当前位置:文档之家› 红外测温仪

红外测温仪

红外测温仪
红外测温仪

摘要

传统的接触式测温模式存在响应时间长、易受环境温度的影响等缺点。而红外测温是根据被测物体的红外辐射能量来确定物体的温度,不需与被测物体接触,具有不影响被测物体温度场、温度分辨率高、响应速度快、测温范围广、不受测温上限的限制、稳定性好等特点,因此,设计一套红外测温仪。

设计的红外测温仪以AT89C51单片机为核心,红外测温传感器(MLX90614)在测量温度后,以SMbus方式与单片机进行通信,单片机读取温度数据并进行处理,之后驱动LCD 模块显示测量温度。一旦温度超过设定阀值,立刻进行声光报警。

该红外测温仪具有功能稳定,运行速度快等特点。是一种便携式温度测量仪器。

关键词:红外线温度测量,MLX90614传感器,AT89C51单片机

目录

第1章绪论

1.1课题开发的背景和现状

1.2课题开发的目的和意义

1.3 课题技术性能指标

第2章红外测温工作原理

第3章系统设计方案的选择

3.1 方案选择

3.1.1 方案一

3.1.2 方案二

3.1.3 方案对比选择

3.2 总体方案设计

第4章系统主要器件的方案选择

4.1 传感器的方案选择

4.1.1 红外探测器的分类

4.1.2 传感器的选择

4.2 显示器的方案选择

4.3 单片机的方案选择

第5章系统各模块硬件设计

5.1 MCU主控模块

5.2 红外温度测量模块

5.2.1 MLX90614的特性

5.2.2 MLX90614的引脚分布和内部结构

5.2.3 MLX90614的接口电路

5.3 电源模块

5.4 声光报警模块

5.5 LCD显示模块

第6章系统软件设计

6.1 MLX90614的SMBus传输协议

6.2 软件流程图

6.3 主程序设计

第7章系统误差分析与改进方法

第8章课程设计心得体会

第9章参考文献

附录

1 总电路图

2 元器件清单

第1章绪论

1.1 课题开发的背景和现状

红外辐射这一物理现象被发现在1800年,但直到本世纪50年代,红外技术才开始进入广泛应用的阶段。非接触测温技术也叫辐射测温,最早的非接触测温就是以光学高温计为代表的高温法,以后,人们根据斯蒂芬.玻尔兹曼公式,利用黑体辐射能与热力学温度的关系进行测温,这就是全辐射测温和部分辐射测温法,还有的人在光学高温计上进行改进,出现了光电高温计、红外温度计等。

红外测温优点如下:

1.它的测量不干扰被测温场,不影响温场分布,从而具有较高的测量准确度。

2.测温范围宽,在理论上无测量上限,可以测量相当高的温度

3.探测器的响应时间短,反应速度快,易于快速与动态测量

4.不必接触被测物体,操作方便

5.可以确定微小目标的温度

随着工农业、国防事业、医学的发展,对温度测量越来越迫切。红外测温技术在生产过程中,在产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源等方面发挥了着重要作用。近20年来,国内红外温度测量在技术上得到迅速发展,性能不断完善,功能不断增强,品种不断增多,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。

但是比起国外,我们仍处于起步晚,高度低的状况,就温度仪来说,美国红外线测温仪型号: Fluke 62 Mini(非接触式温度测量) 特点: 较宽的温度范围到500℃;高光学分辨率;激光瞄准;高精度;背景光显示;同时显示测量的最大值温度范围: -30-500℃(932℉) 精度: 10C-30℃(50F-86℉)时为±1℃(±2℉),德国一家公司制造的,响应时间因为一秒钟,日本的温度测量技术精确度远远领先世界同种技术。

1.2 课题开发的目的和意义

为了克服传统的温度计测量温度的主要缺点——需要测量者与被目标近距

离接触和测量不方便。在顾及仪器测量高精度前提下,以追求最低成本为原则,本文设计红外测温的整体系统构架。接着根据红外测温原理,主要针对人体体温测量进行了具体的设计开发.开发包括硬件电路,外围工艺,单片机程序和主机程序,对人体的温度测量的误差低于±o.1℃。

红外测温为测量各种温度提供了快速、红外测量手段,可广泛、有效地用于密集人群的体温测量。红外测温针对特定人群,比如儿童或老人,极其方便。此次设计的体温测量计可以数字的方式显示出测量结果,使测量过程变得直观,而且具有较高的灵敏度,可以在几秒钟内测得结果,且寿命长,是较为理想的测温仪器。

1.3 课题的技术性能指标

(1)温度测量范围—20℃~+50℃精度为±0.1℃;

