2008年答案及解析
- 格式:doc
- 大小:131.00 KB
- 文档页数:14
2008年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设2()(1)(2)f x x x x =--,则'()f x 的零点个数为( )()A 0 ()B 1. ()C 2 ()D 3(2)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分()at af x dx ⎰( )()A 曲边梯形ABCD 面积. ()B 梯形ABCD 面积. ()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3)在下列微分方程中,以123cos 2sin 2xy C e C x C x =++(123,,C C C 为任意常数)为通解的是( )()A ''''''440y y y y +--= ()B ''''''440y y y y +++=()C ''''''440y y y y --+=()D ''''''440y y y y -+-=(5)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是( )()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛. ()C 若{}()n f x 收敛,则{}n x 收敛.()D 若{}()n f x 单调,则{}n x 收敛.(6)设函数f 连续,若22(,)uvD F u v =,其中区域uv D 为图中阴影部分,则F∂= ()A 2()vf u ()B 2()vf u u ()C ()vf u ()D ()vf u u(7)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆. ()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(8)设1221A ⎛⎫=⎪⎝⎭,则在实数域上与A 合同的矩阵为( )()A 2112-⎛⎫ ⎪-⎝⎭.()B 2112-⎛⎫ ⎪-⎝⎭. ()C 2112⎛⎫⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 已知函数()f x 连续,且21cos[()]lim1(1)()x x xf x e f x →-=-,则(0)____f =.(10)微分方程2()0xy x e dx xdy -+-=的通解是____y =.(11)曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 . (12)曲线23(5)y x x =-的拐点坐标为______. (13)设xyy z x ⎛⎫=⎪⎝⎭,则(1,2)____z x ∂=∂.(14)设3阶矩阵A 的特征值为2,3,λ.若行列式248A =-,则___λ=.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()4sin sin sin sin limx x x x x →-⎡⎤⎣⎦.(16)(本题满分10分)设函数()y y x =由参数方程20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰确定,其中()x t 是初值问题0200x t dx te dt x --⎧-=⎪⎨⎪=⎩的解.求22y x ∂∂. (17)(本题满分9分)求积分1⎰.(18)(本题满分11分)求二重积分max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤(19)(本题满分11分)设()f x 是区间[)0,+∞上具有连续导数的单调增加函数,且(0)1f =.对任意的[)0,t ∈+∞,直线0,x x t ==,曲线()y f x =以及x 轴所围成的曲边梯形绕x 轴旋转一周生成一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数()f x 的表达式. (20)(本题满分11分)(1) 证明积分中值定理:若函数()f x 在闭区间[,]a b 上连续,则至少存在一点[,]a b η∈,使得()()()baf x dx f b a η=-⎰(2)若函数()x ϕ具有二阶导数,且满足32(2)(1),(2)()x d x ϕϕϕϕ>>⎰,证明至少存在一点(1,3),()0ξϕξ''∈<使得 (21)(本题满分11分)求函数222u x y z =++在约束条件22z x y =+和4x y z ++=下的最大值与最小值. (22)(本题满分12分)设矩阵2221212n na a a A a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭,现矩阵A 满足方程A X B =,其中()1,,Tn X x x =,()1,0,,0B =,(1)求证()1nA n a =+;(2)a 为何值,方程组有唯一解,并求1x ; (3)a 为何值,方程组有无穷多解,并求通解. (23)(本题满分10分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-特征向量,向量3α满足323A ααα=+, (1)证明123,,ααα线性无关; (2)令()123,,P ααα=,求1P AP -.2008年全国硕士研究生入学统一考试数学二试题解析一、选择题 (1)【答案】D【详解】因为(0)(1)(2)0f f f ===,由罗尔定理知至少有1(0,1)ξ∈,2(1,2)ξ∈使12()()0f f ξξ''==,所以()f x '至少有两个零点. 又()f x '中含有因子x ,故0x =也是()f x '的零点, D 正确. 本题的难度值为0.719. (2)【答案】C 【详解】00()()()()()()aa a aaxf x dx xdf x xf x f x dx af a f x dx '==-=-⎰⎰⎰⎰其中()af a 是矩形ABOC 面积,0()af x dx ⎰为曲边梯形ABOD 的面积,所以0()axf x dx '⎰为曲边三角形的面积.本题的难度值为0.829.(3)【答案】D【详解】由微分方程的通解中含有xe 、cos2x 、sin 2x 知齐次线性方程所对应的特征方程有根1,2r r i ==±,所以特征方程为(1)(2)(2)0r r i r i --+=,即32440r r r -+-=. 故以已知函数为通解的微分方程是40y y y ''''''-+-= 本题的难度值为0.832. (4) 【答案】A【详解】0,1x x ==时()f x 无定义,故0,1x x ==是函数的间断点因为 000ln 11lim ()lim lim lim csc |1|csc cot x x x x x xf x x x x x++++→→→→=⋅=-- 200sin lim lim 0cos cos x x x xx x x++→→=-=-=同理 0lim ()0x f x -→= 又 1111ln 1lim ()lim lim sin lim sin1sin11x x x x x f x x x x ++++→→→→⎛⎫=⋅== ⎪-⎝⎭ 所以 0x =是可去间断点,1x =是跳跃间断点.本题的难度值为0.486.(5)【答案】B【详解】因为()f x 在(,)-∞+∞内单调有界,且{}n x 单调. 所以{()}n f x 单调且有界. 故{()}n f x 一定存在极限.本题的难度值为0.537. (6)【答案】A【详解】用极坐标得 ()222()2011,()vu uf r r Df u v F u v dv rdr v f r dr +===⎰⎰⎰所以()2Fvf u u∂=∂ 本题的难度值为0.638. (7) 【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆. 本题的难度值为0.663. (8) 【答案】D【详解】记1221D -⎛⎫= ⎪-⎝⎭,则()2121421E D λλλλ--==---,又()2121421E A λλλλ---==----所以A 和D 有相同的特征多项式,所以A 和D 有相同的特征值.又A 和D 为同阶实对称矩阵,所以A 和D 相似.由于实对称矩阵相似必合同,故D 正确. 本题的难度值为0.759. 二、填空题 (9)【答案】2【详解】222220001cos[()]2sin [()2]2sin [()2]()lim lim lim ()[()2]4(1)()x x x x xf x xf x xf x f x x f x xf x e f x →→→-⋅==⋅- 011lim ()(0)122x f x f →=== 所以 (0)2f = 本题的难度值为0.828. (10)【答案】()xx eC --+【详解】微分方程()20xy x edx xdy -+-=可变形为x dy yxe dx x--= 所以 111()dx dx x x x x xy e xe e dx C x xe dx C x e C x ----⎡⎤⎛⎫⎰⎰=+=⋅+=-+⎢⎥ ⎪⎝⎭⎣⎦⎰⎰本题的难度值为0.617. (11)【答案】1y x =+【详解】设(,)sin()ln()F x y xy y x x =+--,则1cos()11cos()x yy xy F dy y x dx F x xy y x--'-=-=-'+-,将(0)1y =代入得1x dy dx==,所以切线方程为10y x -=-,即1y x =+本题的难度值为0.759. (12)【答案】(1,6)-- 【详解】53235y xx =-⇒23131351010(2)333x y x x x -+'=-= ⇒134343101010(1)999x y x x x --+''=+=1x =-时,0y ''=;0x =时,y ''不存在在1x =-左右近旁y ''异号,在0x =左右近旁0y ''>,且(1)6y -=- 故曲线的拐点为(1,6)-- 本题的难度值为0.501. (13)【答案】(ln 21)2- 【详解】设,y xu v x y==,则v z u = 所以121()ln v v z z u z v y vu u u x u x v x x y-∂∂∂∂∂=⋅+⋅=-+⋅∂∂∂∂∂ 2ln 11ln x yvvy u y y u uxy x y x ⎛⎫⎛⎫⎛⎫=-+=⋅-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 所以(1,2)(ln 21)2z x ∂=-∂本题的难度值为0.575.(14)【答案】-1【详解】||236A λλ =⨯⨯= 3|2|2||A A =32648λ∴ ⨯=- 1λ⇒=-本题的难度值为0.839.