧⎪⎪⎨⎪⎪⎩二、填空题(每小题4分,共16分)9.若一个二元一次方程的解为2,1,xy==-⎧⎨⎩则这个方程可以是__________(只要求写出一个).10.用加减消元法解方程组31,421,x yx y+=-=⎨+⎧⎩①②由①×2-②得__________.11.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为__________元.12.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为__________.三、解答题(共60分)13.(10分)解方程组:(1)21,3211x yx y+=-=⎧⎨⎩①;②(2)()()()3223,21.3412x y x yx y x y+--=⎧-+-=-⎪⎨⎪⎩14.(8分)已知2,3xy==-⎧⎨⎩是关于x,y的二元一次方程3x=y+a的解,求a(a-1)的值.15.(8分)已知关于x,y的方程组5,4522x yax by+=+=-⎧⎨⎩与21,80x yax by-=--=⎧⎨⎩有相同的解,求a,b的值.16.(10分)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间.17.(12分)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮助算算,用哪种方式购票更省钱?18.(12分)小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)用含x,y的式子表示地面总面积;(2)已知客厅面积比卫生间面积多21 m2,且地面总面积是卫生间面积的15倍.若铺1 m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?参考答案1.D2.C3.A4.D5.B6.A7.B8.D9.如x+y=1 10.2x=-3 11.440 12.9613.(1)①+②,得4x=12.解得x=3.把x=3代入①,得3+2y=1.解得y=-1.所以原方程组的解是3,1. xy==-⎧⎨⎩(2)原方程组整理得:53,511 1.y x x y ⎨-=-=-⎧⎩①② 由①,得x=5y-3.③把③代入②,得25y-15-11y=-1.解得y=1. 将y=1代入③,得x=5×1-3=2.所以原方程组的解为2,1.x y ==⎧⎨⎩14.∵2,3x y ==-⎧⎨⎩是关于x,y 的二元一次方程3x=y+a 的解, ∴3×2=-3+a.解得a =9.∴a(a-1)=9×(9-1)=72.15.由题意可将x+y=5与2x-y=1组成方程组5,2 1.x y x y +=-=⎧⎨⎩解得2,3.x y ==⎧⎨⎩把2,3x y ==⎧⎨⎩代入4ax+5by=-22,得8a+15b=-22.① 把2,3x y ==⎧⎨⎩代入ax-by-8=0,得2a-3b-8=0.② ①与②组成方程组,得81522,2380.a b a b +=---=⎧⎨⎩解得1,2.a b==-⎧⎨⎩ 16.设大宿舍有x 间,小宿舍有y 间.根据题意,得 5086360.x y x y +=+=⎧⎨⎩,解得30,20.x y ==⎧⎨⎩ 答:大宿舍有30间,小宿舍有20间.17.(1)设去了x 个成人,y 个学生,依题意,得12,40400.5400.x y x y +=+⨯=⎧⎨⎩解得8,4.x y ==⎧⎨⎩ 答:他们一共去了8个成人,4个学生.(2)若按团体票购票:16×40×0.6=384(元).∵384<400,∴按团体票购票更省钱.18.(1)地面总面积为:6x+2y+18(m2).(2)由题意,得6221,6218152.x yx y y-=++=⨯⎧⎨⎩解得4,3.2xy⎧==⎪⎨⎪⎩∴地面总面积为:6x+2y+18=6×4+2×32+18=45(m2).∴铺地砖的总费用为:45×80=3 600(元).。
二元一次方程组练习题(含答案) 二元一次方程组练题一.解答题(共16小题)1.解下列方程组:1)x+2y-1=23x-2y=52)1-yx+2/3=1/22y+3=3x3)5x+2y=11a4x-4y=6a4)2x+3y=73x-2y=15)2x-3y=75x+4y=176)2x+3y=13x-2y=57)3x-4y=-12x+5y=138)x(y+1)+y(1-x)=2x(x+1)-y-x^2=09)3x+y=72x-3y=-810)x^2+xy=2y-x+2=02.求适合的x,y的值。
已知关于x,y的二元一次方程y=kx+b的解有和。
1)求k,b的值。
2)当x=2时,y的值。
3)当y=3时,x的值为多少?解答:1.1)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=3,y=-2.2)将第一个方程变形得到y=(1/2-1+xy)/x,代入第二个方程中,得到x=3,y=-1.3)将第二个方程变形得到y=x-3/2,代入第一个方程中,得到x=2,y=1.4)将第二个方程变形得到y=(3x-1)/2,代入第一个方程中,得到x=2,y=1.5)将第一个方程变形得到y=(2x-7)/3,代入第二个方程中,得到x=1,y=-1.6)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=1,y=-1.7)将第二个方程变形得到y=(3x+1)/4,代入第一个方程中,得到x=5,y=2.8)将第一个方程变形得到y=(2-x^2)/(1-x),代入第二个方程中,得到x=1,y=1.9)将第二个方程变形得到y=(2x+8)/3,代入第一个方程中,得到x=1,y=1.10)将第一个方程变形得到y=2/x-x,代入第二个方程中,得到x=1,y=0.2.1)由于y=kx+b,所以当x=1时,y=k+b;当x=2时,y=2k+b。
又因为已知y=3时,x的值为多少,所以将y=kx+b代入得到kx+b=3,解得x=(3-b)/k。
初中数学专项练习《二元一次方程组》100道解答题包含答案一、解答题(共100题)1、南山植物园以其优美独特的自然植物景观,现已成为重庆市民春游踏青、赏四季花卉、观山城夜景的重要旅游景区.若该植物园中现有A、B两个园区,已知A园区为矩形,长为(x+y)米,宽为(x﹣y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A、B两园区的面积之和并化简;(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如下表:C D投入(元/平方米)13 16收益(元/平方米)18 26求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)2、某一天,蔬菜经营户花90元从蔬菜批发市场批发了黄瓜和茄子共,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价/(元2.4 2)零售价/(元3.6 2.8)他当天卖完这些黄瓜和茄子可赚多少元钱?3、已知方程组的解满足x+y=-1,求k的值。
4、解方程组:5、甲、乙两人同求方程ax﹣by=7的整数解,甲求出一组解为,而乙把ax﹣by=7中的7错看成1,求得一组解为,试求a、b的值.6、已知方程组,王芳看错了方程(1)中的a,得到的方程组的解为,李明看错了方程(2)中的b,得到的方程组的解为,求原方程组的解.7、为了净化空气,美化环境,我县城兴华小区计划投资1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?8、敦煌莫高窟是世界上现存最完好的石窟艺术宝库,是重要的爱国主义教育基地,某校组织八年级540名学生去莫高窟研学参观,现租用大、小两种客车共10辆,恰好能一次性运完全部学生.已知这两种车的限载人数分别为40人和60人,求这两种客车各租用多少辆?9、请阅读求绝对值不等式和的解集过程.对于绝对值不等式,从图1的数轴上看:大于-3而小于3的绝对值是是小于3的,所以的解集为;对于绝对值不等式,从图2的数轴上看:小于-3而大于3的绝对值是是大于3的,所以的解集为或.已知关于x、y的二元一次方程组的解满足,其中m是负整数,求m的值.10、已知2a-1的算术平方根是3,3a+b-1的立方根是2,求a-2b的平方根。
二元一次方程组计算题60题(含答案)一、解答题1. \(x+y=15, x-y=5\),求\(x,y\)的值。
解:将方程组相加得\(2x=20\),解得\(x=10\),代入其中一个方程得\(10+y=15\),解得\(y=5\),所以\(x=10, y=5\)。
2. \(2x+y=9, x-3y=-3\),求\(x,y\)的值。
解:将方程组相加得\(3x-2y=6\),解得\(y=-3\),代入其中一个方程得\(2x+(-3)=9\),解得\(x=6\),所以\(x=6, y=-3\)。
3. \(3x-2y=1, 2x+y=5\),求\(x,y\)的值。
解:将方程组相加得\(5x-y=6\),解得\(y=3\),代入其中一个方程得\(2x+3=5\),解得\(x=1\),所以\(x=1, y=3\)。