(2)采用红外测温方式;

(3) 从便于携带方面考虑,选用体积小、耗能少的液晶显示器显示当前环境的温度信息。

第 2章红外测温工作原理

红外测温是辐射式测温的一种,是利用物体的热辐射现象来测量物体温度的。红外辐射的基本依据是玻耳兹曼、普朗克等人的黑体辐射定律。黑体是一种理想物体,它们在相同的温度下都发出同样的电磁波谱,而与黑体的具体成分和形状等特性无关,通过实现和计算得出黑体辐射定律。

一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切

的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。

物体发射率对辐射测温的影响:自然界中存在的实际物体,几乎都不是黑体。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于1的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。

影响发射率的主要因素在:

1.材料种类

2.表面粗糙度

3.理化结构

4.材料厚度

自然界一切温度高于绝对零度(一273.15℃)的物体,其辐射能量密度与物体本身的温度关系符合基尔霍夫辐射定律。只要测量出所发射的E,就可得出温度,这就是红外测温的原理。利用这个原理制成的温度测量仪表在测量时不需要与被测对象接触,因此属于非接触式测量。红外测温范围很宽,从一5O℃直至高于3 000℃。在不同的温度范围,对象发出的电磁波能量的波长分布不同,在常温(0—100℃)范围,能量主要集中在中红外和远红外波长。本设计选用的

MLX90614红外测温传感器,测温范围为-70℃—380℃。

当用红外线测温,测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,红外能量被红外温度传感器接收,并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照系统内部的算法校正后转变为被测目标的温度值,然后由测温系统计算出被测目标的温度。

第3章系统设计方案的选择

3.1 方案选择

3.1.1 方案一

在该方案中,系统可以分为模拟红外温度传感器(内含环境温度测量)模块、放大电路模块、A/D转换电路模块、MCU主控模块、声光报警模块、LED显示模块和电源模块(如图3.1所示)。所谓的模拟传感器就是传感器的输出是模拟量,而不是可以直接进行数据处理的数字量,所以他需要通过信号放大和A/D转换等处理才能传输给单片机进行相关的处理。

图3.1 方案一的系统框图

首先模拟红外温度传感器接收人体发出的红外线,然后经过转换后输出对应的电压值,传感器同时通过片上温度传感器测量环境温度/传感器温度。这两个红外温度传感器的输出量通过放大电路和AD转换电路处理后传输到MCU模块进行相关的处理(软件滤波、黑体校定等),然后通过LED模块显示相应的人体温度。

3.1.2 方案二

该方案与第一个方案的最大区别是:在本方案中采用数字红外温度传感器代替模拟红外温度传感器。由于数字红外传感器内部集成了运放电路、A/D转换电路、滤波电路和数字信号处理器,所以只需通过传感器的数据接口就可以把传感器所测量的人体温度数据直接传输给MCU主控模块处理并显示。系统框图如下图3.2所示

图3.2 方案二的系统框图

3.1.3方案对比选择

对于方案一,模拟传感器的成本相对要低,而且整个系统设计的自由度相对要高一些,但是也使得系统电路变的更为复杂。例如集成运放电路要用到双电源供电,这就使得电源模块的设计变得复杂、功耗变大和效率变得更低,这对于使用电池供电的便携式系统是不利的。同时在软件设计方面,要涉及到滤波处理、温度线性校准处理和黑体校定等,这使得设计工量大大增加。而且对于开发者的开发环境要求较高,例如要具备黑体校定的设备等。

而虽然在方案二里采用的数字传感器的成本相对模拟传感器的较高,但整个系统的设计相对简单,数字红外温度传感器可以与MCU直接相连接(需要接上拉电阻),由于不需要额外的集成运放电路,所以也不需要用到双电源供电,因而使得电源模块的设计简化,电池的利用效率更高。由于该方案的电路简单且集成度高,所以功耗更低。而且相比第一个方案,无需黑体校正。所以开发时间要比方案一少。这也意味着方案的总体成本(硬件成本、开发时间成本等)其实要比方案一要低。

综上所述,本次设计采用方案二更合理。

3.2 总体方案设计

经过论证对比后,本次设计选择了方案二的设计。在该方案里,整个系统从硬件上可以分成5个子模块:分别是红外温度测量模块、MCU主控模块、声光报警模块、LCD显示模块和电源模块(如图3.2所示)。

