如何快速解决PCB设计EMI问题
- 格式:pdf
- 大小:305.60 KB
- 文档页数:4
如何提高电子产品的EMC &E MI在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性?1、下面的一些系统要特别注意抗电磁干扰:(1)微控制器时钟频率特别高,总线周期特别快的系统。
(2) 系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。
(3)含微弱模拟信号电路以及高精度A/D变换电路的系统。
2、为增加系统的抗电磁干扰能力采取如下措施:(1)选用频率低的微控制器:选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力.同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。
虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。
(2) 减小信号传输中的畸变微控制器主要采用高速CMOS技术制造。
信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声.当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。
信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。
可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。
微控制器构成的系统中常用逻辑电话元件的Tr(标准延迟时间)为3到18ns之间.在印制线路板上,信号通过一个7W的电阻和一段25cm长的引线,线上延迟时间大致在4~20ns之间.也就是说,信号在印刷线路上的引线越短越好,最长不宜超过25cm。
而且过孔数目也应尽量少,最好不多于2个。
当信号的上升时间快于信号延迟时间,就要按照快电子学处理。
此时要考虑传输线的阻抗匹配,对于一块印刷线路板上的集成块之间的信号传输,要避免出现Td >Trd的情况,印刷线路板越大系统的速度就越不能太快。
低频emi干扰解决方法低频EMI干扰解决方法引言:低频电磁干扰(EMI)是指频率低于300kHz的电磁辐射或传导干扰现象。
低频EMI可能对电子设备的性能和可靠性造成不良影响,因此需要采取相应的解决方法来减轻干扰并确保设备的正常运行。
本文将介绍几种常见的低频EMI干扰解决方法。
一、电磁屏蔽电磁屏蔽是一种常见且有效的低频EMI干扰解决方法。
通过在电子设备周围或内部添加屏蔽材料,可以阻挡外界的电磁辐射或传导干扰,减少EMI的影响。
常用的屏蔽材料包括金属壳体、金属箔、导电涂层等,它们能够吸收或反射电磁波,从而减少干扰。
在设计电子设备时,可以考虑增加屏蔽结构和屏蔽层,以提高电磁屏蔽效果。
二、地线设计良好的地线设计对于减少低频EMI干扰非常重要。
地线是电子设备中起到回路和屏蔽作用的导体,能够将干扰电流有效地引导到地上,从而减少对其他电路的干扰。
在地线设计中,应考虑地线的路径、长度和宽度等因素。
合理布置地线路径,避免过长过窄的地线,减少地线的电阻和电感,可以有效地降低低频EMI干扰。
三、滤波器应用滤波器是一种常用的低频EMI干扰解决方法。
通过在电子设备的电源线、信号线或接口处添加滤波器,可以滤除低频EMI信号,从而减少干扰。
常见的滤波器包括LC滤波器、RC滤波器和Pi滤波器等。
在选择滤波器时,应考虑其频率响应、阻抗匹配和耐压能力等因素,以确保滤波器能够有效过滤低频EMI干扰。
四、接地技术良好的接地技术对于减少低频EMI干扰非常重要。
通过合理布置接地电极,减小接地电阻和电感,可以提高接地系统的效果,减少EMI的影响。
在接地设计中,应遵循短、粗、低阻抗的原则,尽量减小接地回路的面积,增加接地电极的截面积和导电性能。
此外,还可以采用分级接地和星形接地等技术,提高接地系统的抗干扰能力。
五、屏蔽线路布局合理的线路布局对于减少低频EMI干扰非常重要。