4. \(x+2y=6, 2x-y=1\),求\(x,y\)的值。
解:将方程组相加得\(3x+y=7\),解得\(y=1\),代入其中一个方程得\(x+2=6\),解得\(x=4\),所以\(x=4, y=1\)。
5. \(3x+2y=11, 4x+3y=15\),求\(x,y\)的值。
解:将方程组相加得\(7x+5y=26\),解得\(y=1\),代入其中一个方程得\(3x+2=11\),解得\(x=3\),所以\(x=3, y=1\)。
6. \(x-y=7, x+y=3\),求\(x,y\)的值。
解:将方程组相加得\(2x=10\),解得\(x=5\),代入其中一个方程得\(5-y=7\),解得\(y=-2\),所以\(x=5, y=-2\)。
7. \(2x+y=8, x-2y=-6\),求\(x,y\)的值。
解:将方程组相加得\(3x-y=2\),解得\(y=1\),代入其中一个方程得\(2x+1=8\),解得\(x=3\),所以\(x=3, y=1\)。
8. \(3x-2y=2, 4x+y=5\),求\(x,y\)的值。
二元一次方程组专题练习(含答案在卷尾)一、选择题(本大题共37小题,共111.0分)1. 对于非零的两个实数m ,n ,定义一种新运算,规定m ∗n =am −bn ,若2∗(−3)=8,5∗3=−1,则(−3)∗(−2)的值为( )A. 1B. −1C. −6D. 62. 通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( )A. {x15−15=y x12+12=yB. {x15+15=y x12−12=yC. {x15−2460=y x 12−1560=y D. {x15+2460=y x 12−1560=y 3. 爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下时刻9:009:4512:00碑上的数是一个两位数,数字之和是9十位与个位数字与9:00时所看到的正好相反比9:00时看到的两位数中间多了个09:00时看到的两位数是( )A. 54B. 45C. 36D. 274. 小明在解关于x 、y 的二元一次方程组{x +⊗y =3,3x −⊗y =1时得到了正确结果{x =⊕,y =1. 后来发现“⊗”“⊕”处被墨水污损了,请你帮他找出⊗、⊕处的值分别是( )A. ⊗= 1,⊕= 1B. ⊗= 2,⊕ = 1C. ⊗= 1,⊕ = 2D. ⊗= 2,⊕= 25. 如图,其中直线上每个点的坐标都是二元一次方程2x −y =2的解的是( )A. B.C. D.6. 《九章算术》中记载:“今有善田一亩,价三百,恶田七亩,价五百.今并买一頃,价钱一万.问善、恶田各几何?”其大意是:今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田共1顷(1顷=100亩),价线10000钱.问好、坏田各买了多少亩?设好田买了x 亩,坏田买了y 亩,根据题意可列方程组为( )A. {x +y =300100x +5007y =10000B. {x +y =100300x +5007y =10000C. {x +y =1005007x +300y =10000 D. {x +y =100500x +3007y =100007. 足球比赛中,每场比赛都要分出胜负,每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x ,负的场数为y ,则可列方程组为( )A. {x +y =83x −y =12B. {x −y =83x −y =12C. {x +y =183x +y =12D. {x −y =83x +y =128. 夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A. {x +y =5300200x +150y =30 B. {x +y =5300150x +200y =30 C. {x +y =30200x +150y =5300D. {x +y =30150x +200y =53009. 一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x 米,宽为y 米,根据题意,得( )A. {x =3y,x +3=y −4.B. {x =3y,x −3=y +4.C. {3x =y,x −3=y +4.D. {3x =y,x +3=y −4.10. 已知{x =2y =m 是二元一次方程5x +3y =1的一组解,则m 的值是( )A. 3B. −3C. 113D. −11311. 小明和小莉出生于2000年12月份,他们的生日不是同一天,但都是星期一,且小明比小莉出生早,两人出生日期和是22,那么小莉的生日是( )A. 15号B. 16号C. 17号D. 18号12. 在下列方程中:①3x +13=8;②x−23+2y =4;③3x +3y =1;④x 2=5y +1;⑤y =x ;⑥2(x −y )−3(x +y2)=x +y ,是二元一次方程的有( )A. 2个B. 3个C. 4个D. 5个13. 下列说法中正确的是( )A. 二元一次方程只有一个解B. 二元一次方程组有无数个解C. 二元一次方程组的解必是它所含的二元一次方程的公共解D. 判断一组解是否为二元一次方程组的解,只需代入其中一个二元一次方程即可14. 若方程组{x −y =02ax +by =4与方程组{2x +y =3ax +by =3有相同的解,则a 、b 的值分别为( ) A. 1,2B. 1,0C. 13,−23D. −13,2315. 用加减法解方程组{3x −4y =10 ①5x +6y =42 ②,先消去y ,需要用( )A. ①×3+②×2B. ①×3−②×2C. ①×4+②×6D. ①+② 16. 已知方程组{3x −17y =12.37x −13y =18.7,则x +y 的值为( )A. 6.4B. −6.4C. 1.6D. −1.617. 用加减法解方程组{2x −3y =53x +2y =−4时,下列变形正确的是( )A. {6x −9y =56x +4y =−4 B. {4x −6y =109x +6y =−12 C. {6x −3y =156x +2y =−12D. {2x −6y =103x +6y =−1218. 已知方程组{2x +y =3x −2y =5,则2x +6y 的值是( )A. −2B. 2C. −4D. 419. 某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有( )种.A. 3B. 4C. 5D. 620. 我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为( )A. {y =x +4.50.5y =x −1B. {y =x +4.5y =2x −1C. {y =x −4.50.5y =x +1D. {y =x −4.5y =2x −121. 某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A. {x +7y =16x +13y =28 B. {x +(7−2)y =16x +13y =28C. {x +7y =16x +(13−2)y =28 D. {x +(7−2)y =16x +(13−2)y =2822. 用加减法解方程组{2a +2b =3, ①3a +b =4, ②,最简单的方法是( )A. ①×3−②×2B. ①×3+②×2C. ①+②×2D. ①−②×223. 已知关于x 、y 的二元一次方程组{2x +y =ax −y =3的解为{x =5y =b ,则a +b 的值为( )A. 14B. 10C. 9D. 824. 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A. {7x +7=y9(x −1)=yB. {7x +7=y9(x +1)=yC. {7x −7=y9(x −1)=yD. {7x −7=y9(x +1)=y25. 已知方程组{a −b =62a +b =m中,a ,b 互为相反数,则m 的值是( )A. 0B. −3C. 3D. 926. 一只笼子装有鸡和兔共有10个头,34只脚,每只鸡有两只脚,每只兔有四只脚.设鸡有x 只,兔有y 只,则可列二元一次方程组( )A. {x +y =102x +4y =34 B. {x +y =102x +2y =34 C. {x +y =104x +4y =34D. {x +y =104x +2y =3427. 某校在配备现代化教学设备时,计划购买多媒体教学一体机和学生电脑共120台.已知多媒体教学一体机每8000元,学生电脑每台2500元,若购买这两种设备共花费52万元,求学校购买多媒体教学一体机和学生电脑各多少台?设购买多媒体教学一体机x 台、学生电脑y 台,根据题意列出的方程组正确的是( )A. {x +y =1208000x +2500y =52 B. {x +y =1200.8x +0.25y =52 C. {x +y =520.8x +0.25y =120D. {x +y =1208000x +2500y =5200028. 