本系统主要实现以下功能:实时检测、显示当前所测温度信息和声光报警等。

第4章系统主要器件的方案选择

4.1 传感器的方案选择

4.1.1 红外探测器的分类

红外探测时红外测温仪的重要组成部分,它对测量的精度和范围有着重要的意义。它可以分为热探测仪和电子探测仪两大类。热探测仪分为热电堆探测器、光电导探测器、光生伏特器和光电磁探测器等,而光子探测器则分为光电子发射器、光电导探测器、光生伏特器和光电磁探测器等。

热电堆探测器采用热电堆为探测元件,利用塞贝尔效应,测量比较准确。热敏电阻探测仪是根据物体受热后电阻会发生变化的性质而制成的红外探测器,它可以响应从X射线到微波波段的整个范围,可在室温下正常工作,但由于其时间常数大,只适用于响应速度不高的场合。气体探测器是气室内的吸收膜吸收红外辐射升温,加热工作气体,由气体膨胀给出电信号。热释电效应工作的探测器,其响应速度虽不如光子型,但由于它在室温下使用、光谱响应宽、工作频率宽、灵敏度与波长无关,因此其应用领域广、容易使用。常用热释电探测器有硫酸三甘钛探测器、铌酸锶钡探测器等。

红外光子探测器是利用光子效应制成的红外探测器。常用的光子探测器有光电二极管、光敏二极管、Insb光电磁探测器。红外光子探测器的主要缺点是需要制冷,因为它需要制冷来抑制由于热运动而产生的自由载流子。新一代近室温光电探测器利用排斥效应、提取效应以及磁集中效应能够实现静态耗尽,实现非制冷条件下的红外探测。

4.1.2 传感器的选择

方案一采用红外线温度传感器IRTR。IRTP系列是一种集信号处理电路以及环境温度补偿电路的多用途经济型红外测温探头,完全由工厂进行校准,这使它成为多用途,紧凑的,高精度红外测温头。它是一种高效的,不受环境影响的器测温头. IRTR系列红外传感器是一种集成的多用途工业传感器,因此不能用于人体测温,故不用此方案。

方案二采用热释电红外线传感器D203S。该型传感器能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。但这种传感器一般用于开关电路,红外防盗报警等方面,若要用于测量体温,则需要加入步进电机等进行斩光处理,硬件上的复杂性决定了它的稳定性不高,故不选此方案。

方案三采用热电堆红外传感器MLX90614,。MLX90614是Melexis公司生产的低成本红外温度测量数字传感器,并集成了放大、滤波和A/D转换等功能。MLX90614中的红外温度传感元件是工业级硅片,它带有的一个薄型微机械加工隔膜来过滤掉环境红外线的影响,环境温度由芯片内置的热电偶测得。定制的内置信号调节芯片放大微小的热电偶电压并将其数字化,通过使用芯片EEPROM存储器中储存的生产厂设定校准参数,计算出物体的温度。数字输出温度是完全线性化并对环境温度进行过补偿的。通过SMBus或连续的PWM信号,传感器将结果输送到使用者应用中。整个温度计系统封装在一个金属罐中。对于OEM制造商来说,这些特性提供如下的优点:不需要昂贵的外部组件,能够轻松将传感器整合到应用电路(PCB)上。这种自容式系统解决了微小电压信号、环境影响和电磁兼容性的设计难题,否则这些因素会导致红外线温度测量的很多困难和麻烦。同目前市场上的其它红外线解决方案相比,高度的集成化使得MLX90614更具价格优势,且MLX90614具有较小的热惯性和较高的灵敏度。因此非常适合医学测温,故选方案三。

4.2 显示器的方案选择

方案一选用数码管显示。数码管具有耗能低、电压低、寿命长、对外界环境要求低等优点,但其也有电路复杂、占用资源较多、显示信息少、不宜显示大量信息等缺点,故不选此方案。

方案二选用液晶显示器显示。液晶显示器与数码管相比,有以下明显的优点:微功耗、尺寸小、显示信息量大、字迹美观、视觉舒适而且容易控制。而本系统需要显示直观的信息,并且显示的信息量比较大,所以应选用显示功能更好的液晶显示器,故选择方案二。

4.3 单片机的方案选择

在嵌入式领域中有多种微处理器可以选择,比如FPGA、DSP、单片机、ARM 等,在这些处理器中单片机的价格最低,性能适中,适合此类场合。

方案一 AVR系列单片机。AVR单片机是1997年由ATMEL公司研发出的增强型内置Flash的RISC (ReducedInstruction Set CPU)精简指令集高速8位单片机。AVR单片机废除了机器周期,抛弃复杂指令计算机( CISC)追求指令完备的做法;采用精简指令集,以字作为指令长度单位,将内容丰富的操作数与操作码安排在一字之中,广泛应用于计算机外部设备、工业实时控制、仪器仪表、通讯设备、家用电器等各个领域。