在设计电子设备时,应将敏感线路与干扰源保持足够的距离,避免相互干扰。
可以采用线路隔离、差分信号传输和屏蔽线束等技术,减少线路之间的交叉干扰。
电磁⼲扰解决⽅法、防治技巧及常见EMI抑制⽅式1包含EMI和EMS的EMC因为各国均⽴下法规规范,成为电⼦产品设计者⽆可迴避的问题。
⾯临各种EMI模式和各类EMI抑制⽅法,该如何因地制宜选择最佳对策让产品通过测试,同时⼜必须尽量降低成本强化产品竞争⼒,是所有电⼦产品设计⼈员必须仔细评估思考的课题。
EMI类型与解决⽅法所谓EMC(ElectromagneticCompatibility;电磁共容)实际上包含EMI(ElectromagneticInterference;电磁⼲扰)及EMS(ElectromagneticSensibility;电磁耐受)两⼤部份。
EMI指的是电⽓产品本⾝通电后,因电磁感应效应所产⽣的电磁波对週遭电⼦设备所造成的⼲扰影响,EMS则是指电⽓产品本⾝对外来电磁波的⼲扰防御能⼒,也就是电磁场的免疫程度。
简单来说,只要是需要电⼒⼯作的产品都会有EMI问题,浸淫EMC领域⼗多年的资深顾问余晓锜表⽰,⼀个电⼦产品中的EMI 来源多半来⾃交换式电源供应迴路(SwitchingPowerSupplyCircuit)、振盪器(Crystal)和各类时钟信号(ClockSignal),⽽根据传导模式不同,EMI可分为接触传导(ConductedEmission)和幅射传导(RadiatedEmission)两类。
接触传导是由电源供应回路所形成的电磁波杂讯,透过实体的电源线或信号导线传送⾄电源电路内的⼀种电磁波⼲扰模式,此状况会造成与⼲扰设备使⽤同⼀电源电路的电⽓设备被电磁杂讯⼲扰,产⽣功能异常现象,通常发⽣在较低频;幅射传导则是电路本⾝通电之后,由电磁感应效应所产⽣的电磁波幅射发散所形成的电磁⼲扰模式,常见于⾼频。
幅射传导EMI产⽣的问题通常较接触传导严重,也更为棘⼿,其解决⽅式余晓锜归纳出下列⼏种:1.在⼲扰源加LC滤波回路。
2.在I/O端加上DeCapbypasstoGround,把杂讯导⼊⼤地。
轻松解决EMI之传导干扰的八大绝招
电磁干扰EMI中设备产生的干扰信号是通过导线或公共电源线举行传输,相互产生干扰称为传导干扰。
传导干扰给不少电子工程师带来困窘,如何解决传导干扰?找对办法,你会发觉,传导干扰其实很简单解决,只要增强电源输入中的节数,并适当调节每节滤波器的参数,基本上都能满足要求,第七届电路庇护与电磁兼容研讨会主办方总结八大对策,以解决应付传导干扰难题。
对策一:尽量削减每个回路的有效面积
图1
传导干扰分差模干扰DI和共模干扰CI两种。
先来看看传导干扰是怎么产生的。
1所示,回路产生传导干扰。
这里面有好几个回路电流,我们可以把每个回路都看成是一个感应线圈,或线圈的初、次级,当某个回路中有电流流过时,另外一个回路中就会产生感应电动势,从而产生干扰。
削减干扰的最有效办法就是尽量削减每个回路的有效面积。
对策二:屏蔽、减小各电流回路面积及带电导体的面积和长度
2 所示,e1、e2、e3、e4为磁场对回路感应产生的差模干扰信号;e5、e6、e7、e8为磁场对地回路感应产生的共模干扰信号。
共模信号的一端是囫囵线路板,另一端是大地。
线路板中的公共端不能算为接地,不要把公共端与外壳相接,除非机壳接大地,否则,公共端与外壳相接,会增大辐射天线的有效面积,共模辐射干扰更严峻。
降低辐射干扰的办法,一个是屏蔽,另一个是减小各个电流回路的面积(磁场干扰),和带电导体的面积及长度(电场干扰)。
对策三:对变压器举行磁屏蔽、尽量削减每个电流回路的有效面积
3所示,在全部电磁感应干扰之中,变压器漏感产生的干扰是最严峻的。
假如把变压器的漏感看成是变压器感应线圈的初级,则其它回路
第1页共4页。
《EMI对症分析-EMI整改》第一篇:emi对症分析-emi整改1mhz以内----以差模干扰为主1.增大x电容量;2.添加差模电感;3.小功率电源可采用pi型滤波器处理(建议靠近变压器的电解电容可选用较大些)。