根据如图提供的信息,小红去商店买一只水瓶和一只杯子应付( )A. 30元B. 32元C. 31元D. 34元29. 如图,由七个完全一样的小长方形组成的大长方形ABCD ,CD =7,长方形ABCD 的周长为( )A. 32B. 33C. 34D. 3530. 如图,直线a//b ,∠1的度数比∠2的度数大56°,若设∠1=x°,∠2=y°,则可得到的方程组为( )A. {x =y −56x +y =180 B. {x =y +56x +y =180C. {x =y −56x +y =90 D. {x =y +56x +y =9031. 若二元一次方程3x −y −7=0,2x +3y −1=0和2x +y −m =0有公共解,则m 的取值为( )A. −2B. −1C. 3D. 432. 已知{x =−2y =n 是二元一次方程mx +4y =2的一个解,则代数式m −2n 的值为( )A. −2B. 2C. −1D. 133. 《九章算术》中的方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为x 两,y 两,列方程组为( )A. {x +y =164x +y =x +5y B. {5x +6y =165x +y =x +6y C. {5x +6y =164x +y =x +5yD. {6x +5y =165x +y =x +6y34. 若二元一次方程组{ax +2y =13x +y =3有唯一解,则a 的值为( )A. a ≠0B. a ≠6C. a =0D. a 为任意数35. 方程组{2x +y =◼x +y =3的解为{x =2y =◼,则被遮盖的前后两个数分别为( )A. 1、2B. 1、5C. 5、1D. 2、436. 某快递公司每天上午9:00−10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为( )A. 9:15B. 9:20C. 9:25D. 9:3037. 已知关于x ,y 的二元一次方程组{x +3y =4−ax −y =3a,给出下列结论中正确的是( )①当这个方程组的解x ,y 的值互为相反数时,a =−2; ②当a =1时,方程组的解也是方程x +y =4+2a 的解; ③无论a 取什么实数,x +2y 的值始终不变; ④若用x 表示y ,则y =−x2+32;A. ①②B. ②③C. ②③④D. ①③④二、填空题(本大题共16小题,共48.0分)38. 我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组______.39. 如图所示是由截面为同一种矩形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm ,两块横放的墙砖比两块竖放的墙砖低40cm ,则每块墙砖的截面面积是______.40. 对于x ,y 定义一种新运算“◼”,x ◼y =ax +by ,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3◼5=15,4◼7=28,则1◼1的值为______.41. 已知a 、b 满足方程组{a +2b =82a +b =7,则a +b 的值为______.42. 小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.从小华家到学校的下坡路长______ 米.43.如图,已知直线y=−12x+n和直线y=mx−2(m≠−12)交于点A(−2,2),则关于x、y的方程组{y=−12x+ny=mx−2的解是______.44.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好了拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为______.45.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是______次.46.长方形ABCD中放置了6个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是______cm2.47.已知关于x,y的方程3x−2y=2k+1和y−2x=4的公共解满足x−y=3,则k=______.48.若x2b−1+5y3a−2b=7是二元一次方程,则a=______,b=______.49.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=⋯=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x轴的垂线交一次函数y=12x的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n的坐标是______.50. 由2x +y =3可以得到用x 表示y 的式子为______. 51. 方程x +2y =5的正整数解有______个.52. 将方程x +4y =2改写成用含y 的式子表示x 的形式______.53. 《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?设一只雀的重量为x 斤,一只燕的重量为y 斤,则可列方程组为______. 三、计算题(本大题共6小题,共36.0分)54. 解方程组(1){x =y +12x +y =8 (2){x 2−y +13=13x +2y =1055. 解下列方程组:(1){x +y =222x +y =40(2){x 2+y3=25(x −y −1)=4(1−y)−256. 已知:用3辆A 型车和2辆B 型车载满货物一次可运货共19吨;用2辆A 型车和3辆B 型车载满货物一次可运货共21吨.(1)1辆A 型车和1辆B 型车都载满货物一次分别可以运货多少吨?(2)某物流公司现有49吨货物,计划同时租用A 型车m 辆,B 型车n 辆,一次运完,且恰好每辆车都载满货物. ①求m 、n 的值;②若A 型车每辆需租金130元/次,B 型车每辆需租金200元/次.请求出租车费用最少是多少元?57. 已知√x +2y −3与(x −2y −5)2互为相反数,求x +4y 的算术平方根.58. 关于x ,y 的方程组{x +y =5kx −y =9k 的解满足2x +3y =6,试求k 的值.59. 甲、乙两人共同解方程组{ax +5y =15 ①4x −by =−2 ②由于甲看错了方程①中的a ,得到方程组的解为{x =−3y =−1乙看错了方程②中的b ,得到方程组的解为{x =5y =4.试计算a 2011+(−110b)2011的值.四、解答题(本大题共19小题,共152.0分)60. 方程组{x +y =−13x −2y =7的解满足2x −ky =10(k 是常数).(1)求k 的值;(2)求出关于x ,y 的方程(k −1)x +2y =13的正整数解.61. 列方程组解应用题:某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如表:假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?62.亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?63.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.64. 解方程组:{x −3y =3x +6y =665. 时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?66. 林华在2017年共两次到某商场按照标价购买了A ,B 两种商品,其购买情况如下表:(1)分别求出A ,B 两种商品的标价;(2)最近商场实行“迎2018新春”的促销活动,A ,B 两种商品都打折且折扣数相同,于是林华前往商场花1062元又购买了9个A 商品和8个B 商品,试问本次促销活动中A ,B 商品的折扣数都为多少?在本次购买中,林华共节省了多少钱?67. 某面粉加工厂要加工一批小麦,2台大面粉机和5台小面粉机同时工作2小时共加工小麦1.1万斤;3台大面粉机和2台小面粉机同时工作5小时共加工小麦3.3万斤. (I)1台大面粉机和1台小面粉机每小时各加工小麦多少万斤?(Ⅱ)该厂现有9.45万斤小麦需要加工,计划使用8台大面粉机和10台小面粉机同时工作5小时,能否全部加工完?请你帮忙计算一下.68. 解方程组{2(x +y)−(x −y)=3(x +y)−2(x −y)=1x的图象相69.已知一次函数y=kx+b的图象经过点(−1,−5),且与正比例函数y=12交于点(2,a),求(1)a的值;(2)k,b的值;(3)这两个函数图象与x轴所围成的三角形的面积.70.