三、解答题 (15)【详解】 方法一:4300[sin sin(sin )]sin sin sin(sin )limlim x x x x x x x x x→→--= 22220001sin cos cos(sin )cos 1cos(sin )12lim lim lim 3336x x x xx x x x x x x →→→--==== 方法二:331sin ()6x x x o x =-+ 331sin(sin )sin sin (sin )6x x x o x =-+4444400[sin sin(sin )]sin sin (sin )1lim lim 66x x x x xx o x x x x →→⎡⎤-∴ =+=⎢⎥⎣⎦ 本题的难度值为0.823. (16)【详解】方法一:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+ 所以 2222ln(1)2(1)ln(1)21dydy t tdt t t dxt dx dt t +⋅===+++222222[(1)ln(1)]2ln(1)221dt t d y d dy t t tdt dx t dx dx dx dt t ++++⎛⎫=== ⎪⎝⎭+ 22(1)[ln(1)1]t t =+++方法二:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+ 所以 2222ln(1)2(1)ln(1)21x dydy t tdt t t e x dxt dx dt t +⋅===++=+所以 22(1)x d y e x dx=+ 本题的难度值为0.742. (17)【详解】 方法一:由于21x -→=+∞,故21⎰是反常积分.令arcsin x t =,有sin x t =,[0,2)t π∈22122220000sin cos 2cos sin ()cos 22t t t t t tdt t tdt dt t πππ===-⎰⎰⎰⎰2222220001sin 21sin 2sin 2441644tt t td t tdt πππππ=-=-+⎰⎰ 222011cos 2168164t πππ=-=+方法二:21⎰12201(arcsin )2x d x =⎰121122220001(arcsin )(arcsin )(arcsin )28x x x x dx x x dx π=-=-⎰⎰令arcsin x t =,有sin x t =,[0,2)t π∈1222200011(arcsin )sin 2cos 224x x dx tdt t d t ππ==-⎰⎰⎰222200111(cos 2)cos 242164t t t tdt πππ=-+=-⎰故,原式21164π=+ 本题的难度值为0.631.(18)【详解】 曲线1xy =将区域分成两个区域1D 和23D D +,为了便于计算继续对 区域分割,最后为()max ,1Dxy dxdy ⎰⎰123D D D xydxdy dxdy dxdy =++⎰⎰⎰⎰⎰⎰112222211102211x xdx dy dx dy dx xydy =++⎰⎰⎰⎰⎰⎰1512ln 2ln 24=++-19ln 24=+ 本题的难度值为0.524.(19)【详解】旋转体的体积20()tV f x dx π=⎰,侧面积02(tS f x π=⎰,由题设条件知2()(ttf x dx f x =⎰⎰上式两端对t 求导得2()(f t f t = 即y '=由分离变量法解得1l n ()y t C=+, 即t y C e= 将(0)1y =代入知1C =,故t y e =,1()2t t y e e -=+于是所求函数为 1()()2x xy f x e e -==+ 本题的难度值为0.497.(20)【详解】(I) 设M 与m 是连续函数()f x 在[,]a b 上的最大值与最小值,即()m f x M ≤≤ [,]x a b ∈由定积分性质,有 ()()()bam b a f x dx M b a -≤≤-⎰,即 ()baf x dx m M b a≤≤-⎰由连续函数介值定理,至少存在一点[,]a b η∈,使得 ()()b af x dx f b aη=-⎰即()()()baf x dx f b a η=-⎰(II) 由(I)的结论可知至少存在一点[2,3]η∈,使32()()(32)()x dx ϕϕηϕη=-=⎰又由 32(2)()()x d x ϕϕϕη>=⎰,知 23η<≤对()x ϕ在[1,2][2,]η上分别应用拉格朗日中值定理,并注意到(1)(2)ϕϕ<,()(2)ϕηϕ<得1(2)(1)()021ϕϕϕξ-'=>- 112ξ<<2()(2)()02ϕηϕϕξη-'=<- 123ξη<<≤在12[,]ξξ上对导函数()x ϕ'应用拉格朗日中值定理,有2121()()()0ϕξϕξϕξξξ''-''=<- 12(,)(1,3)ξξξ∈⊂本题的难度值为0.719. (21)【详解】方法一:作拉格朗日函数22222(,,,,)()(4)F x y z x y z x y z x y z λμλμ=++++-+++-令 2222022020040x y z F x x F y y F z F x y z F x y z λμλμλμλμ'=++=⎧⎪'=++=⎪⎪'=-+=⎨⎪'=+-=⎪'=++-=⎪⎩解方程组得111222(,,)(1,1,2),(,,)(2,2,8)x y z x y z ==-- 故所求的最大值为72,最小值为6.方法二:问题可转化为求2242242u x y x x y y =++++在224x y x y +++=条件下的最值 设44222222(,,)2(4)F x y u x y x y x y x y x y λλ==++++++++-令 323222442(12)0442(12)040x y F x xy x x F y x y y y F x y x y λλλ'⎧=++++=⎪'=++++=⎨⎪'=+++-=⎩解得1122(,)(1,1),(,)(2,2)x y x y ==--,代入22z x y =+,得122,8z z == 故所求的最大值为72,最小值为6. 本题的难度值为0.486. (22)【详解】(I)证法一:2222122212132101221221122a a a a a a aa aA r ar aaa a =-=121301240134(1)2(1)3231(1)0n n n a a a n a a n ar ar a n a nnn a n--+-=⋅⋅⋅=++ 证法二:记||n D A =,下面用数学归纳法证明(1)nn D n a =+.当1n =时,12D a =,结论成立.当2n =时,2222132a D a a a==,结论成立. 假设结论对小于n 的情况成立.将n D 按第1行展开得2212102121212n n a a a aD aD a a-=-21221222(1)(1)n n n n n aD a D ana a n a n a ---- =-=--=+故 ||(1)nA n a =+证法三:记||n D A =,将其按第一列展开得 2122n n n D aD a D --=-, 所以 211212()n n n n n n D aD aD a D a D aD ------=-=-222321()()n n n n a D aD a D aD a ---=-==-=即 12122()2n n n n n n n n D a aD a a a aD a a D ----=+=++=++2121(2)(1)n n n n n a a D n a a D --==-+=-+1(1)2(1)n n n n a a a n a -=-+⋅=+(II)因为方程组有唯一解,所以由Ax B =知0A ≠,又(1)nA n a =+,故0a ≠. 由克莱姆法则,将n D 的第1列换成b ,得行列式为2221122(1)(1)112102*********n n n nn n a a a aa aa aD na a a a a --⨯-⨯-===所以 11(1)n n D nx D n a-==+(III)方程组有无穷多解,由0A =,有0a =,则方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为()()10000100,TTk k +为任意常数.本题的难度值为0.270.(23)【详解】(I)证法一:假设123,,ααα线性相关.因为12,αα分别属于不同特征值的特征向量,故12,αα线性无关,则3α可由12,αα线性表出,不妨设31122l l ααα=+,其中12,l l 不全为零(若12,l l 同时为0,则3α为0,由323A ααα=+可知20α=,而特征向量都是非0向量,矛盾)11,A αα=-22A αα=∴32321122A l l αααααα=+=++,又311221122()A A l l l l ααααα=+=-+ ∴112221122l l l l ααααα-+=++,整理得:11220l αα+=则12,αα线性相关,矛盾. 所以,123,,ααα线性无关.证法二:设存在数123,,k k k ,使得1122330k k k ααα++= (1)用A 左乘(1)的两边并由11,A αα=-22A αα=得1123233()0k k k k ααα-+++= (2)(1)—(2)得 113220k k αα-= (3)因为12,αα是A 的属于不同特征值的特征向量,所以12,αα线性无关,从而130k k ==,代入(1)得220k α=,又由于20α≠,所以20k =,故123,,ααα线性无关.(II) 记123(,,)P ααα=,则P 可逆,123123(,,)(,,)AP A A A A αααααα==1223(,,)αααα=-+123100(,,)011001ααα-⎛⎫ ⎪= ⎪ ⎪⎝⎭100011001P -⎛⎫ ⎪= ⎪ ⎪⎝⎭所以 1100011001P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭.本题的难度值为0.272.。
2008年普通高等学校招生全国统一考试文科综合能力测试(二)解析读图l.完成1~2题图11.①、②、③、④四地段中平均坡度最大的为A①B.②C③D.④2.海拔低于400米的区域面积约为A.0.05km2B0.5k m2C.5ki m2 D.50k m2[解析]等高线地形图中坡度考查,直接运用的知识是分析等高线的疏密程度,缩小范围B、D中选择,但此题中问到了平均坡度最大的地区,需要考虑起止点的高差,运用原理,水平距离相同,相对高度越大,坡度越大。
故1题选D选项。
在图中找到海拔低于400米的区域,结合比例尺,估算出边长为200米的正方形的面积即可,最接近A选项[点评]此组题考查了等值线类型中最典型的等高线地形图及其分析、判断、计算能力,在基础知识基础上,考查学生的能力又有所升华,起到了高考试题选拔人才的目的。
难度适中。
[参考答案]D A图2示意某雏形生态工业目区的产业链.箭头表示物、能量流动过程,其中虚线箭头表示副产品或废弃物的流动。
完成3~5题。
3.图中a、b、c分别代表A.电厂、化工厂、盐场B.盐场、电厂、化工厂C.电厂、盐场、化工厂D.盐场、化工厂、电厂4.该生态工业园区中A.发电厂的废水、废气与废渣得到有效利用B.制盐的副产品得到利用C.建材厂有效利用了盐场的废弃物D.化工厂的废弃物得到利用5.该生态工业园区可能位于A.晋南B.粤北C.冀东D.闽西[解析]第3题中的a与图中各个产业都有非常明显的关联性,肯定是电厂,再在A与C中衡量,考虑到太阳能的加入是晒盐的主要因素,答案即得。
结合第4题中的选项,去关注产业链中各个箭头的示意。
图示中反映该地临海、化工发达,盐业也很突出,这一点尤其重要,还要注意到闽西并不临海。
[点评]此组题考查了生态文明与循环经济、清洁生产等的相关知识点,更要注意的是,考生要在图示中找到相关知识之间的联系(必然与因果关系),试题较为简单。