方案二 MSP430。MSP430系列是一个16位、具有精简指令集、超低功耗的混合型单片机,由于它具有极低的功耗、丰富的片内外设和方便灵活的开发手段,已成为众多单片机系列中一颗耀眼的新星。片上集成了AD、DA、PWM、LCD驱动,其比较器AD采样方式能达到很高的精度,开发系统也很便宜。缺点是在位操作时有点麻烦,不适合用于逻辑控制以及对功耗不敏感的使用场合。

方案三 51系列单片机。51单片机是对目前所有兼容Intel 8031指令系统的单片机的统称,其代表型号有ATMEL公司的AT89系列等,Philips、华邦、Dallas、Siemens(Infineon)等公司也有许多兼容的产品,它广泛应用于工业控制系统、白色家电等领域之中。目前很多公司都有51系列的兼容机型推出,在今后很长的一段时间内将占有大量市场。从成本、开发的难易程度考虑,选择方案三。选用ATMEL公司的AT89C51单片机。它是一种低功耗、高性能CMOS 8位微控制器,具有8K可编程Flash存储器,与80C51产品指令和引脚完全兼容,有8K字节的Flash,256字节RAM,32位I/O口线,看门狗定时器,2个数据指针,3个16

位定时/计数器,1个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。

第5章系统各模块硬件设计

5.1 MCU主控模块

该红外测温仪系统是以AT89C51单片机为核心器件,此MCU主控模块的工作原理是:加载相应程序的AT89C51单片机把红外测温模块传来的数据加以处理,送LED显示器显示和在温度超限时声光报警。MCU主控电路如下图5.1所示

图5.1MCU主控电路

图5.2 时钟电路图图5.3 复位电路图单片机的时钟电路选用的是晶振时钟电路,其具体电路如图5.2所示。采用晶体时钟电路的原因是因为它的频率稳定性好,而这正是本红外测温仪系统非常重要的技术要求。

其复位电路如图5.3所示,复位电路必须确保上电时能够自动复位,在必要时还可以手动复位,上电自动复位电路通过采用一种RC定时电路来实现的,手动复位电路采用的是按键复位电路。在按键按下时,单片机的复位端的电平为高电平,单片机复位,在按键松开时,单片机的复位端的电平为低电平,单片机退出复位状态,单片机就进入复位状态,这样做的目的是便于根据实际情况而选择是否复位温度测量数据。

5.3 红外温度测量模块

此红外温度测量模块采用非接触手段,解决了传统测温中需要接触的问题,具有回应速度快,测量精度高,测量范围广等优点。红外测温器件MLX90614内部集成了放大、A/D转换、滤波和数字信号处理等功能,其可以测量的温度范围为-70℃—380℃,对于测体温是完全可以满足要求。

5.3.1 MLX90614的特性

MLX90614系列测温芯片是Melexis公司生产的一种使用方便的高精度红外测温芯片,它具有数字PWM和SMBus两种输出方式。

热量由芯片热电偶测得。MLX90614在其信号调节芯片中采用了先进的低噪音放大器,一个17位的数模转换器和数字信号处理单元,放大微小的热电偶电压并将其数字化,通过使用芯片EEPROM存储器中储存的生产厂设定的校准参数,计算出物体的温度。

数字输出温度是完全线性化并对环境温度进行过补偿的。使得它能保持0.01℃温度精确度,在0℃-50℃的物体温度范围内,标准的MLX90614具有±0.5℃的绝对精确度;在该范围以外,精确度为±1℃。调试后,可以达到±0.2℃。

MLX90614允许-40℃-125℃的超大工作温度范围,以及-70℃-380℃的扩展物体温度范围。以上两个温度的上下限制为其工作的极限范围,如果需要较小的测温范围,可以通过SMBus总线修改E2PROM里相应温度上下限控制字来改变这个范围,从而提高精度。

5.3.2 MLX90614的引脚分布和内部结构

MLX90614采用4脚罐形封装(TO239),顶端引脚分布视图如图5.4所示。具体的引脚功能如表5.1所示。

MLX90614由红外温度传感器、低噪声放大器、A/D转换器、DSP单元、脉宽调制电路及逻辑控制电路构成,MLX90614内部的结构框图如图5.5所示。热电堆输出的温度信号经过内部高性能、低噪声的运算放大器放大后,送给模数转换器(ADC),ADC输出的17位数字经过可编程FIR和IIR低通滤波器(即框图

中的DSP)处理后输出,该输出作为测量结果保存在MLX90614内部RAM存储单元中,可以通过SMBus读取;同时测量结果送到后级数子式脉冲宽度调制电路,将测量结果以PWM的方式输出。