1mhz---5mhz---差模共模混合,采用输入端并联一系列x电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,1.对于差模干扰超标可调整x电容量,添加差模电感器,调差模电感量;2.对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;3.也可改变整流二极管特性来处理一对快速二极管如fr107一对普通整流二极管1n4007。
5m---以上以共摸干扰为主,采用抑制共摸的方法。
对于外壳接地的,在地线上用一个磁环串绕2-3圈会对10mhz 以上干扰有较大的衰减作用;可选择紧贴变压器的铁芯粘铜箔,铜箔闭环.处理后端输出整流管的吸收电路和初级大电路并联电容的大小。
对于20--30mhz,1.对于一类产品可以采用调整对地y2电容量或改变y2电容位置;2.调整一二次侧间的y1电容位置及参数值;3.在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕组的排布。
4.改变pcblayout;5.输出线前面接一个双线并绕的小共模电感;6.在输出整流管两端并联rc滤波器且调整合理的参数;7.在变压器与mosfet之间加beadcore;8.在变压器的输入电压脚加一个小电容。
9.可以用增大mos驱动电阻.30---50mhz普遍是mos管高速开通关断引起,1.可以用增大mos驱动电阻;2.rcd缓冲电路采用1n4007慢管;3.vcc供电电压用1n4007慢管来解决;4.或者输出线前端串接一个双线并绕的小共模电感;5.在mosfet的d-s脚并联一个小吸收电路;6.在变压器与mosfet之间加beadcore;7.在变压器的输入电压脚加一个小电容;8.pcb心layout时大电解电容,变压器,mos构成的电路环尽可能的小;9.变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小。
如何在拥挤的电路板上实现低EMI的高效电源设计在拥挤的电路板上实现低电磁干扰(EMI)的高效电源设计是一项挑战。
以下是一些关键的步骤和设计原则,可以帮助实现低EMI的高效电源设计。
1.设计地面层:电源地面的设计对于EMI抑制至关重要。
将电源地面连接到尽可能多的接地引脚,尤其是关键元件和模拟引脚。
使用大地面平面来减少回路的回流路径长度,从而降低EMI。
2.差分滤波器:对于高速数字电路,使用差分滤波器来抑制EMI。
差分滤波器可以在输入和输出之间添加电感和电容来滤除高频噪声。
3.引入滤波器:使用滤波器将电源中的高频噪声滤除,阻止噪声传输到其他电路中。
可以使用低通滤波器和降压网络来抑制高频噪声。
4.电源平面分割:将电源平面分割为模拟和数字区域,可以减少EMI 干扰。
将高速数字区域和噪声敏感区域与低频模拟区域隔离开,并采取适当的屏蔽措施。
5.选择合适的电源方案:选择合适的电源芯片和电源方案对于实现低EMI至关重要。
开关电源相对于线性电源具有更高的电效率,并且可以通过调整开关频率来减少EMI。
6.优化布局:合理布局电源元件,减少元件之间的距离,最小化共享引脚。
通过减少PCB板上导线的长度和交叉,减小电流环路面积,从而减少EMI。
7.使用良好的电源滤波器:在电源输入电路上使用良好的电源滤波器可以帮助阻止噪声传播到电源线上,减少EMI。
8.管理高频噪声:高频噪声是导致EMI的主要因素之一、使用适当的耦合和补偿电容,以减少信号回流和高频噪声的跳线。
9.耦合和屏蔽:适当的信号耦合和屏蔽可以减少EMI。
使用专用屏蔽罩或包围表面贴装元件,以减少元件之间的交叉干扰。
10.热管理:良好的热管理可以减少电源器件的温度,并防止温度上升导致的EMI增加。
总之,实现低EMI的高效电源设计需要带有适当EMI减少策略的综合方法。
合理的PCB布局和地面层设计,差分滤波器和滤波器的使用,合适的电源方案和元件,以及良好的热管理都是实现低EMI的关键要素。
EMI处理方法(精选5篇)第一篇:EMI处理方法技术应用-开关电源的EMI处理新方法关键字:技术应用开关电源 EMI 处理方法 2009-05-11一、开关电源EMI整改中,关于不同频段干扰原因及抑制办法。
1MHZ以内,以差模干扰为主。