体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?71.我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.72.某种商品A的零售价为每件900元,为了适应市场竞争,商店按零售价的九折优惠后,再让利40元销售,仍可获利10%,①这种商品A的进价为多少元?②现有另一种商品B进价为600元,每件商品B也可获利10%.对商品A和B共进货100件,要使这100件商品共获纯利6670元,则需对商品A、B分别进货多少件?73.邮购每册6元的某种杂志,邮寄费和优惠率如表:两次邮购这种杂志共200册,总计金额1140元,两次邮购杂志各多少册?74. 某商店分别以标价的8折和9折卖了两件不同品牌的衬衫,共收款364元.已知这两件衬衫标价的和是420元,这两件衬衫的标价各多少元?75. 某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?76. 解方程组:(1){x −4y =−12x +y =16;(2)若方程组{3x +5y =k +22x +3y =k 的解x 和y 的和为0,求k 的值.77. 小红和小丽共同解关于x 、y 的方程组{ax +5y =154x −by =−2,由于小红看错了a 的值,求得的解是{x =−3y =−1,小丽看错了b的值,求得的解是{x =5y =4.(1)你能求出a ,b 的正确的值吗? (2)方程组的正确的解为多少?78. 如图,长青化工厂与A 、B 两地有公路、铁路相连.这家工厂从A 地购买一批每吨2000元的原料运回工厂,制成每吨5000元的产品运到B 地,已知公路运价为2元/(吨⋅千米),铁路运价为1.5元/(吨⋅千米),且这两次运输共支出公路运输费14000元,铁路运输费87000元.求:(1)该工厂从A 地购买了多少吨原料?制成运往B 地的产品多少吨? (2)这批产品的销售款比原料费与运输费的和多多少元?答案和解析1.【答案】A【解析】 【分析】本题考查了实数的运算,二元一次方程组的应用,根据题意可得{2a −(−3)b =85a −3b =−1,解得a ,b 值,再利用新运算规定,代入即可求得答案. 【解答】 解:根据题意可得{2a −(−3)b =85a −3b =−1, 解得:{a =1b =2, 即m ∗n =am −bn =m −2n ,则(−3)∗(−2)=(−3)−2×(−2)=−3+4=1. 故选A .2.【答案】D【解析】 【分析】设通讯员到达某地的路程是x 千米,原定的时间为y 小时,根据通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟列出方程组.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组. 【解答】解:设通讯员到达某地的路程是x 千米,原定的时间为y 小时,由题意得: {x15+2460=y x 12−1560=y ,故选:D .3.【答案】D【分析】本题考查了二元一次方程组的运用,及二元一次方程组的解法.正确理解题意并列出方程组是解题的关键.设小明9:00时看到的两位数,十位数为x ,个位数为y ,根据两位数之和为9可列一个方程,再根据匀速行驶,9:00~9:45时行驶的里程数除以时间等于9:45~12:00时行驶的里程数除以时间列出第二个方程,解方程组即可. 【解答】解:设小明9时看到的两位数,十位数为x ,个位数为y ,即为10x +y ;则9:45时看到的两位数为x +10y ,9:00~9:45时行驶的里程数为:(10y +x)−(10x +y);则12:00时看到的数为100x +y ,9:45~12:00时行驶的里程数为:(100x +y)−(10y +x);由题意列方程组得:{x +y =910y+x−(10x+y)34=100x+y−(10y+x)94,解得:{x =2y =7,所以9:00时看到的两位数是27, 故选:D .4.【答案】B【解析】 【分析】本题考查的是二元一次方程组的解法有关知识,把x ,y 的值代入原方程组,可得关于“⊗”、“⊕”的二元一次方程组,解方程组即可. 【解答】解:将{x =⊕y =1代入方程组,得到{⊕+⊗=3①3⊕−⊗=1②, ①+②,得4⊕=4, 即⊕=1;将⊕=1代入②,得3−⊗=1, 即⊗=2.5.【答案】C【解析】【分析】本题主要考查了一次函数与二元一次方程的关系,将方程转化为函数关系进而得出与坐标轴交点坐标是解题关键.根据两点确定一条直线,当x=0,求出y的值,再利用y=0,求出x的值,即可得出一次函数图象与坐标轴交点,即可得出图象.【解答】解:∵2x−y=2,∴y=2x−2,∴当x=0,y=−2,当y=0,x=1,∴一次函数y=2x−y与y轴交于点(0,−2),与x轴交于点(1,0),即可得出C符合要求.故选C.6.【答案】B【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程组.设好田买了x亩,坏田买了y亩,根据等量关系:好田1亩,价值300钱;坏田7亩,价值500钱,共买好、坏田共1顷(1顷=100亩),价值10000钱,列出方程组.【解答】解:1顷=100亩,设好田买了x亩,坏田买了y亩,依题意有:{x+y=100300x+5007y=10000.故选:B.7.【答案】A【分析】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.设这个队胜x 场,负y 场,根据在8场比赛中得到12分,列方程组即可.【解答】解:设这个队胜x 场,负y 场,根据题意,得{x +y =83x −y =12. 故选:A .8.【答案】C【解析】【分析】本题直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案. 此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.【解答】解:设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:{x +y =30200x +150y =5300故选:C .9.【答案】B【解析】【分析】本题考查二元一次方程组的应用,设未知数找等量关系是解决问题的关键,学会把问题转化为方程,属于中考常考题型.这个长方形的长为x 米,宽为y 米,根据等量关系:长是宽的3倍;长减少3m ,宽增加4m ,这个长方形就变成一个正方形,列出方程组即可.【解答】解:设这个长方形菜园的长为x 米,宽为y 米,根据题意,得:{x =3y x −3=y +4. 故选B .10.【答案】B【解析】解:把{x =2y =m代入二元一次方程5x +3y =1得: 10+3m =1,解得:m =−3,故选:B .知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m 的一元一次方程,从而可以求出m 的值.此题考查的知识点是二元一次方程的解,解题关键是把方程的解代入原方程,使原方程转化为以系数m 为未知数的方程,一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.11.【答案】D【解析】【分析】本题考查了二元一次方程组的应用,注意了解生活常识:出生日不是同一天,但都是星期一,则他们相隔的天数应是7的倍数.设小明的生日是12月份的x 号,小莉的生日是12月份的y 号,则根据“都是星期一,小明比小莉出生早”、“两人出生日期和是22”列出方程组并解答.【解答】解:设小明的生日是12月份的x 号,小莉的生日是12月份的y 号,则{y −x =7,y +x =22或{y −x =14,y +x =22或{y −x =21,y +x =22或{y −x =28,y +x =22,解得{x =7.5,y =14.5(不是整数,舍去)或{x =4,y =18或{x =0.5,y =21.5(不是整数,舍去)或{x =−3,y =25(不合题意,舍去).综上所述,小莉的生日是18号.故选D .12.【答案】B【解析】【分析】本题考查二元一次方程的定义,解题的关键是正确理解二元一次方程的定义,本题属于基础题型.利用二元一次方程的定义:含有两个未知数,且未知数的最高次数为1次,这样的整式方程为二元一次方程,找出符合题意的选项即可.【解答】解:②x−23+2y=4;⑤y=x;⑥2(x−y)−3(x+y2)=x+y是二元一次方程,一共3个.故选B.13.【答案】C【解析】【解答】解:A选项,二元一次方程有无数组解,故A选项说法错误;B选项,二元一次方程组可能只有一组解,故B选项说法错误;C选项,二元一次方程组的解必是它所含的二元一次方程的公共解,故C选项说法正确;D选项,判断一组解是否为二元一次方程组的解,需分别代入两个二元一次方程,故D 选项说法错误.故选:C.【分析】根据二元一次方程的解及二元一次方程组的解的定义,直接判断即可.本题主要考查二元一次方程的解,二元一次方程组的解,解决此题的关键是熟练掌握相关的定义.14.【答案】A【解析】【分析】本题考查二元一次方程组的解,能够抓住两个方程组的解相同的条件,重新组合方程,再分别求解是解题的关键.