[参考答案]C B C图3示意不同纬度四地白昼长度变化。
2008年高考诗歌鉴赏试题及答案解析汇编【全国卷Ⅰ】12 、阅读下面这首宋诗,然后回答问题。
(8分)江间作四首(其三)潘大临①西山通虎穴②,赤壁隐龙宫。
形胜三分国,波流万世功。
沙明拳宿鹭③,天阔退飞鸿。
最羡渔竿客,归船雨打篷。
〔注〕①潘大临(约1057~1106):字邠老,黄州(今湖北黄冈)人,善诗文。
曾随苏轼同游赤壁。
②西山:在湖北鄂州西,山幽僻深邃.③拳宿鹭:指白鹭睡眠时一腿蜷缩的样子。
(l)第三联两句中各有一个字用得十分传神,请找出来,并说说这样写的好处。
答:(2)从全诗看,作者向往一种什么样的生活?请简要分析。
答:【参考答案】⑴“拳”和“退”用“拳”字形象地表现出鹭鸟在沙滩上栖息时的神态。
用“退”字别致、生动地表现出鸿鸟在天空中飞行的状态。
这样写构成了作者江边所见的一幅静动结合的画面。
⑵向往一种隐逸的生活。
①诗的前两联,作者从眼前之景,转入怀古,遥想当年赤壁之战时的人事,而今安在?从而发出了“波流万世功”的感叹。
②诗的后两联,作者赞叹宿鹭、飞鸿的闲适,接着又仿佛看到了渔翁的扁舟,联系到“波流万世功”的感叹,于是提出“最羡渔竿客”,想驾一叶小舟在烟雨朦胧中归去!【解析】本题第(1)题重点考查考生鉴赏诗歌语言的能力,考查考生对诗眼的把握,第(2)题重点考查考生鉴赏诗歌思想内容的能力。
解答时,除把握全诗内容外,还要结合作者及注释内容理解。
诗句中的动词往往是最富表现力的。
诗歌从怀古开始,如今随苏轼同游古代英雄争霸的赤壁,不禁浮想联翩。
再回到现实,眼前实景,着实可爱。
而今只羡慕垂钓者(隐者)。
【全国卷Ⅱ】12.阅读下面这首宋诗,然后回答问题。
(8分)春日即事李弥逊①小雨丝丝欲春,落花狼藉近黄昏。
车尘不到张罗地②,宿鸟声中自掩门。
[注]①李弥逊(1085-1153),字似之,吴县(今属江苏省苏州市)人,历任中书舍人、户部侍郎等职。
因竭力反对秦桧的投降政策而被免职。
②张罗地:指门可罗雀、十分冷落的地方。
2008年国家司法考试真题法律职业道德与职业责任一、单项选择题。
每题所设选项中只有一个正确答案,多选、错选或不选均不得分。
本部分含1-50题,每题1分,共50分。
48.根据我国《律师法》的规定,下列哪一选项是正确的?A.律师事务所变更名称、负责人、章程、合伙协议的,应当报原审核部门备案B.律师服务机构一般采用公司形式,但在经济社会发展欠发达地区仍可保留少数合作制律师事务所C.个人律师事务所实行无限责任,因此在成立条件上比合伙律师事务所要宽松D.律师事务所采用特殊的普通合伙形式的,当个别合伙人因故意或重大过失造成对外债务时,其他合伙人不承担对外责任49.根据我国《公证法》规定,对下列哪一事项公证机关可予办理公证?A.马某拿着一份合同复印件到公证机关要求公证,经公证人员审查发现该合同有多处涂改痕迹B.女青年李某29岁,至今未婚,到公证机关办理处女公证C.张某与王某大学毕业工作多年,各自都有些积蓄,为避免婚后因财产问题发生纠纷,双方决定到公证机关办理婚前财产公证D.杨父因正在读初中的儿子整天沉迷于网络游戏,多次劝说无效,遂决定与儿子解除父子关系,到公证机关申请公证50.邱法官在出席会议期间,参加会议组织的联欢活动,发现会务组安排她与自己正在审理的案件的被告代理律师同桌相邻而坐。
此时全体代表已就坐,除了给邱法官安排的座位之外已无空位。
在这种情况下,邱法官的下列哪一做法最符合法官职业道德规范?A.按号就坐,但装作与律师不认识,与其不说一句话B.按号就坐,可以与律师寒暄,但是不交谈案件事务C.仅与同桌的人调换座位,但桌号不变D.马上与会务人员联系调换座位,不与律师同坐一桌二、多项选择题。
每题所设选项中至少有两个正确答案,多选、少选、错选或不选均不得分。
本部分含51-90题,每题2分,共80分。
88.2007年10月28日第十届全国人民代表大会常务委员会第三十次会议对《律师法》进行了修订。
根据修订后的《律师法》,下列哪些选项是错误的?A.受委托的律师自案件审查起诉之日起,有权查阅、摘抄和复制与案件有关的所有材料B.犯罪嫌疑人被侦查机关第一次讯问或者采取强制措施之日起,受委托的律师凭律师执业证书、律师事务所证明和委托书或者法律援助公函,有权会见犯罪嫌疑人、被告人并了解有关案件情况。
2008年重庆市普通高等学校招生考试理科综合物理部分αβ衰变会生成氧,其衰变方程为23290Th→22080Rn +xα+y β,其中A.x =1,y =3B.x =2,y=3C.x =3,y =1D.x =3,y =214、D ,此题考查放射性元素衰变的有关知识,此题为较容易的题目。
由衰变方程:ey He Rn Th 01-422208623290++→x ,由质量数守恒和电荷数守恒得:232=220+4x,90=86+2x-y可解得:x=3、 y=2。
15.某同学设计了一个转向灯电路〔题15图〕,其中L 为指示灯,L 1、L 2分别为左、右转向灯,S 为单刀双掷开关,E 为电源.当S 置于位置1时,以下判断正确的选项是 A. L 的功率小于额定功率B. L 1亮,其功率等于额定功率C. L 2亮,其功率等于额定功率D. 含L 支路的总功率较另一支路的大15、A ,此题考查电路分析的有关知识,此题为中等难度题目。
由电路结构可知,当S 置于1位置时,L 与L 2串联后再与L 1并联,由灯泡的额定电压和额定功率可知,L 1和L 2的电阻相等。
L 与L 2串联后的总电阻大于L 1的电阻,由于电源电动势为6伏,本身有电阻,所以L 1两端电压和L 与L 2的总电压相等,且都小于6伏,所以三只灯都没有正常发光,三只灯的实际功率都小于额定功率。
含L 的支路的总电阻大于L 1支路的电阻,由于两条支路的电压相等,所以。
含L 的支路的总功率小于另一支路的功率。
16.地面附近有一正在上升的空气团,它与外界的热交热忽略不计.已知大气压强随高度增加而降低,则该气团在此上升过程中〔不计气团内分子间的势能〕 A.体积减小,温度降低 B.体积减小,温度不变 C.体积增大,温度降低 D.体积增大,温度不变16、C ,此题考查气体的有关知识,此题为中等难度题目。
随着空气团的上升,大气压强也随着减小,那么空气团的体积会增大,空气团对外做功,其内能会减小,因为不计分子势能,所以内能由其温度决定,则其温度会降低。
2008年法律硕士联考试题参考答案及解析刑法学一、单项选择题1.C 【解析】直接考察刑法第十七条第 2 款:已满十四周不满十六周岁的人,犯故意杀人、故意伤害致人重伤或者死亡、强奸、抢劫、贩卖毒品、放火、爆炸、投毒罪的,应当负刑事责任。
该知识点必考知识点,几乎每年涉及。
如 2004 年单选题 1、下列行为中已满 14 周岁不满 16 周岁的人应当负刑事责任的是(B)。
A、走私毒品 B、贩卖毒品 C、决水 D、拐卖妇女、儿童。
2.B 【解析】修正的犯罪构成。
该知识点重点,2006 年单选题 3 曾经涉及到,而且比该题难度要大。
如:2006 年单选题 3、甲教唆乙在某学校食堂的面粉中投放“毒鼠强”一包,造成数十人中毒死亡的结果。
法院认定甲构成投放危险物质罪。
甲的行为具备(D):A、标准的犯罪构成 B、复杂的犯罪构成 C、基本的犯罪构成 D、修正的犯罪构成。
3.D 【解析】不作为行为。
该知识点为重点,2005 年单选题 3 曾经涉及到,难度比该题大很多,还涉及纯正不纯正的判断。
如:2005 年单选题 3、甲因为重男轻女,将妻子刚生下才 3 天的女婴包裹好放在医院门口,躲在一边观察。
见有群众围观、议论,便放心离开。
第二天一早,甲又到医院门口察看,见女婴还在,但女婴却因晚间气温过低被冻死。
法官据此判决甲构成遗弃罪。
甲的行为属于(C)。
A、纯正的作为犯 B、不纯正的作为犯 C、纯正的不作为犯 D、不纯正的不作为犯4.B【解析】直接考察刑法第十八条第 1 款:精神病人在不能辨认或者不能控制自己行为的时候造成危害结果,经法定程序鉴定确认的,不负刑事责任,但是应当责令他的家属或者监护人严加看管和医疗;在必要的时候,由政府强制医疗。
5.C 【解析】直接考察刑法第二十一条第 3 款:第一款中关于避免本人危险的规定,不适用于职务上、业务上负有特定责任的人。
----小结,单单从以上 5 道选择题来看,选择题或以法条直接出题,或以以往的题为基础出题,但总的来看,难度有所降低。
一、A型题:1-90小题,每小题l.5分;91-120小题.每小题2分;共195分。
在每小题给出的A、B、C.D四个选项中,请选出一项最符合题目要求的。
1.从控制论的观点看.对维持内环境的稳态具有重要作用的调控机制是A.非自动控制 B.负反馈控制 C.正反馈控制 D.前馈控制【答案】B【分析】本题旨在考查考生对反馈控制系统的理解。
从控制论的观点看,体内的控制系统可分为非自动控制、反馈控制和前馈控制三大系统。
在非自动控制系统中,只有控制部分对受控部分的作用,而无受控部分对控制部分的反作用,所以该系统无自动控制能力。
在反馈控制系统中,控制部分可向受控部分发出指令,受控部分也能反过来影响控制部分的活动,因而该系统具有自动控制的能力。
反馈有负反馈和正反馈两种形式。
在负反馈控制系统中,如果受控部分的活动增强,可通过其反馈信息改变控制部分的活动,后者再发出指令使受控部分的活动减弱;相反,如果受控部分的活动过低,则可通过负反馈使其活动加强。
所以,负反馈控制可使系统的活动保持稳定。
在正反馈控制系统中,反馈信息的作用是使受控部分的活动继续按原方向加强,结果导致“滚雪球”效应。
前馈是一种先于反馈的控制方式,即控制部分在反馈信息尚未到达前已受到纠正信息(前馈信息)的影响,因而能及早纠正可能出现的指令偏差。
故正确答案是B。
本题难度为0.962。
2.神经细胞在兴奋过程中,Na+ 内流和K+ 外流的量取决于A.各自平衡电位 B. 细胞的阈电位C.钠泵活动程度 D.所给刺激强度【答案】 A【分析】本题旨在考查考生对神经细胞动作电位产生机制的理解。
细胞在兴奋过程中,离子跨膜流动是由于膜上离子通道开放允许离子通透而引起.此时的离子跨膜流动属于顺浓度差的经通道易化扩散。
膜内外离子的不均匀分布是通道开放后出现离子流的基础,这一基础是由钠泵的不断活动造成的。
驱动离子跨膜扩散的力量是膜两侧的离子浓度差和电位差.即电化学驱动力。
某种离子电化学驱动力的大小取决于膜电位与该离子平衡电位的差值。