①增大X电容量;②添加差模电感;③小功率电源可采用 PI 型滤波器处理(建议靠近变压器的电解电容可选用较大些)。
1MHZ-5MHZ,差模共模混合,采用输入端并联一系列 X 电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,①对于差模干扰超标可调整 X 电容量,添加差模电感器,调差模电感量;②对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;③也可改变整流二极管特性来处理一对快速二极管如 FR107 一对普通整流二极管1N4007。
5M以上,以共摸干扰为主,采用抑制共摸的方法。
对于外壳接地的,在地线上用一个磁环串绕2-3 圈会对10MHZ 以上干扰有较大的衰减作用;可选择紧贴变压器的铁芯粘铜箔, 铜箔闭环.处理后端输出整流管的吸收电路和初级大电路并联电容的大小。
20-30MHZ,①对于一类产品可以采用调整对地Y2 电容量或改变Y2 电容位置;②调整一二次侧间的Y1 电容位置及参数值;③在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕组的排布。
④改变PCB LAYOUT;⑤输出线前面接一个双线并绕的小共模电感;⑥在输出整流管两端并联RC滤波器且调整合理的参数;⑦在变压器与MOSFET之间加BEAD CORE;⑧在变压器的输入电压脚加一个小电容。
⑨可以用增大MOS驱动电阻.30-50MHZ,普遍是MOS管高速开通关断引起。
①可以用增大MOS驱动电阻;②RCD缓冲电路采用1N4007 慢管;③VCC供电电压用1N4007 慢管来解决;④或者输出线前端串接一个双线并绕的小共模电感;⑤在MOSFET的D-S脚并联一个小吸收电路;⑥在变压器与MOSFET之间加BEAD CORE;⑦在变压器的输入电压脚加一个小电容;⑧PCB心LAYOUT 时大电解电容,变压器,MOS构成的电路环尽可能的小;⑨变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小。
电磁干扰EMI中电子设备产生的干扰信号是通过导线或公共电源线进行传输,互相产生干扰称为传导干扰。
传导干扰给不少电子工程师带来困惑,如何解决传导干扰?找对方法,你会发现,传导干扰其实很容易解决,只要增加电源输入电路中EMC滤波器的节数,并适当调整每节滤波器的参数,基本上都能满足要求,第七届电路保护与电磁兼容研讨会主办方总结八大对策,以解决对付传导干扰难题。
对策一:尽量减少每个回路的有效面积图1传导干扰分差模干扰DI和共模干扰CI两种。
先来看看传导干扰是怎么产生的。
如图1所示,回路电流产生传导干扰。
这里面有好几个回路电流,我们可以把每个回路都看成是一个感应线圈,或变压器线圈的初、次级,当某个回路中有电流流过时,另外一个回路中就会产生感应电动势,从而产生干扰。
减少干扰的最有效方法就是尽量减少每个回路的有效面积。
对策二:屏蔽、减小各电流回路面积及带电导体的面积和长度如图2 所示,e1、e2、e3、e4为磁场对回路感应产生的差模干扰信号;e5、e6、e7、e8为磁场对地回路感应产生的共模干扰信号。
共模信号的一端是整个线路板,另一端是大地。
线路板中的公共端不能算为接地,不要把公共端与外壳相接,除非机壳接大地,否则,公共端与外壳相接,会增大辐射天线的有效面积,共模辐射干扰更严重。
降低辐射干扰的方法,一个是屏蔽,另一个是减小各个电流回路的面积(磁场干扰),和带电导体的面积及长度(电场干扰)。
对策三:对变压器进行磁屏蔽、尽量减少每个电流回路的有效面积如图3所示,在所有电磁感应干扰之中,变压器漏感产生的干扰是最严重的。
如果把变压器的漏感看成是变压器感应线圈的初级,则其它回路都可以看成是变压器的次级,因此,在变压器周围的回路中,都会被感应产生干扰信号。
减少干扰的方法,一方面是对变压器进行磁屏蔽,另一方面是尽量减少每个电流回路的有效面积。
对策四:用铜箔对变压器进行屏蔽如图4所示,对变压器屏蔽,主要是减小变压器漏感磁通对周围电路产生电磁感应干扰,以及对外产生电磁辐射干扰。
如何通过元件摆放来改善电路板的EMI?