由两个方程组的解相同这个条件,可以重新组合两个方程组为{2x +y =3x −y =0,{ax +by =32ax +by =4,即可求解. 【解答】解:解{2x +y =3x −y =0得:{x =1y =1, 把{x =1y =1代入方程组{ax +by =32ax +by =4, 得:{a +b =32a +b =4, 解得:{a =1b =2, 故选A .15.【答案】A【解析】解:用加减法解方程组{3x −4y =10 ①5x +6y =42 ②,先消去y ,需要用①×3+②×2. 故选:A .用加减消元法消去y 即可.本题考查的是用加减消元法解二元一次方程组. 16.【答案】C【解析】【分析】此题考查了解二元一次方程组的基本方法,同时注意此题中的整体思想.首先根据方程组解的定义正确求出方程组的解,然后计算出x +y 或直接让两方程相减求解.【解答】解:{3x −17y =12.3①7x −13y =18.7②, ②−①得:4x +4y =6.4,∴x +y =1.6.故选C .17.【答案】B【解析】解:用加减法解方程组{2x −3y =53x +2y =−4时,变形为:{4x −6y =109x +6y =−12, 故选:B .观察两方程中y 的系数特征,即可得到结果.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】C【解析】【分析】本题考查了二元一次方程组,对原方程组进行变形是解题的关键.两式相减,得x +3y =−2,所以2(x +3y)=−4,即2x +6y =−4.【解答】解:两式相减,得x +3y =−2,∴2(x +3y)=−4,即2x +6y =−4,故选:C .19.【答案】B【解析】解:设宾馆有客房:单人间x 间、二人间y 间、三人间z 间,根据题意可得, {x +2y +3z =18x +y +z =9, 解得:y +2z =9,y =9−2z ,∵x ,y ,z 都是小于9的正整数,当z =1时,y =7,x =1;当z =2时,y =5,x =2;当z =3时,y =3,x =3当z =4时,y =1,x =4当z =5时,y =−1(不合题意,舍去)∴租房方案有4种.故选:B .首先设宾馆有客房:单人间x 间、二人间y 间、三人间z 间,根据题意可得方程组:{x +2y +3z =18x +y +z =9,解此方程组可得y +2z =9,又由x ,y ,z 是非负整数,即可求得答案此题考查了三元一次不定方程组的应用.此题难度较大,解题的关键是理解题意,根据题意列方程组,然后根据x ,y ,z 是整数求解,注意分类讨论思想的应用.20.【答案】A【解析】解:设木条长x 尺,绳子长y 尺,那么可列方程组为:{y =x +4.50.5y =x −1. 故选:A .直接利用“绳长=木条长+4.5;12绳长=木条长−1”分别得出等式求出答案.此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键. 21.【答案】D【解析】解:设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组为{x +(7−2)y =16x +(13−2)y =28, 故选:D .根据津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元可列方程组.本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.22.【答案】D【解析】根据二元一次方程组的解法即可得到结论.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.解:用加减法解方程组{2a +2b =3, ①3a +b =4, ②,最简单的方法是①−②×2, 故选:D . 23.【答案】A【解析】把{x =5y =b代入方程组,求出a 、b 的值,再求出a +b 即可. 本题考查了二元一次方程组的解和解二元一次方程组,能得到关于a 、b 的方程组是解此题的关键.解:∵关于x 、y 的二元一次方程组{2x +y =a x −y =3的解为{x =5y =b, ∴代入得:{2×5+b =a 5−b =3, 解得:a =12,b =2,∴a +b =12+2=14,故选:A .24.【答案】A【解析】【试题解析】【分析】本题考查了由实际问题抽象出二元一次方程组;根据题意得出方程组是解决问题的关键. 设该店有客房x 间,房客y 人;根据题意一房七客多七客,一房九客一房空得出方程组即可.【解答】解:设该店有客房x 间,房客y 人;根据题意得:{7x +7=y 9(x −1)=y, 故选:A .25.【答案】C【解析】解:{a −b =6①2a +b =m②①+②,可得3a =m +6,解得a =m 3+2, 把a =m 3+2代入①,解得b =m 3−4,∵a ,b 互为相反数,∴a +b =0,∴(m 3+2)+(m 3−4)=0,解得m =3.故选:C .首先根据{a −b =62a +b =m,应用加减消元法,用m 表示出a 、b ;然后根据a ,b 互为相反数,可得:a +b =0,据此求出m 的值是多少即可.此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.26.【答案】A【解析】解:设鸡有x 只,兔有y 只,依题意得{x +y =102x +4y =34. 故选:A .设鸡有x 只,兔有y 只,等量关系:鸡+兔=10,鸡脚+兔脚=34.本题考查了由实际问题抽象出二元一次方程.解题的关键是弄清题意,找准等量关系,列出方程组.27.【答案】B【解析】解:设购买多媒体教学一体机x 台,学生电脑y 台,依题意,得:{x +y =1200.8x +0.25y =52. 故选:B .设购买多媒体教学一体机x 台,学生电脑y 台,根据总价=单价×数量结合花费52万元购买一体机及学生电脑共120台,即可得出关于x ,y 的二元一次方程组,此题得解. 本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.28.【答案】C【解析】解:设购买一只水瓶需要x 元,购买一只杯子需要y 元,根据题意得:{x +2y =37 ①2x +y =56 ②, (①+②)÷3,得:x +y =31.故选:C .设购买一只水瓶需要x 元,购买一只杯子需要y 元,根据给定的两种购买方案可得出关于x 、y 的二元一次方程组,将方程①②相加,再除以3即可求出结论.。
二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x -2y =13的一个解( ) 3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( ) 5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( ) 8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则32-的值为b a ………( )12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437y x +=( ) 二、选择:13、任何一个二元一次方程都有( )(A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ; 16、关于x 、y 的方程组⎩⎨⎧=-=+m y x m y x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是() (A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =319、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x (D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于()(A )a =-3,b =-14 (B )a =3,b =-7(C )a =-1,b =9 (D )a =-3,b =1421、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于( )(A )32(B )23(C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( )(A )无解 (B )有唯一一个解(C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( )(A )21=k ,b =-4 (B )21-=k ,b =4(C )21=k ,b =4 (D )21-=k ,b =-4□x +5y =13 ①4x -□y =-2 ②25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______若x 、y 都是正整数,那么这个方程的解为___________;26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______; 32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________; 36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m n m ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x y x y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ; 43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。