2008年普通高等学校招生全国统一考试(江苏卷)数 学参考公式: 样本数据1x ,2x ,,n x 的标准差(n s x =+−其中x 为样本平均数柱体体积公式V Sh = 其中S 为底面积,h 为高一、填空题:本大题共1小题,每小题5分,共70分. 1.若函数cos()(0)6y x πωω=−>最小正周期为5π,则ω= ▲ .【解析】本小题考查三角函数的周期公式.2105T ππωω==⇒=【答案】102.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 ▲ .【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故316612P ==⨯ 【答案】1123.若将复数11ii+−表示为(,,a bi a b R i +∈是虚数单位)的形式,则a b += ▲ .【解析】本小题考查复数的除法运算.∵()21112i i i i ++==− ,∴a =0,b =1,因此1a b += 锥体体积公式 13V Sh =其中S S 为底面积,h 为高 球的表面积、体积公式24S R π=,343V R π=【答案】14.若集合2{|(1)37,}A x x x x R =−<+∈,则AZ 中有 ▲ 个元素【解析】本小题考查集合的运算和解一元二次不等式.由2(1)37x x −<+得2560x x −−<,(1,6)A =−∴,因此}{0,1,2,3,4,5A Z =,共有6个元素.【答案】65.已知向量a 和b 的夹角为0120,||1,||3a b ==,则|5|a b −= ▲ . 【解析】本小题考查向量的线性运算.()2222552510a b a b a a b b −=−=−+=22125110133492⎛⎫⨯−⨯⨯⨯−+= ⎪⎝⎭,5a b −=7 【答案】76.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是 ▲【解析】本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域 E 表示单位圆及其内部,因此.214416P ππ⨯==⨯【答案】16π7.某地区为了解7080−岁的老人的日平均睡眠时间(单位:h ),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:在上述统计数据的分析中一部分计算见算法流程图,则输出的S 的值为 ▲ 【解析】由流程图1122334455S G F G F G F G F G F =++++序号i 分组 (睡眠时间) 组中值(i G ) 频数 (人数) 频率(i F ) 1 [4,5) 4.5 6 0.12 2 [5,6) 5.510 0.20 3 [6,7) 6.520 0.40 4 [7,8) 7.510 0.20 5 [8,9] 8.54 0.08 开始 S ←0 输入G i ,F i i ←1 S ← S +G i ·F i i ≥5 i ← i +1 NY 输出S 结束4.50.125.50.206.50.407.50.28.50.08=⨯+⨯+⨯+⨯+⨯ 6.42= 【答案】6.428.设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是 ▲ 【解析】本小题考查导数的几何意义、切线的求法.'1y x = ,令112x =得2x =,故切点(2,ln2),代入直线方程,得,所以b =ln2-1.【答案】ln2-19.如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO 上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方程为01111=⎪⎪⎭⎫ ⎝⎛−+⎪⎭⎫ ⎝⎛−y a p x c b ,请你完成直线OF 的方程: ( ▲ )011=⎪⎪⎭⎫⎝⎛−+y a p x 。
绝密★启用前2008年普通高等学校招生全国统一考试(湖北卷)数 学(理工农医类)本试卷共4面,满分150分,考试时间120分钟★祝考试顺利★注意事项:1. 答卷前,考生务必将自己的姓名,准考证号填写在试题卷和答题卡上,并将准考证号条形码粘巾在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上,对应题目的答案标号涂写,如写改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。
3. 非选择题用0.5毫米的黑色墨水签字夂答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本次题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =A.(-15,12)B.0C.-3D.-112. 若非空集合A ,B ,C 满足A ∪B=C ,且B 不是A 的子集,则A.“x ∈C ”是“x ∈A ”的充分条件但不是必要条件B. “x ∈C ”是“x ∈A ”的必要条件但不是充分条件C. “x ∈C ”是“x ∈A ”的充分条件D. “x ∈C ”是“x ∈A ”的充分条件也不是“x ∈A ”必要条件3. 用与球心距离为1的平面去截球,所得的截面面积为π,则球的休积为 A.38π B. 328π C.π28 D. 332π 4. 函数f (x )=)4323(1122+--++-x x x x n x 的定义域为A.(- ∞,-4)[∪2,+ ∞]B.(-4,0) ∪(0,1)C. [-4,0]∪(0,1)]D. [-4,0∪(0,1)5.将函数y=3sin (x -θ)的图象F 按向量(3π,3)平移得到图象F ′,若F ′的一条对称轴是直线x=4π,则θ的一个可能取值是 A.π125 B. π125- C. π1211 D. π1211 6.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为A.540B.300C.180D.1507.若f(x)=21ln(2)2x b x -++∞在(-1,+)上是减函数,则b 的取值范围是 A.[-1,+∞] B.(-1,+∞) C.(-∞,-1) D.(-∞,-1)8.已知m ∈N*,a,b ∈R ,若0(1)lim m x x a b x→++=,则a ·b = A .-m B .m C .-1 D .19.过点A (11,2)作圆22241640x y x y ++--=的弦,其中弦长为整数的共有A.16条B.17条C.32条D.34条10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用2c 1和2c 2分别表示椭轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①a 1+c 1=a 2+c 2;②a 1-c 1=a 2-c 2;③c 1a 2>a 1c 1;④31c c <22c a . 其中正确式子的序号是A.①③B.②③C.①④D.②④二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.设z 1=z 1-z 1(其中z 1表示z 1的共轭复数),已知z 2的实部是-1,则z 2的虚部为 .12.在△ABC 中,三个角A ,B ,C 的对边边长分别为a=3,b=4,c=6,则bc cosA+ca cosB+ab cosC 的值为 .13.已知函数f(x)=x 2+2x+a,f(bx)=9x-6x +2,其中x ∈R ,a ,b 为常数,则方程f (ax+b )=0的解集为 .14.已知函数f(x)=2x ,等差数列{a x }的公差为2.若f(a 2+a 4+a b +a 2+a 1)=4,则Log 2[f(a 1)·f(a 2)·f(a)·…·f(a 10)]= .15.观察下列等式:2122213222111,22111,326111,424n i n i n i i nn i n n n i n n n ====+=++=++∑∑∑ 444311111,52330n i in n n n ==++-∑ 24,(1)(321),3n n n n a n b a n +-=--+ ……………………………………212112101,n k k k k k k k k k i ia n a n a n a n a n a +--+--==++++⋅⋅⋅++∑可以推测,当x ≥2(k ∈N*)时,1111,,12k k k a a a k +-===+ a k -2= .三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数f (t17()cos (sin )sin (cos ),(,).12g x x f x x f x x ππ=+∈ (Ⅰ)将函数g(x )化简成Asin(ωx +φ)+B (A >0,ω>0,φ∈[0,2π])的形式;(Ⅱ)求函数g(x )的值域.17.(本小题满分12分)袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.(Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若η=a ξ-b ,E η=1,D η=11,试求a,b 的值.18.(本小题满分12分)如图,在直三棱柱ABC-A 1B 1C 1中,平面ABC ⊥侧面A 1ABB 1.(Ⅰ)求证:AB ⊥BC ;(Ⅱ)若直线AC 与平面A 1BC 所成的角为θ,二面角A 1-BC-A 的大小为φ的大小关系,并予以证明.19.(本小题满分13分)如图,在以点O 为圆心,|AB|=4为直径的半圆ADB 中,OD ⊥AB ,P 是半圆弧上一点, ∠POB=30°,曲线C 是满足||MA|-|MB||为定值的动点M 的轨迹,且曲线C 过点P.(Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程;(Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F.若△OEF 的面积不小于...l 斜率的取值范围.20.(本小题满分12分)水库的蓄水量随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t 的近似函数关系式为V (t )=12(1440)50,010,4(10)(341)50,1012.x t t e t t t t ⎧⎪-+-+≤⎨⎪--+≤⎩(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以i-1<t <t 表示第1月份(i=1,2,…,12),同一年内哪几个月份是枯水期?(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).21.(本小题满分14分)已知数列{a n}和{b n}满足:a1=λ,a n+1=24,(1)(321),3nn n na nb a n+-=--+其中λ为实数,n为正整数.(Ⅰ)对任意实数λ,证明数列{a n}不是等比数列;(Ⅱ)试判断数列{b n}是否为等比数列,并证明你的结论;(Ⅲ)设0<a<b,S n为数列{b n}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<S n<b?若存在,求λ的取值范围;若不存在,说明理由.2008年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)一、选择题:本次题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.5. 设(1,2)a =-,(3,4)b =-,(3,2)c =则(2)a b c +=A.(15,12)-B.0C.3-D.11-解:2(1,2)2(3,4)(5,6)a b +=-+-=-,(2)(5,6)(3,2)3a b c +=-⋅=- ,选C6. 若非空集合,,A B C 满足A B C = ,且B 不是A 的子集,则A. “x C ∈”是“x A ∈”的充分条件但不是必要条件B. “x C ∈”是“x A ∈”的必要条件但不是充分条件C. “x C ∈”是“x A ∈”的充要条件D. “x C ∈”既不是“x A ∈”的充分条件也不是“x A ∈”必要条件解:x A x C ∈⇒∈,但是x C x A ∈⇒∈不能, 所以B 正确。