在设计好电路结构和器件位置后,PCB的EMI把控对于整体设计就变得异常重要。
如何对开关电源当中的PCB电磁干扰进行避免就成了一个开发者们非常关心的话题。
在本文中,小编将为大家介绍如何通过元件布局的把控来对EMI进行控制。
元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。
例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。
每一个开关电源都有四个电流回路:
(1)、电源开关交流回路;
(2)、输出整流交流回路;
(3)、输入信号源电流回路;
(4)、输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。
所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。
电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。
这两个回路最容易产生电磁干扰,因此必。
如何快速解决PCB设计EMI问题
随着电子系统的复杂度越来越高,EMI问题也越来越多。为了使自己的产品能达到相关国际标准,
设计人员不得不往返于办公室和EMC实验室,反复地测试、修改设计、再测试。这样既浪费了人
力,物力,也拖延了产品的上市时间,给企业带来不可估量的损失。于是,如何在产品设计的阶段
就及时发现EMI问题变得重要。PCB布局、布线以及电源层的处理对整个电路板的EMI问题有着
非常重要的影响。本文将通过实例分析讨论如何利用EMIStream来解决板级EMI问题。
电磁干扰 (EMI)分为传导干扰和辐射干扰两种。传导干扰主要是电子设备产生的干扰信号,通过导
电介质或公共电源线互相干扰。辐射干扰是指电子设备产生的干扰信号,通过空间耦合传给另一个
电路网络或电子设备,
在PCB电路板中,电磁能的存在有两种形式,即差模EMI和共模EMI。当器件输出的电流流入一
个负载时,就会产生差模EMI。当电流流经多个导电平面,如PCB上的导线组或电缆,就会产生
共模EMI。图1给出了差模EMI和共模EMI的示意图。
差模EMI的计算采用如下公式:
其中,I
p
表示电流强度,f表示共模电流的频率,Ls表示环路面积,d表示测量天线到电缆的距离。
共差摸辐射的计算采用如下公式:
其中,I表示电流强度,f表示共模电流的频率,L表示电缆线长度,d表示测量天线到电缆的距离。
解决EMI的主要方法是减少电路板上由各种原因产生的辐射能量,而控制EMI的关键,是降低电
源地平面谐振和电路回流的路径阻抗,并正确放置旁路和去耦电容。
本文使用EMIStream工具对板极EMI问题进行分析。EMIStream工具的两大主要功能是支持PC
B板全部网络的EMI分析以及电源谐振分析。EMIStream是由日本NEC公司基于多年EMI设计经
验开发的应用软件,可以用于Cadence、Mentor Graphics、Zuken和Altium等公司的设计工具中
的各种PCB设计流程,在PCB制造之前解决EMI问题。EMIStream软件内建13条经典EMI检
查规则,均经过日本NEC内部产品实际设计结果验证,每个检查规则的设置值是经过实际验证的
最佳理论值。
1.EMIStream分析流程
图2是使用EMIStream对电路板进行分析的设计流程。EMIStream嵌入在PCB设计的全过程,
在设计阶段解决EMI问题有利于减少反复设计的次数。
图2:使用EMIStream对电路板进行分析的设计流程。
2.布局的EMI检查
A)当完成布局后,把Allegro数据直接导入EMIStream工具。 EMIStream和Mentor、Zuken、Al
tium等其他公司的主流PCB设计工具也都有接口,保证数据的完全导入。
B)设定层叠信息,根据PCB板的层叠信息,填写入EMI。
C)根据电路的设计数据,正确填写电路中相关NET的频率、串扰组、差分对、电源地信号的设置。