二元一次方程组习题及答案100道1.2x+9y=813x+y=342.9x+4y=358x+3y=303.7x+2y=527x+4y=624.4x+6y=549x+2y=875.2x+y=72x+5y=196.x+2y=213x+5y=567.5x+7y=525x+2y=228.5x+5y=657x+7y=2039.8x+4y=56x+4y=2110.5x+7y=415x+8y=4411.7x+5y=543x+4y=3812.x+8y=154x+y=299x+5y=46 14.9x+2y=62 4x+3y=36 15.9x+4y=46 7x+4y=42 16.9x+7y=135 4x+y=41 17.3x+8y=51 x+6y=27 18.9x+3y=99 4x+7y=95 19.9x+2y=38 3x+6y=18 20.5x+5y=45 7x+9y=69 21.8x+2y=28 7x+8y=62 22.x+6y=14 3x+3y=27 23.7x+4y=67 2x+8y=26 24.5x+4y=52 7x+6y=74 25.7x+y=926.6x+6y=486x+3y=4227.8x+2y=167x+y=1128.4x+9y=778x+6y=9429.6x+8y=687x+6y=6630.2x+2y=227x+2y=471) 66x+17y=3967 25x+y=1200答案:x=48 y=47 (2) 18x+23y=2303 74x-y=1998答案:x=27 y=79 (3) 44x+90y=7796 44x+y=3476答案:x=79 y=48 (4) 76x-66y=4082 30x-y=2940答案:x=98 y=51 (5) 67x+54y=8546 71x-y=5680答案:x=80 y=59 (6) 42x-95y=-1410 21x-y=1575答案:x=75 y=48 (7) 47x-40y=853 34x-y=2006答案:x=59 y=48 (8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12(14) 32x+62y=5134 57x+y=2850答案:x=50 y=57 (15) 83x-49y=82 59x+y=2183答案:x=37 y=61 (16) 91x+70y=5845 95x-y=4275答案:x=45 y=25 (17) 29x+44y=5281 88x-y=3608答案:x=41 y=93 (18) 25x-95y=-4355 40x-y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=3520 52x+y=2132答案:x=41 y=50 (21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=761947x-y=799答案:x=17 y=91 (23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 (25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54 (26) 79x-76y=-4388 26x-y=832答案:x=32 y=91 (27) 63x-40y=-821 42x-y=546答案:x=13 y=41 (28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78 (29) 85x+67y=7338 11x+y=308答案:x=28 y=74 (30) 78x+74y=12928 14x+y=1218答案:x=87 y=83 (31) 39x+42y=5331 59x-y=5841答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93 (34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=3254 94x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55(39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530答案:x=17 y=36 (45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=8420x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92 (51) 17x+62y=3216 75x-y=7350答案:x=98 y=25 (52) 77x+67y=2739 14x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085 61x-y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45 (59) 51x-61y=-1907 89x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46(64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46 (66) 43x+50y=7064 85x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=1052484x-y=7812答案:x=93 y=27 (73) 65x-79y=-5815 89x+y=2314答案:x=26 y=95 (74) 96x+54y=6216 63x-y=1953答案:x=31 y=60 (75) 60x-44y=-352 33x-y=1452答案:x=44 y=68 (76) 79x-45y=510 14x-y=840答案:x=60 y=94 (77) 29x-35y=-218 59x-y=4897答案:x=83 y=75 (78) 33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80) 61x+90y=5001 48x+y=2448答案:x=51 y=21 (81) 93x-19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-5910 30x-y=2340答案:x=78 y=77 (83) 80x+74y=8088 96x-y=8640答案:x=90 y=12 (84) 53x-94y=1946 45x+y=2610答案:x=58 y=12 (85) 93x+12y=9117 28x-y=2492答案:x=89 y=70 (86) 66x-71y=-1673 99x-y=7821答案:x=79 y=97 (87) 43x-52y=-1742 76x+y=1976答案:x=26 y=55 (88) 70x+35y=8295 40x+y=2920答案:x=73 y=91(89) 43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x-19y=236 95x-y=7885答案:x=83 y=40 (91) 51x+99y=8031 71x-y=2911答案:x=41 y=60 (92) 37x+74y=4403 69x-y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x-y=4565答案:x=83 y=20 (95) 30x-17y=239 28x+y=1064答案:x=38 y=53 (96) 55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x-24y=-45067x-y=3886答案:x=58 y=84 (98) 97x+23y=8119 14x+y=966答案:x=69 y=62 (99) 84x+53y=11275 70x+y=6790答案:x=97 y=59 (100) 51x-97y=297 19x-y=1520答案:x=80 y=39。