2008年全国硕士研究生入学统一考试数学试题参考答案和评分参考数 学(一)一.选择题 ( 1 ~ 8小题,每小题4分,共32分.) (1)设函数2()ln(2)x f x t dt =+⎰,则()f x '的零点个数为 (B )(A )0 (B )1 (C )2 (D )3 (2)函数(,)arctanxf x y y=在点(0,1)处的梯度等于 (A ) (A )i (B )i - (C )j (D )j -(3)在下列微分方程中,以123cos2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是 (D ) (A )044=-'-''+'''y y y y . (B )044=+'+''+'''y y y y (C )044=+'-''-'''y y y y . (D )044=-'+''-'''y y y y(4)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是 (B )(A )若{}n x 收敛,则{()}n f x 收敛. (B) 若{}n x 单调,则{()}n f x 收敛. (C) 若{()}n f x 收敛,则{}n x 收敛. (D) 若{()}n f x 单调,则{}n x 收敛. (5) 设A 为n 阶非零矩阵,E 为n 阶单位矩阵,若03=A ,则 (C )(A )E A -不可逆,E A +不可逆. (B )E A -不可逆,E A +可逆.(C )E A -可逆,E A +可逆. (D )E A -可逆,E A +不可逆 (6)设A 为3阶非零矩阵,如果二次曲面方程(,,)1x x y z A y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如图,则A 的正特征值个数为 (B ) (A )0 (B )1 (C )2 (D )3(7) 随机变量X ,Y 独立同分布,且X 的分布函数为F(x),则Z=max{X, Y}分布函数为 (A )(A ))(2x F ;(B ))()(y F x F ;(C )2)](1[1x F --;(D ))](1)][(1[y F x F -- (8)随机变量~(0,1),~(1,4)X N Y N ,且相关系数1XY ρ=,则 (D )(A ){21}1P Y X =--= (B ){21}1P Y X =-= (C ){21}1P Y X =-+= (D ){21}1P Y X =+=二、填空题:(9~14小题,每小题4分,共24分.)(9) 微分方程'0xy y +=满足条件(1)1y =的解是=y x/1(10) 曲线sin()ln()xy y x x +-=在点(0,1)处的切线方程是1+=x y .(11) 已知幂级数(2)nnn a x ∞=+∑在0x =处收敛,在4x =-处发散,则幂级数(3)nn n a x ∞=-∑的收敛域为(]5,1(12) 设曲面∑是z =⎰⎰∑++dxdy x xdzdx xydydz 2=π4(13) 设A 为2阶矩阵,21,αα为线性无关的2维列向量,12120,2Aa Aa a a ==+则A 的非零特征值为__1___(14) 设随机变量X 服从参数为1的泊松分布,则{}2EX X P ==e21三、解答题 ( 15 ~ 23小题,共94分. ) (15)(本题满分9分)求极限40[sin sin(sin )]sin limx x x xx →-解: ()[]()3040sin sin sin lim sin sin sin sin limx x x x x x x x x -=-→→ ……2分=()()20203sin cos 1lim 3cos sin cos cos lim xx x x x x x x -=-→→ ……6分 613sin lim 22210==→x x x ……9分 (16)(本题满分9分) 计算曲线积分2sin 22(1)Lxdx x ydy +-⎰,其中L 是曲线sin y x =上从点(0,0)到点(,0)π的一段.解法1:()()[]⎰⎰⋅-+=-+π22cos sin 122sin 122sin dx x x x x ydy x xdx Ldx x x⎰=π22sin ……4分⎰+-=ππ0022c o s 2c o s 2x d x x x x ……6分 22s i n 212s i n 222002ππππ-=-+-=⎰x d x x x ……9分解法2:取1L 为x 轴上从点()0,π到点()0,0的一段,D 是由L 与1L 围成的区域()⎰⎰⎰-+--+=-++11)1(22sin )1(22sin 122sin 222L L L Lydy x xdx ydy x xdx ydy xxdx ……2分⎰⎰⎰--=02sin 4πxdx xydxdy D……5分⎰⎰⎰⎰--=-=--=ππππ0020sin 00)2cos 1(sin 22cos 214dx x x xdx x x xydy dx x22sin 212sin 2220002ππππ-=-+-=⎰xdx x x x ……9分 (17)(本题满分11分)已知曲线22220:35x y z C x y z ⎧+-=⎨++=⎩,求C 上距离xOy 面最远的点和最近的点.解:点),,(z y x 到xOy 面的距离为z ,故求C 上距离xOy 面最远点和最近点的坐标,等价于求函数2z H =在条件02222=-+z y x 与53=++z y x 下的最大值点和最小值点. ……3分 令)53()2(),,,,(2222-+++-++=z y x z y x z z y x L μλμλ ……5分由⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=-+=+-==+==+=530203*********'''z y x z y x z z L y L x L z y x μλμλμλ ……7分 得y x =,从而⎩⎨⎧=+=-53202222z x z x ,解得⎪⎩⎪⎨⎧=-=-=555z y x 或⎪⎩⎪⎨⎧===111z y x ……10分根据几何意义,曲线C 上存在距离xOy 面最远的点和最近的点,故所求点依次为)5,5,5(--和)1,1,1( ……11分(18)(本题满分10分) 设()f x 是连续函数, (I) 利用定义证明函数⎰=x dt t f x F 0)()(可导,且()()F x f x '=;(II) 当()f x 是以2为周期的周期函数时,证明函数⎰⎰-=2)()(2)(dt t f x dt t f x G x 也是以2为周期的周期函数.(I) 证:对任意的x ,由于()f x 是连续函数,所以xdt t f x dtt f dt t f x x F x x F xx xx x xx x x ∆=∆-=∆-∆+⎰⎰⎰∆+→∆∆+→∆→∆)(lim )()(lim )()(lim 00000 ……2分 )(lim )(lim 00ξξf xx f x x →∆→∆=∆∆= (其中ξ介于x 与x x ∆+之间) 由)()(lim 0x f f x =→∆ξ,可知函数)(x F 在x 处可导,且)()('x f x F = ……5分(II) 证法1:要证明)(x G 以2为周期,即要证明对任意的x ,都有)()2(x G x G =+,记)()2()(x G x G x H -+=,则()()222()2()(2)()2()()x x H x f t dt x f t dt f t dt x f t dt +'''=-+--⎰⎰⎰⎰0)()(2)()2(222=+--+=⎰⎰dt t f x f dt t f x f ……8分又因为00)(2)(2)0()2()0(2020=-⎪⎭⎫ ⎝⎛-=-=⎰⎰dt t f dt t f G G H 所以0)(=x H ,即)()2(x G x G =+ ……10分证法2:由于()f x 是以2为周期的连续函数,所以对任意的x ,有⎰⎰⎰⎰++-+-=-+220)()(2)()2()(2)()2(x xx dt t f x dt t f dt t f x dt t f x G x G⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡--+=⎰⎰⎰⎰⎰⎰+x xx x dt t f du u f dt t f dt t f dt t f dt t f 002002022)()2(2)()()()(2……8分[]0)()2(20=-+=⎰x dt t f t f即)(x G 是以2为周期的周期函数. ……10分(19)(本题满分11分)将函数21)(x x f -=,)0(π≤≤x 展开成余弦级数,并求级数121(1)n n n +∞=-∑的和.解:由于⎰-=-=πππ220322)1(2dx x a ……2分,2,1,)1(4cos )1(21202=-=-=+⎰n nnxdx x a n n ππ……5分 所以nx n nx a a x f n n n n cos )1(431cos 2)(121210∑∑∞=+∞=-+-=+=π,π≤≤x 0, ……7分 令0=x ,有∑∞=+-+-=1212)1(431)0(n n n f π, 又1)0(=f ,所以12)1(2121π=-∑∞=-n n n ……11分(20)(本题满分10分)设βα,为3维列向量,矩阵,T T A ααββ=+其中Tα,Tβ为α,β的转置. 证明: (I) 秩()2r A ≤;(II) 若,αβ线性相关,则秩() 2.r A < 证:(I) ()()T T r A r ααββ=+()()T T r r ααββ≤+ ……3分2)()(≤+≤βαr r ……6分(II) 由于βα,线性相关,不妨设βαk =,于是21)())1(()()(2<≤≤+=+=βββββααr k r r A r T T T ……10分(21)(本题满分12分)设n 元线性方程b Ax =,其中A =2222212121212n na a a a a a a a a ⨯⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ,12n x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ,100b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ (I) 证明行列式na n A )1(+=;(II) 当a 为何值时,该方程组有唯一解,并求1x ; (Ⅲ) 当a 为何值时,该方程组有无穷多解,并求通解.(I) 证法1:记n D A ==2222212121212na a a a aa a a a当1=n 时,a D 21=,结论成立, 当2=n 时,2223212a aa a D ==,结论成立 ……2分假设结论对小于n 的情况成立,将n D 按第1行展开得2122n n n D aD a D --=-n n n a n a n a ana )1()1(2221+=--=--,即na n A )1(+= ……6分证法2:2222122222121321012211212212122nna a a a a a aa aA r ar a a a a aa a a =-……2分3222221301240123321212na a a r ar a a a a a a -=……4分nnn n a n a n n a n n a a a ar nn r )1(111013412301211+=+----……6分(Ⅱ) 解:当0≠a 时,方程组系数行列式0≠n D ,故方程组有唯一解. 