D)设置规则的参数,我们选择采用默认参数,同时选择长度检查和最大辐射值检查项目对该板实施
检查。
检查结果以对话框的形式显示出来,用户点击错误提示,查看有问题的NET,然后采用下面两个方
法来消除EMI问题:(1)调整零件的布局位置,减少NET总的长度;(2)调整网络的拓扑结构,减少
共模辐射的强度。
3:布局布线中和完成以后的EMI检查:
A:当布局布线完成后,实施整板网络检查,通过NET Parameter选择需要检测的所有关键信号,
比如时钟、数据、地址线、差分对等,同时可以任意选择13条规则作为EMI检查的基准。
B:13规则包括传导辐射分析用的2个规则、电流回路分析用的3个规则、电源和地层分析的2个
规则、信号完整性分析的4个规则、元件布局分析的2个规则。
C:检查结果以对话框的方式显示出来,按照网络的EMI问题的严重程度从上到下逐一列出。打开每
一条出错网络,将列出全部EMI出错信息(错误列表),有的出错信息还会显示修改提示,最后列出
该网络的最大辐射值以及差模辐射共模辐射值;同时,该网络在PCB版图上将高亮度显示,所有
错误用红圈在网络上标出(图3)。
图3:检查结果以对话框的方式显示出来,出错网络在PCB版图上将高亮度显示,所有错误用红
圈在网络上标出。
例如,第一个错误提示该网络没有完整的电流回路,点击该错误,画面放大显示并用红圈标示错误
的位置。同时,还会弹出对话框,显示错误的原因,并给出几个修改建议。这些建议包括:(1)修改
导线的路径避免跨不同NET的铜箔,导致参考平面不完整,阻抗失配。(2)修改铜箔的外形,使导
线拥有完整的参考平面。第二个错误是该网络的最大辐射dB值,分为差模和共模辐射值。
D:然后,显示发现的铜箔错误,比如GND铜箔边缘缺少过孔、过孔间距过大等。
E:串扰检查帮助检查同一层并行走的部分或相邻层交叉的布线是否有串扰。建议修改并行太长的
走线。
4.电源地平面谐振分析
在完成了对网络的检查并做了相应的修改,接下来针对电源地平面进行谐振分析。EMIStream通过
模拟板的形状和电源、地平面之间形成的电容进行建模,并运用SPICE电路仿真进行解析。用红色
表示大的电压波动,蓝色表示小的电压波动。
首先对3V3的电源层面进行分析,鼠标点击选择3V3电源平面,填写和3V3电源平面最近的GN
D平面的间距,介质常数信息。修改Option选项中的计算网格大小为3毫米,设置扫描频率从30
MHz到2GHz,步长为10MHz。点击RUN开始分析,结果如图4所示。
图4:电源地平面谐振分析显示结果。
谐振分析结果有两种图形显示:一种是PCB版图上的波动电压分布图,红色的区域为电压波动相
对较大的地方,蓝色为电压波动相对较小的地方;另一种是在设定的频率范围内的全部谐振频率点,
其峰值波动电压是否超标可以从选定的电磁标准曲线上看出。 从图5左图中可看出,电源/地平面
在1.5GHz附近有很多谐振点。
对于电源/地平面谐振问题,可以通过在电压波动相对较大的地方增加退耦电容来减少谐振。EMISt
ream系统自带了常用电容的RLC模型,如果需要特别的RLC电容模型,用户可以自由添加。我
们在几个红色地方添加C104的电容。需要注意一点的是,采用电容串联电阻的效果可能更好一些。
再使用相同的设置,重新进行分析,结果见图5右图。此时的分析结果得到明显改善,刚才红色的
区域都变成蓝绿色,从2G以下的最大谐振值都降到-5dB以下,满足了系统的设计要求。
本文小结
PCB设计的EMI问题是一个非常复杂的问题,需要用各种方法来综合处理,通过该案例分析,可
以发现:(1)联合使用EMIStream工具和PCB设计工具,可以大大提高设计效率;(2)可在PCB设
计阶段发现并解决EMI问题,减少反复修改的次数,节约成本;(3)与通常的SI分析工具相比,不
需要IBIS模型,不是对一个网络而是对全部网络进行分析,很快(一分钟)可出结果;(4)可以立竿见
影的帮助PCB工程师,帮助改进布局布线策略,减小电路板的EMI干扰的发射;(5)有效地提高设
计质量,缩短设计周期,加快产品上市时间。