二元一次方程组练习题(含答案)1.解下列方程组:1) 5x + 2y = 11a,-4y = 6a;2) 4x + 3y - 1 = 0,2x + y - 2 = 0;3) x + 2y/3 - 1/3 = 2,x/3 + 1 - y/2 = 1/2;4) x - y/2 = 1,x + y/2 = 3.2.求解以下方程组:1) 2x + 3y = 7,x - y = 1;2) x + 2y = 5,2x + y = 7;3) 3x + 2y = 8,4x - 3y = -11.3.已知二元一次方程y = kx + b的解有(2,5)和(-1,0)。
1) 求k,b的值;2) 当x = 2时,y的值;3) 当y = 3/5时,x的值。
4.在解方程组2x + y = 5,x - y = 1时,甲看错了方程组中的a,而得到解x = 2,y = 1.乙看错了方程组中的b,而得到解x = 3,y = -1.1) 甲把a看成了什么,乙把b看成了什么?2) 求出原方程组的正确解。
参考答案与解析:1.解下列方程组:1) 5x + 2y = 11a,-4y = 6a。
将第二个方程式化简为y = -3/2a,代入第一个方程式中得到5x + 2(-3/2a) = 11a,化简得到x = (23/10)a,y = (-9/5)a。
2) 4x + 3y - 1 = 0,2x + y - 2 = 0.将第二个方程式中的y用第一个方程式中的x表示,得到y = 2 - 2x,代入第一个方程式中得到4x + 3(2 - 2x) - 1 = 0,化简得到x = 1/2,y = 1.3) x + 2y/3 - 1/3 = 2,x/3 + 1 - y/2 = 1/2.将第二个方程式中的x用第一个方程式中的y表示,得到x = 6 - 2y,代入第一个方程式中得到6 - 4y/3 = 2,化简得到y = 3/2,x = 0.4) x - y/2 = 1,x + y/2 = 3.将两个方程式相加得到2x = 4,化简得到x = 2,代入第一个方程式中得到y = 2.2.求解以下方程组:1) 2x + 3y = 7,x - y = 1.将第二个方程式中的x用第一个方程式中的y表示,得到x = y + 1,代入第一个方程式中得到2(y + 1) + 3y = 7,化简得到y = 1,x = 2.2) x + 2y = 5,2x + y = 7.将第一个方程式中的x用第二个方程式中的y表示,得到x = (7 - y)/2,代入第一个方程式中得到(7 - y)/2 + 2y = 5,化简得到y = 1,x = 2.3) 3x + 2y = 8,4x - 3y = -11.将第一个方程式中的x用第二个方程式中的y表示,得到x = (3y - 11)/4,代入第一个方程式中得到3(3y - 11)/4 + 2y = 8,化简得到y = 1,x = 1.3.已知二元一次方程y = kx + b的解有(2,5)和(-1,0)。
二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解 B.有无数解 C.无解 D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值你能求出相应的x的解吗一、选择题1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时,一个二元一次方程有无数个解.4.C 解析:用排除法,逐个代入验证.5.C 解析:利用非负数的性质. 6.B7.C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程. 8.B二、填空题9.424332x y--10.43-1011.43,2 解析:令3m-3=1,n-1=1,∴m=43,n=2.12.-1 解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中,得-2-3k=1,∴k=-1.13.4 解析:由已知得x-1=0,2y+1=0,∴x=1,y=-12,把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4,∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,此题答案不唯一.16.1 4 解析:将2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三、解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,∵方程3x+5y=•-•3•和3x -2ax=a+2有相同的解,∴3×(-3)-2a ×4=a+2,∴a=-119. 18.解:∵(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,∴a -2≠0,b+1≠0,•∴a ≠2,b ≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0.(•若系数为0,则该项就是0)19.解:由题意可知x=y ,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k -1)y=3中得k+k -1=3,∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x │-1)2+(2y+1)2=0,可得│x │-1=0且2y+1=0,∴x=±1,y=-12. 当x=1,y=-12时,x -y=1+12=32; 当x=-1,y=-12时,x -y=-1+12=-12. 解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x │-1)2与(2y+1)2都等于0,从而得到│x │-1=0,2y+1=0. 21.解:经验算41x y =⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x -y=3. 22.(1)解:设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得130.8220x y x y +=⎧⎨+=⎩.(2)解:设有x 只鸡,y 个笼,根据题意得415(1)y x y x+=⎧⎨-=⎩.23.解:满足,不一定.解析:∵2528x yx y+=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x-y=8,•∴方程组的解一定满足其中的任一个方程,但方程2x-y=8的解有无数组,如x=10,y=12,不满足方程组25 28x yx y+=⎧⎨-=⎩.24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.。
23、在y=c bx ax ++2中,当0=x 时y 的值是7-,1=x 时y 的值是9-,1-=x 时y 的值是3-,求c b a 、、的值,并求5=x 时y 的值。
24、关于x , y 方程组⎩⎨⎧=++=+my x m y x 32253 满足x+y=2,求m 2-2m+1的值。
25.已知 ⎩⎨⎧==23y x 是关于x ,y 的方程|ax+by -8|+|ay+bx+7|=0的一个解,求 a 、b 的值26.已知关于x,y 的方程组 ⎩⎨⎧-=+=-65222a y x ay x 的解x,y 互为相反数,求a 的值.2.(创新题)在解方程组2,78ax by cx y +=⎧⎨-=⎩时,哥哥正确地解得3,2.x y =⎧⎨=-⎩,弟弟因把c 写错而解得2,2.x y =-⎧⎨=⎩,求a+b+c 的值.22. (本题6分)已知关于x 、y 的方程组3,7ax by bx ay +=⎧⎨+=⎩的解是2,1x y =⎧⎨=⎩ ,求a b +的值.23. (本题6分)在方程3x +2y =12中,用含x 的代数式表示y ,并设x =2,3,4,5,分别求出对应的y 的值.24.(本题6分)已知等式 (2A -7B ) x +(3A -8B )=8x +10对一切实数x 都成立,求A 、B 的值.2、已知y=x 2+px +q ,当x=1时,y 的值为2;当x=-2时,y 的值为2。
求x=-3时y 的值。
3、甲、乙两人共同解方程组⎩⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧-=-=13y x ;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧==45y x 。
试计算20052004101⎪⎭⎫ ⎝⎛-+b a 的值.1、在y=c bx ax ++2中,当0=x 时y 的值是7-,1=x 时y 的值是9-,1-=x 时y 的值是3-,求c b a 、、的值,并求5=x 时y 的值。
18、已知43x y =⎧⎨=⎩是关于x 、y 的二元一次方程组12ax y x by +=-⎧⎨-=-⎩的解,求a+b 的值19、已知2(235)340x y x y +-+--=则n 是正奇数时,求2n n x y +g 的值。