由克莱姆法则,将n D 第1列换成b ,得行列式为22112222111210212121212122n n n na a a aaaD na a a aa a a aa ---===所以,an nD D x n n )1(11+==- ……9分(Ⅲ) 解:当0=a 时,方程组为 12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭此时方程组系数矩阵的秩和增广矩阵的秩均为1-n ,所以方程组有无穷多解,其通解为()()01001000TTx k =+ ,其中k 为任意常数 ……12分(22)(本题满分11分)设随机变量X 与Y 相互独立,X 概率分布为1{}(1,0,1)3P X i i ===-,Y 的概率密度为101()0Y y f y ≤≤⎧=⎨⎩,其它记 Y X Z += (I) 求1{0}2P Z X ≤=; (II) 求Z 的概率密度)(z f z . 解:(I) ⎭⎬⎫⎩⎨⎧=≤+=⎭⎬⎫⎩⎨⎧=≤021021X Y X P X Z P 2121=⎭⎬⎫⎩⎨⎧≤=Y P ……4分(II) {}{}z Y X P z Z P z F Z ≤+=≤=)({}{}{}1,0,1,=≤++=≤++-=≤+=X z Y X P X z Y X P X z Y X P {}{}{}1,10,1,1=-≤+=≤+-=+≤=X z Y P X z Y P X z Y P {}{}{}{}{}{}11011=-≤+=≤+-=+≤=X P z Y P X P z Y P X P z Y P{}{}{}[]1131-≤+≤++≤=z Y P z Y P z Y P [])1()()1(31-+++=z F z F z FY Y Y ……7分 []13()()(1)()(1)Z Z Y Y Y f z F z f z f z f z '==+++- ……9分 ⎩⎨⎧<≤-=其他,021,31z ……11分 (23)(本题满分11分)设12,,,n X X X 是总体为2(,)N μσ的简单随机样本,记∑==n i i X n X 11,212)(11∑=--=n i iX X n S ,221S nX T -= (I) 证明T 是2μ的无偏估计量; (II) 当0,1μσ==时,求DT.(I) 证:因2222221)(1)1(ES nX D X E ES n X E S n X E ET -+=-=-= ……4分2222μσσμ=-+=nn所以T 是2μ的无偏估计量 ……7分(II) 解:当0=μ,1=σ时,由于X 与2S 独立 ,有)1(22S n X D DT -=2221DS nX D += ……9分 []22222)1()1(11)(1S n D n n X n D n --⋅+= )1(21112)1(2)1(11212222-=⎪⎭⎫ ⎝⎛-+=-⋅-⋅+⋅=n n n n n n n n ……11分数 学(二)一.选择题 ( 1 ~ 8小题,每小题4分,共32分.)(1)设函数2()(1)(2)f x x x x =--,则()f x '的零点个数为 (D )(A )0 (B )1 (C )2 (D )3(2)如图,曲线段的方程为()y f x =,函数在区间[0,]a 上有连续导数, 则定积分()axf x dx '⎰等于 (C )(A )曲边梯形ABCD 面积. (B )梯形ABCD 面积.(C )曲边三角形ACD 面积. (D )三角形ACD 面积. (3)【 同数学一(3)题 】 (4)判断函数x x x x f sin 1ln )(-=,则)(x f 有 (A )(A )1个可去间断点,1个跳跃间断点; (B )1个跳跃间断点,1个无穷间断点.(C )2个跳跃间断点; (D )2个无穷间断点(5)【 同数学一(4)题 】 (6)设函数f 连续,若dxdy yx y x f v u F vu D ⎰⎰++=2222)(),(,其中区域uv D 为图中阴影部分,则Fu∂=∂ (A ) (A ))(2u vf (B ))(2u f u v (C ) )(u vf (D ))(u f uv(7)【 同数学一(5)题 】(8)设1221A ⎛⎫= ⎪⎝⎭,则在实数域上与A 合同的矩阵为 (D )(A )⎪⎪⎭⎫⎝⎛--2112 (B )⎪⎪⎭⎫⎝⎛--2112 (C ) ⎪⎪⎭⎫ ⎝⎛2112 (D )⎪⎪⎭⎫⎝⎛--1221二、填空题:(9~14小题,每小题4分,共24分.) (9) 已知函数()f x 连续,且1)()1()](cos[1lim2=--→x f ex xf x x ,则=)0(f 2. (10) 微分方程0)(2=-+-xdy dx e x y x 的通解是=y )(x e C x --.(11) 【 同数学一(10)题 】 (12) 曲线32)5(x x y -=的拐点坐标为)6,1(--.(13) 已知xyy z x ⎛⎫=⎪⎝⎭,则=∂∂)2,1(xz)12(ln 22-.(14) 设3阶矩阵A 的特征值是λ,3,2,若行列式482-=A ,则=λ1-.三、解答题 ( 15 ~ 23小题,共94分. ) (15)(本题满分9分) 【 同数学一(15)题 】 (16)(本题满分10分)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+==⎰20)1ln()(t du u y t x x 确定,其中)(t x 是初值问题⎪⎩⎪⎨⎧==-=-020t xx te dt dx 的解,求22dx y d . 解:由02=--x te dtdx得tdt dx e x 2=,积分并由条件00==t x ,得21t e x +=, 即)1ln(2t x += ……4分)1ln()1(122)1ln(2222t t t t t t dt dxdt dydx dy ++=+⋅+== ……7分[][]1)1ln()1(122)1ln(2)1ln()1()(22222222+++=+++=++==t t t t t t t dt dx t t dt ddx dy dx d dxy d ……10分(17)(本题满分9分) 计算21⎰.解:由于+∞=--→2211arcsin lim x xx x ,故dx xx x ⎰-10221arcsin 是反常积分 令t x =arcsin ,有t x sin =,[0,)2t π∈⎰⎰⎰==-120202222sin cos cos sin 1arcsin ππtdt t tdt ttt dx xx x ……3分⎰+-=202022sin 4142sin 16πππtdt t t ……7分 41162cos 81162202+=-=πππt ……9分 (18)(本题满分11分) 计算{}⎰⎰Ddxdy xy 1,max ,其中{}20,20),(≤≤≤≤=y x y x D .解:曲线1=xy 将区域D 分成如图所示的两个区域1D 和2D ……3分{}⎰⎰⎰⎰⎰⎰+=211,m ax D D Ddxdy xydxdy dxdy xy ……5分⎰⎰⎰⎰⎰⎰++=x xdy dx dy dx xydy dx 102212021021221 ……8分2ln 4192ln 212ln 415+=++-=……11分 (19)(本题满分11分)设)(x f 是区间[)+∞,0上具有连续导数的单调增加函数,且1)0(=f ,对任意的[)+∞∈,0t ,直线t x x ==,0,曲线)(x f y =以及x 轴围成的曲边梯形绕x 轴旋转一周生成一旋转体,若该旋转体的侧面面积在数值上等于其体积的2倍,求函数)(x f 的表达式.解:旋转体的体积⎰=t dx x f V 02)(π,侧面积⎰+=tdx x f x f S 02')(1)(2π,由题设条件知⎰⎰+=t t dx x f x f dx x f 02;02)(1)()( ……4分上式两端对t 求导得:)(1)()(2'2t f t f t f +=, 即y '=……6分由分离变量法解得12)1ln(C t y y +=-+,即 t Ce y y =-+12 ……9分将1)0(=y 代入知1=C ,故t e y y =-+12,)(21t t e e y -+=于是所求函数为)(21)(x x e e x f y -+== ……11分(20)(本题满分11分)(I) 证明积分中值定理:若函数)(x f 在闭区间[]b a ,上连续,则至少存在一点[]b a ,∈η,使得)()()(a b f dx x f ba-=⎰η;(II) 若函数)(x ϕ具有二阶导数,且满足)1()2(ϕϕ>,⎰>32)()2(dx x ϕϕ,则至少存在一点)3,1(∈ξ,使得()0ϕξ''<证:(I) 设M 与m 是连续函数)(x f 在[]b a ,上的最大值与最小值,即M x f m ≤≤)(,[]b a x ,∈由积分性质,有⎰-≤≤-ba ab M dx x f a b m )()()(,即M dx x f a b m ba ≤-≤⎰)(1……2分 由连续函数介值定理,至少存在一点[]b a ,∈η,使得⎰-=badx x f a b f )(1)(η,即))(()(a b f dx x f ba-=⎰η ……4分(II) 由 (I) 知至少存在一点[]3,2∈η,使)()23)(()(32ηϕηϕϕ=-=⎰dx x ……6分又由)()()2(32ηϕϕϕ=>⎰dx x 知,32≤<η,对)(x ϕ在]2,1[和],2[η上分别应用拉格朗日中值定理,并注意到)1()2(ϕϕ>,)()2(ηϕϕ>,得21,012)1()2()('11<<>--=ξϕϕξϕ,32,02)2()()('22≤<<<--=ηξηϕηϕξϕ ……9分在],[21ξξ上对导函数()x ϕ'应用拉格朗日中值定理,有211221()()()0,(,)(1,3)ϕξϕξϕξξξξξξ''-''=<∈⊂- ……11分(21)(本题满分11分)求函数222z y x u ++=在约束条件22y x z +=和4=++z y x 下的最大值与最小值.解:作拉格朗日函数)4()(),,,,(22222-+++-++++=z y x z y x z y x z y x F μλμλ……3分令⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++==-+==+-==++==++=04002022022'22''''z y x F z y x F z F y y F x x F z y x μλμλμλμλ ……6分解方程组得)2,1,1(),,(111=z y x ,)8,2,2(),,(222--=z y x ……9分 故所求的最大值为72,最小值为6. ……11分(22)(本题满分12分) 【 同数学一(21)题 】 (23)(本题满分10分)设A 为3阶矩阵,12,αα为A 的分别属于特征值-1,1的特征向量,向量3α满足323A ααα=+,(I) 证明123,,ααα线性无关; (Ⅱ)令123{,,}P ααα=,求1P AP -.