24.在等式b kx y +=中,当2=x 时3=y ;当2-=x 时5=y ,求k ,b 的值。
27、(5′)已知方程组⎩⎨⎧=+=+4535y ax y x 与⎩⎨⎧=+=-1552by x y x 有相同的解,求a 、b 的值。
2、已知等式 (2A -7B ) x +(3A -8B )=8x +10对一切实数x 都成立,求A 、B 的值.18、在等式b kx y +=中,当x=1时,2-=y ;k ,y x 求时当,41-=-=和b 的值。
(8分)21.(10分)已知下列三对数值:810x y =-⎧⎨=-⎩,06x y =⎧⎨=-⎩,101x y =⎧⎨=-⎩.(1)哪几对数值使方程12x-y=6左右两边的值相等? (2)哪几对数值是方程组16,223111x y x y ⎧-=⎪⎨⎪+=-⎩的解?16、(8分)在y=kx +b 中,当x=1时,y=2;当x=-1时,y=4;当x=2时,y 值为多少?17、(8分)满足方程组⎩⎨⎧=++=+532153y x k y x 的x 、y 值之和为2,求k 的值。
18、(10分)根据下列条件求方程2x +y=5的解。
(1)x 的值与y 的值相等;(2)x 的值与y 的值互为相反数; (3)y 的值是x 的3倍。
4.已知关于x y 、的方程组354522x y ax by -=⎧⎨+=-⎩与234080x y ax by -+=⎧⎨--=⎩有相同的解,求a b 、的值。
6. 甲、乙两人同解方程组()()5151422ax y x by +=⎧⎪⎨=-⎪⎩时,甲看错了方程()1中的a ,解得21x y =⎧⎨=⎩,乙看错()2中的b ,解得54x y =⎧⎨=⎩,试求2002200610b a ⎛⎫+- ⎪⎝⎭的值。
17.当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)•有相同的解,求a 的值.18.如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件?19.二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .20.已知x ,y 是有理数,且(│x │-1)2+(2y+1)2=0,则x -y 的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41x y =⎧⎨=⎩.23.方程组2528x y x y +=⎧⎨-=⎩的解是否满足2x -y=8?满足2x -y=8的一对x ,y 的值是否是方程组2528x y x y +=⎧⎨-=⎩的解?24.(开放题)是否存在整数m ,使关于x 的方程2x+9=2-(m -2)x 在整数范围内有解,你能找到几个m的值?你能求出相应的x 的解吗?五、已知方程组⎩⎨⎧=+=+25ay bx by ax 解是⎩⎨⎧==34y x ,求b a b a +-23的值.(7分)六、已知(3-y-4x)2+(4x+y-3)=0,求实数x ,y 的值.(8分)四、甲、乙两人共同解方程组515,4 2.ax y x by +=⎧⎨-=-⎩ 由于甲看错了方程①中的,a 得到方程组的解为3,1;x y =-⎧⎨=-⎩乙看错了方程②中的b ,得到方程组的解为5,4.x y =⎧⎨=⎩试计算200420051()10a b +-的值.22、(6′)在解关于x 、y 方程组()()⎩⎨⎧=+-=+-+211)5(18)23()1( my x n y n x m 可以用(1)×2+(2)消去未知数x ;也可以用(1)+(2)×5消去未知数y ;求m 、n 的值。
23、已知有理数x 、y 、z 满足│x -z -2│+│3x -6y -7│+(3y+3z -4)2=0,求证:x 3n y 3n -1z 3n+1-x=024、(6′)已知3x -4y -z=0,2x+y -8z=0,求x 2+y 2+z2xy+yz+zx 的值。
25、(6′)当a 为何整数值时,方程组⎩⎨⎧=-=+02162y x ay x 有正整数解。
26、(6′)已知关于x 、y 的二元一次方程(a -1)x+(a+2)y+5-2a=0……① ⑴、当a=1时,得方程②;当a=-2时,得方程③。
求②③组成的方程组的解。
⑵、将求得的解代入方程①的左边,得什么结果?由此可得什么结论?并验证你的结论。
1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+c y ax y x 27,试确定c a 、的值,使方程组:(1)有一个解;(2)有无数解;(3)没有解3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。
1、代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求5,7-==y x 时代数式by ax -的值。
2、求满足方程组⎩⎨⎧=-=--20314042y x m y x 中的y 值是x 值的3倍的m 的值,并求y x xy+ 的值。
22、(6′)在解关于x 、y 方程组()()⎩⎨⎧=+-=+-+211)5(18)23()1( my x n y n x m 可以用(1)×2+(2)消去未知数x ;也可以用(1)+(2)×5消去未知数y ;求m 、n 的值。
23、已知有理数x 、y 、z 满足│x -z -2│+│3x -6y -7│+(3y+3z -4)2=0,求证:x 3n y 3n -1z 3n+1-x=0 (6′)24、(6′)已知3x -4y -z=0,2x+y -8z=0,求x 2+y 2+z2xy+yz+zx 的值。
25、(6′)当a 为何整数值时,方程组⎩⎨⎧=-=+02162y x ay x 有正整数解。
26、(6′)已知关于x 、y 的二元一次方程(a -1)x+(a+2)y+5-2a=0……①⑴、当a=1时,得方程②;当a=-2时,得方程③。
求②③组成的方程组的解。
⑵、将求得的解代入方程①的左边,得什么结果?由此可得什么结论?并验证你的结论。
27.已知17=+b a ,7-=-b a ,求513)(322-+b a 的值。
28.已知方程组⎩⎨⎧=+=-114302y x y x 和方程组⎩⎨⎧-=-=+18ky mx my kx 的解相同,求mk 的值。
29.在代数式by ax +中,当2=x ,3-=y 时,其值为5;当1-=x ,2=y 时,其值为38-。
求当3=x ,3=y 时,这个代数式的值。
30.要使方程组⎩⎨⎧=-=+02162y x ay x 有正整数解,求整数a 的值。
23、代数式ax+by,当x=5,y=2时,它的值是7;当x =3,y=1时,它的值是4,试求x=7,y=-5时代数式ax-by的值。
(7)20、二元一次方程组⎩⎨⎧-=-+=+122323m y x m y x 的解互为相反数,求m 的值.(8)22、满足方程组⎩⎨⎧=++=+my x m y x 32253 的x , y 的值的和等于2,求m 2-2m+1的值。
,y 的方程组⎩⎨⎧-=-=+239cy x by ax 时,甲正确地解出⎩⎨⎧==42y x ,乙因为把c 抄错了,误解为⎩⎨⎧-==14y x ,求a ,b ,c 的值.22.(2006·连云港)(本小题满分6分)若⎩⎨⎧==12y x 是二元一次方程组⎪⎩⎪⎨⎧=-=+2523by ax by ax 的解,求b a 2+的值。
20. (6分)已知方程组734521x y x y m +=⎧⎨-=-⎩的解能使等式437x y -=成立,求m 的值.21. (8分)已知方程组45321x y x y +=⎧⎨-=⎩和31ax by ax by +=⎧⎨-=⎩有相同的解,求222a ab b -+的值.16.已知关于x,y 的二元一次方程y=kx+b 的解为⎩⎨⎧==43y x 和⎩⎨⎧=-=21y x ⑴ 求k,b 的值⑵ 当x=2时,求y 的值 ⑶ 当x 为何值时,y=315.如图2所示,是一个正方体的平面展开图,标有字母A 的面是正方体的正面,如果正方体的相对的两个面上标注的代数式的值与相对面上的数字相等,求x 、y 的值.16.若单项式式m n y x +-4563234123与m n y x 21234567678--的和与差仍是单项式,求n m 2-的值.17.在平面直角坐标系中,已知点A )82(--,b a 与点B )32(b a +-,关于原点对称,求a 、b 的值. 18.已知2)(2005y x +与20062--y x 的值互为相反数,求:(1)x 、y 的值;(2)20062005y x +的值.19定义“*”:)1)(1(++++=*B A YB A X B A .已知321=*,432=*,求43*的值. 例3 若方程组{31x y x y +=-=与方程组{84mx ny mx ny +=-=的解相同,求m 、n 的值.CB9、解关于x,y 的方程组⎩⎨⎧-=-=+239cy x by ax 时,甲正确地解出⎩⎨⎧==42y x ,乙因为把c 抄错了,误解为⎩⎨⎧-==14y x 求a ,b ,c 的值。