证明: (I) 设存在数321,,k k k ,使得0332211=++αααk k k ○1 用A 左乘○1的两边,并由11αα-=A ,22αα=A ,得:0)(3323211=+++-αααk k k k ○2 ……3分 ○1-○2得:022311=-ααk k ○3 因为21,αα是A 的属于不同特征值的特征向量,所以21,αα线性无关,从而031==k k 代入○1得,022=αk ,又由于02≠α,所以02=k ,故123,,ααα线性无关. ……7分 (Ⅱ)由题设,可得),,(),,(321321ααααααA A A A AP ==⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-=100110001100110001),,(321P ααα由(I)知,P 为可逆矩阵,从而⎪⎪⎪⎭⎫⎝⎛-=-1001100011AP P ……10分数 学(三)一.选择题 ( 1 ~ 8小题,每小题4分,共32分.)(1)设函数()f x 在区间]1,1[-上连续,则x=0是函数0()()xf t dtg x x=⎰的 (B )(A )跳跃间断点. (B )可去间断点. (C )无穷间断点. (D )振荡间断点.(2)【 同数学二(2)题 】 (3)已知(,)f x y =则 (B )(A ))0,0(x f ',)0,0(y f '都存在 (B ))0,0(x f '不存在,)0,0(y f '存在(C ))0,0(x f '存在,)0,0(y f '不存在 (D ))0,0(x f ' )0,0(y f '都不存在 (4)【 同数学二(6)题 】 (5)【 同数学一(5)题 】 (6)【 同数学二(8)题 】 (7)【 同数学一(7)题 】 (8)【 同数学一(8)题 】二、填空题:(9~14小题,每小题4分,共24分.)(9) 设函数21,()2,x x c f x x cx ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则=c 1.(10) 函数3411x x f x x x +⎛⎫+= ⎪+⎝⎭,求积分⎰=222)(dx x f 3ln 21. (11) 设{}1),(22≤+=y x y x D ,则⎰⎰=-Ddxdy y x )(24/π.(12) 【 同数学一(9)题 】(13) 设3阶矩阵A 的特征值是1, 2, 2,E 为3阶单位矩阵,则E A --14= _3___ . (14) 【 同数学一(14)题 】三、解答题 ( 15 ~ 23小题,共94分. ) (15)(本题满分9分) 计算201sin limlnx xx x→. 解:原式=20lnsin ln lim x x x x →-=xx xx x x sin 2sin cos lim 20-→ ……4分 302sin cos lim x x x x x -=→206sin limx xx x -=→ ……7分 61-= ……9分 (16)(本题满分10分)设(,)z z x y =是由方程22()x y z x y z ϕ+-=++所确定的函数,其中ϕ具有二阶导数且1ϕ'≠-,(I) 求 dz ; (II) 记 1(,)()z z u x y x y x y ∂∂=--∂∂,求ux∂∂. 解法1:(I) 设)(),,(22z y x z y x z y x F ++--+=ϕ则2x F x ϕ'=-,2y F y ϕ''=-,1z F ϕ''=-- ……3分由公式x z F z x F '∂=-∂',y zF z y F '∂=-∂',得 21z x x ϕϕ'∂-='∂+,21z y y ϕϕ'∂-='∂+ 所以[]1(2)(2)1z z dz dx dy x dx y dy x y ϕϕϕ∂∂''=+=-+-'∂∂+ ……7分 (II) 由于2(,)1u x y ϕ='+, 所以 2322(21)(1)(1)(1)u z x x x ϕϕϕϕ'∂-∂+''=+=-''∂+∂+ ……10分 解法2:(I) 对等式)(22z y x z y x ++=-+ϕ两端求微分,得22()xdx ydy dz dx dy dz ϕ'+-=⋅++ ……5分解出dz 得 2211x y dz dx dy ϕϕϕϕ''--=+''++ ……7分(II) 同解法1 ……10分 (17)(本题满分11分) 【 同数学二(18)题 】 (18)(本题满分10分) ()f x 是周期为2的连续函数, (I) 证明对任意实数t ,有⎰⎰=+22)()(dx x f dx x f t t;(II) 证明⎰⎰+-=xt tdt ds s f t f x G 02])()(2[)(是周期为2的周期函数.证法1:(I) 由积分的性质知对任意的实数t ,⎰⎰⎰⎰++++=022202)()()()(tt t tdx x f dx x f dx x f dx x f ……2分令2-=x s ,则有⎰⎰⎰⎰-==+=+0022)()()2()(tttt dx x f ds s f ds s f dx x f所以⎰⎰⎰⎰⎰=-+=+222)()()()()(dx x f dx x f dx x f dx x f dx x f ttt t……5分(II) 由 (I) 知对任意的t 有⎰⎰=+22)()(ds s f ds s f t t记a ds s f =⎰20)(,则ax dt t f x G x-=⎰0)(2)(因为对任意的x ,ax dt t f x a dt t f x G x G xx +-+-=-+⎰⎰+020)(2)2()(2)()2(a dt t f x x 2)(22-=⎰+ ……8分02)(22=-=⎰a dt t f所以)(x G 是周期为2的周期函数. ……10分证法2:(I) 设 ⎰+=2)()(t tdx x f t F ,由于0)()2()('=-+=t f t f t F , ……2分所以)(t F 为常数,从而有)0()(F t F = 而⎰=20)()0(dx x f F ,所以⎰=20)()(dx x f t F ,即⎰⎰=+22)()(dx x f dx x f t t……5分(II) 由 (I) 知对任意的t 有⎰⎰=+22)()(ds s f ds s f t t记a ds s f =⎰2)(,则ax dt t f x G x -=⎰0)(2)(,⎰++-=+20)2()(2)2(x x a dt t f x G ……7分由于对任意x ,((2))2(2)2()G x f x a f x a '+=+-=-,(())2()G x f x a '=- 所以((2)())0G x G x '+-=,从而)()2(x G x G -+是常数,即有0)0()2()()2(=-=-+G G x G x G ,所以)(x G 是周期为2的周期函数. ……10分(19)(本题满分10分)设银行存款的年利率为05.0=r ,并依年复利计算,某基金会希望通过存款A 万元实 现第一年提取19万元,第二年提取28万元,…,第n 年提取)910(n +万元,并能按此规 律一直提取下去,问A 至少应为多少万元?解:设n A 为用于第n 年提取)910(n +万元的贴现值,则)910()1(n r A n n ++=-故∑∑∞=∞=++==11)1(910n nn n r nA A ……3分 ∑∑∑∞=∞=∞=++=+++=111)1(9200)1(9)1(110n nn n n n r nr n r ……6分 设∑∞==1)(n nnxx S ,)1,1(-∈x因为21()()()1(1)n n x x S x x x x x x ∞=''===--∑,)1,1(-∈x ……9分 所以42005.1111=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+S r S (万元)故39804209200=⨯+=A (万元),即至少应存入3980万元. ……10分(20) ( 本题满分12分 ) 【 同数学一(21)题 】 (21) ( 本题满分10分 ) 【 同数学二(23)题 】 (22) ( 本题满分11分 ) 【 同数学一(22)题 】 (23) ( 本题满分11分 ) 【 同数学一(23)题 】数 学(四)一.选择题 ( 1 ~ 8小题,每小题4分,共32分.) (1)设0a b <<,则=+--∞→nnn n b a1)(lim (B )(A )a . (B )1-a . (C )b . (D )1-b . (2)【 同数学三(1)题 】(3)设()f x 是连续的奇函数,()g x 是连续的偶函数,区域},10),{(x y x x y x D ≤≤-≤≤=则以下结论正确的是 (A ) (A )()()0.Df yg x dxdy =⎰⎰ (B )()()0.Df xg y dxdy =⎰⎰(C )[()()]0.Df xg y dxdy +=⎰⎰ (D )[()()]0Df yg x dxdy +=⎰⎰(4)【 同数学二(2)题 】 (5)【 同数学一(5)题 】 (6)【 同数学二(8)题 】 (7)【 同数学一(7)题 】 (8)【 同数学一(8)题 】二、填空题:(9~14小题,每小题4分,共24分.) (9) 【 同数学三(9)题 】 (10) 已知函数()f x 连续且0()lim2x f x x→=,则曲线()y f x =上对应0x =处切线方程是xy 2= .(11)=⎰⎰121ln xdy x dx y2/1.(12) 【 同数学二(10)题 】(13) 设3阶矩阵A 的特征值互不相同,且行列式0A =,则A 的秩为___2___. (14) 【 同数学一(14)题 】三、解答题 ( 15 ~ 23小题,共94分. ) (15)(本题满分9分) 【 同数学三(15)题 】 (16)(本题满分10分)设函数dt x t t x f ⎰-=10)()()10(<<x ,求()f x 的极值、单调区间及曲线)(x f y =的凹凸区间.解:31231)()()(310+-=-+-=⎰⎰x x dt x t t dt t x t x f xx……4分 令21()02f x x '=-=,得22,22-==x x (舍去) 因()20f x x ''=>(10<<x ) ……5分故22=x 为()f x 的极小值点,极小值)221(31)22(-=f ,且曲线)(x f y =在)1,0(内是凹的. ……8分 由21()2f x x '=-知,()f x 在)22,0(内单调递减,在)1,22(内单调递增. ……10分(17)(本题满分11分) 【 同数学二(21)题 】 (18)(本题满分10分) 【 同数学三(16)题 】 (19)(本题满分10分) 【 同数学三(18)题 】 (20)(本题满分12分) 【 同数学一(21)题 】 (21)(本题满分10分) 【 同数学二(23)题 】 (22)(本题满分11分) 【 同数学一(22)题 】 (23)(本题满分11分)设某企业生产线上产品合格率为0.96,不合格产品中只有34产品可进行再加工,且再加工合格率为0.8,其余均为废品,每件合格品获利80元,每件废品亏损20元,为保证该 企业每天平均利润不低于2万元,问企业每天至少应生产多少件产品?解:进行再加工后,产品的合格率984.08.075.004.096.0=⨯⨯+=p ……4分 记X 为n 件产品中的合格产品数,)(n T 为n 件产品的利润,则n np EX p n B X 984.0),,(~== ……8分 )(2080)(X n X n T --=,()1002078.4ET n EX n n =-= ……10分要20000)(≥n ET ,则256≥n ,即该企业每天至少应生产256件产品. ……11分。
1 2008同等学力英语真题参考答案及解析 Part ⅠSection A 1. 【答案】 B 【句子翻译】A:鲍勃,把电视的声音调小一些,你介意吗?我正在接电话,我听电话很费劲。B:哦,当然可以。很抱歉。 【考点类型】请求与回答。 【考点剖析】would you mind doing sth: 是表示请求常用的句型。turn down:把音量调小。A请B把音量调小一些,B回答时应该对自己的行为给别人造成的不变表示歉意。 2. 【答案】 D 【句子翻译】A:嗨,我是405你隔壁的邻居,我叫Sunny Chan。B:我是Jill Kingston。很高兴认识你。 【考点类型】问候与回答 【考点剖析】考点:初次见面的问候语。 3. 【答案】 D 【句子翻译】A:你能开车送我到办公室吗?我晚了。我的表肯定慢了。B:好的,很高兴顺路送你上班。 【考点类型】请求与回答 【考点剖析】Could you do sth„? 是表示请求的常用句型。Run sb over: 驱车送某人。 Drop sb off 让某人下车。 4. 【答案】 C 【句子翻译】A:很抱歉,他不在办公室。B:你能替我给他留言吗? 【考点类型】请求与回答 【考点剖析】Can you do sth„?是表示请求的常用句型。Take a message for sb: 给某人捎口信。 5. 【答案】A 【句子翻译】A:我脱掉夹克,你介意吗?B:当然不介意,不要拘束。 【考点类型】请求与回答 【考点剖析】Do you mind„? 是否对方是否介意,一般疑问句要用yes 或no回答。yes 是介意,回答no是不介意。Make yourself at home:随便,不拘束。 Section B 6. 【答案】C 【句子翻译】男士:Bob和Sue似乎从来不管他们的女儿。她真是一个老大难。 女士:他们对女儿在学校的表现一无所知。 【考点类型】同义转述 【考点剖析】nut: 难对付的人(事)。 7. 【答案】A 【句子翻译】女士:理查德,现在你能否解释一下考试问题的答案怎么出现在你的桌子上的。男士:我解释不了,Harley教授,肯定是别人把他们放到我桌子上的。 【考点类型】推理题 【考点剖析】must have done 表示对过去情况的推测。 8. 【答案】A 【句子翻译】女士:等你安顿下来别忘了给我写封信。男士:忘不了,我会写信和你保持联系的。 【考点类型】同义转述 【考点剖析】考点:drop sb a line: 给某人写信=keep sb posted。 9. 【答案】B 【句子翻译】男士:贝蒂,你今天下午和汤姆去博物馆玩的怎么样呀?女士:别问我。 【考点类型】推理题 【考点剖析】Don’t ask me. 显然说话者不愿提及这件事情。 10.【答案】D 2
【句子翻译】男士:嗨,玛丽,我应邀以评委的身份出席美国小姐大赛。女士:哦,真的吗?别这样,你在拿我开玩笑吗? 【考点类型】同义转述 【考点剖析】考点:短语的理解。Pull sb’s leg开某人的玩笑, 愚弄某人,和选项D的意思相符。 Part II Section A 11. 【答案】 C 【考点类型】逻辑关系 【考点剖析】C allow for考虑到。explain解释说明,deny否认, 拒绝, consider考虑,recognize认可, 承认。做这种题目的方法就是要把四个选项一一带入原文,用排除法逐个排除。 12. 【答案】 B 【考点类型】动词 【考点剖析】control控制,determine决定,prevent防止,treat治疗,处理。diagnose:诊断,determine:确定,测定。 13. 【答案】 D 【考点类型】动词 【考点剖析】fix up安排, 修补, 修理, 解决, take up拿起, 开始从事, pack up把...打包, 整理, make up弥补, 虚构。fabricate捏造, 虚构; 伪造, 正好和make up 意思相符。 14. 【答案】 B 【考点类型】短语动词 【考点剖析】golden金色的, 金黄色的, beautiful漂亮的,美好的,warm温暖的,shining光亮的, 华丽的, gorgeous华丽的, 灿烂的, 非常漂亮的. 15. 【答案】D 【考点类型】短语动词 【考点剖析】draw up拟定, 起草, bring about造成, 引起〔导致〕(某事), put forward 提出,figure out想明白, 理解,Work out:想出。 16. 【答案】 C 【考点类型】形容词 【考点剖析】loose松的, 宽松的, effective有效的; 生效的,elastic有弹力的, 有弹性的,可伸缩的,resourceful资源丰富的,足智多谋的。flexible灵活的, 柔软的, 能变形的。 17. 【答案】 B 【考点类型】名词 【考点剖析】grant补助金, 助学金, 津贴,right权利,advantage有利条件, 有利因素, 优势,interest兴趣; 爱好。 18. 【答案】A 【考点类型】动词 【考点剖析】go for:拥护,主张, support支持,adopt采用, 收养,hinder阻碍, 打扰, attack袭击。 19. 【答案】 C 【考点类型】固定搭配 【考点剖析】in short简而言之, 总之, in particular尤其, 特别, in fact实际上, 其实, in turn依次, 轮流地, in effect实际上。 20. 【答案】 A 【考点类型】名词 【考点剖析】climax顶点, 极点, pleasure愉快, 快乐, 满足, expectation预料; 期望, surprise惊奇, 惊讶。 Section B 21. 【答案】 B 【考点类型】逻辑关系 3
【考点剖析】break off 断交,停止;break away 突然离开; 突然挣脱, 与„决裂; 从„退出, cut 剪裁,取代;cut down 削减。 22. 【答案】C 【考点类型】近义辨析 【考点剖析】dilemma 困境, incident 事故,骚乱, event 事件,大事, menace 威胁。 23. 【答案】B 【考点类型】逻辑关系 【考点剖析】coincide with 与„一致,同时发生, conform to符合,遵照, consist in 存在于„中, collide with冲突。 24. 【答案】D 【考点类型】近形辨析 【考点剖析】facilitate使容易; imitate模仿; fascinate 着迷; impose 征税,强加。 25. 【答案】C 【考点类型】近形辨析 【考点剖析】extensive 大量的,广泛的;intensive 强烈的,精深的;intentional 故意的;extensional 外延的 26. 【答案】A 【考点类型】近形辨析 【考点剖析】reverse 使倒退,使逆转;reserve储备,预留, retrieve 恢复, revise 校正,修订 27. 【答案】D 【考点类型】近形辨析 【考点剖析】subsidies 补助金,津贴; substitutes 代替品; substances 物质; subsequences后继,随后。 28. 【答案】D 【考点类型】 逻辑关系 【考点剖析】vulnerable 易受攻击的, reluctant 勉强的, tough 强硬的, hostile 敌对的。 29. 【答案】A 【考点类型】近形辨析 【考点剖析】primarily 主要地,rationally理性地, primitively 最初地,respectively分别地。 30. 【答案】B 【考点类型】近形辨析 【考点剖析】turn over(使)翻转,打翻,移交交给,turn up找到,出现,turn to 变成,致力于,turn in 上交。 PartⅢ Passage One 工作结束了,是时候抽最后一根烟了。埃迪摸了摸外套的口袋,搜寻那天早上新买的万宝路,但是找不到。 正当他挥动双手在工具箱中找烟的时候,他发现了一个肿块。它就在全新的大红色地毯的中间。大小尺寸跟一包烟差不多。 埃迪生气地说:“我怎么又这样?又将香烟放到地毯下面!” 他曾经这样做过一次,之后花了两小时将房间的地毯拿起来然后又整理。他决定用另外一种方式来清理这个肿块,那就意味着他将浪费一包好烟,烟基本上没怎么抽,但这总比把地毯掀开然后整理要好些。他在工具箱找了一个大锤子。 埃迪不想毁坏这个地毯本身,因此他拿了一块木头,放在肿块的上面,然后用尽全力敲打木头。他不停地敲,同时希望Vanbrugh女士听不见噪音以免其上来看个究竟。也许很难解释为什么他正在敲打她的新地毯的中间部分„„肿块渐渐平了。 4
三四分钟之后,这个任务终于完成。埃迪拾起工具,朝汽车走去。Vanbrugh女士与其相伴。她看上去在担忧什么事情。 “年轻人,当你今天工作的时候,你是否看到了Armand的踪迹? 它是一只鸟儿,你看,今早我放它出笼,就不见了。它喜欢绕着房子飞,通常飞一个多小时就会回来,正好飞进笼子里。只有今天它没有回来。它从未这样做过,太奇怪了„„” “不,女士,我没有见过它,”埃迪说着,伸出手启动汽车。 接着他发现他的万宝路在仪表盘上,是在午餐时间放在那里的„„ 他又想起了地毯的肿块„„ 31.【答案】 A 【题意】埃迪在整理完地毯后想做什么? A. 想要支烟 B. 用锤子把地毯砸平 C. 把工具放回去 D. 在餐厅里开始工作 【考点】事实细节题 【解析】通过第二段和第三段的层层深入,可知作者是在找一包烟,并且烟是裹在地毯中间的。最后通过掀开地毯,作者才能够吸到烟。 32.【答案】 C 【题意】为什么埃迪没有把东西从地毯中拿出来? A.对于他来说一旦地毯很合适再启开不太可能。 B. 他不需要香烟因为他车里还有一些 。 C. 把地毯掀起来再重新铺合适花费的时间太长。 D. 他想回来第二天再重新挪走肿块。 【考点】事实细节题 【解析】从第四段“He had done this once before, and taking up and refitting the carpet had taken him two hours. „ It would mean wasting a good packet of cigarettes, nearly full, but anything was better than taking up the whole carpet and fitting it again.”可得出此答案。 33. 【答案】D 【题意】埃迪用锤子做什么? A. 他把钉子钉进肿块 B. 把他的工具箱固定了下来 C. 他重新把地毯铺好 D. 她把肿块弄平了 【考点】事实细节题 【解析】由第五段的首句和末句可以得出答案。 34.【答案】A 【题意】Vanbrugh太太担心________。 A.找不到她的宠物了 B.铺好地毯花费昂贵 C. 艾迪在屋子里吸烟 D.艾迪没有很好地完成一份工作 【考点】事实细节题 【解析】由第七段“Only today he didn’t come back. He’s never done such a thing before, it’s most peculiar„.”可得出答案。 35. 【答案】D 【题意】地毯下面的其实是什么东西? A. 一包香烟 B. 艾迪的锤子 C. 一块木头 D. 失踪的宠物 【考点】推理判断题 【解析】有最后一段可知,埃迪的万宝路香烟并不在地毯下,而Vanbrugh太太的宠物鸟又恰巧消失,联系两事件推断出,地毯下的肿块可能是宠物鸟。 Passage Two 如果洛斯阿拉莫斯国家实验室的两名科学家是对的话,人们将会在今后五十年继续开汽油驱动的汽车,排放阻碍散热的二氧化碳到大气层,但是二氧化碳不会对地球变暖推波助澜。科学家F.