图5.5 MLX90614内部的结构框图

5.3.3 MLX90614的接口电路

MLX90614的SCL/Vz管脚和PWM/SDA管脚直接连接单片机的普通I/O即可,由于MLX90614的输入输出接口是漏级开路结构,需要加上拉电阻。多个MLX90614可以用于一个系统中,每个MLX90614对应一个不同地址,通过地址的不同而访问不同的MLX90614,最多可以达到127个。MLX90614的接口电路如图5.6所示。

图5.6 MLX90614的接口电路图

5.4 电源模块

本次设计所用的电源都是+5V的直流电源,为使系统便于携带电源采用可充电电池,其充电器电路如图5.7所示。

电路输入电源由变压器T1降压,二极管D1-D4整流,三端集成稳压器U1稳压及C1,C2滤波后供给,通电后可输出稳定的9V直流电压供给充电器使用。

电压比较器由时基电路U2组成,在他的控制端5脚由一个稳压二极管D6(稳压电压为5V),所以将电路的复位电平在5V,发光二极管D5为充电指示器。将电池装入充电支架后,合上电源开关S1,便可开始充电。电路工作过程:由于电容C3两端电压不能突变,刚通电时,U2的2引脚为低电平,U2被触发,3脚输出高电平,次高电平经电位器R4、二极管D7向电池充电,改变R4值可以调节充电电流的大小。因此U2的7脚被悬空,D5发光指示电路在充电。随着充电不断进行,电池两端电压逐渐升高,当升至5V时,U2复位,3脚输出低电平,充电自动终止,同时U2内部放电管导通,7脚输出低电平,D5熄灭表示充电结

束。

图5.7 充电器电路图

5.5 声光报警模块

报警装置部分采用的是声光报警,当目标温度超过设定的上/下限温度后,蜂鸣器长响,发光二极管同时亮,提示目标温度超范围,如图5.8所示。在本次设计中报警信号是由单片机的P2.7引脚输入,其电路接法见附录的总电路图。

图5.8 声光报警电路图

5.6 LCD显示模块

LCD1602是金鹏公司生产的液晶显示器,具有微功耗、尺寸小、显示信息量大、字迹美观、视觉舒适而且容易控制等特点。这是一种专门用于显示字母、数字、符号等点阵式LCD。LCD是一种被动显示器件,主要靠调制外界光来实现显示,具体来说,它是利用液晶材料的光电效应,通电时,使液晶分子光学特性发生变化,控制通过光线的数量,达到显示的目的。可以由外部控制施加给液晶分子的电压,控制显示点的明暗及色彩。其显示电路如图5.8所示

图5.8 LCD显示电路

第6章系统软件设计

6.1 MLX90614的SMBus传输协议

MLX90615 与单片机之间的数据传输通过SMBus 协议进行传输,单片机作为主设备与作为从设备的MLX90614进行通信。读、写数据的格式分别见图6.1、图6.2。其中,S 为起始位,Slave Address 为从器件地址,Wr 为写标志,Command 为命令字节,Rd 为读标志,PEC 为出错数据包,P 为停止位。

图6.1 读数据格式

图6.2 写数据格式

数据传输时序如图6.3 所示,在SCL 变为低电平300 ns后,将16 位数据分2 次传输,每次传送一个字节。每个字节都是按照高位( MSB) 在前,低位( LSB) 在后的格式传输,2 个字节中间的第9 个时钟为应答时钟。

图6.3 SMBus数据传输时序图

6.2 软件流程图

红外测温仪系统主程序流程图如图6.4所示。系统首先对SMBus总线和液晶LCD1602进行初始化设置,然后系统循环读取温度显示温度,并在温度超限时声光报警。

图6.4 主程序流程图图6.5 读取MLX90614温度流程图系统主要是讲解红外测温仪,其中MLX90614的温度读取程序流程图如图6.5所示.首先写开始条件、写从地址、写命令07H,表示要读取温度。然后编写操作为读操作,重新发开始条件,写读命令,先读取温度低字节,后读取温度高字节,最后读取错误信息码。程序带回2字节的温度数据,可以在显示子程序中转换为具体的温度数据显示。

6.3 主程序设计

1 main():主函数

在主函数中,主要是对系统SMBus初始化,对LCD液晶初始化设置。然后程序循环读取温度模块MLX90614的温度数据,然后送液晶显示屏显示当前温度数据,通过延时延长循环时间。

//**********主函数***************************************

void main()

{

uint Tem //温度变量

SCK=1;

SDA=1;

delay(4);

SCK=0;

delay(1000);

SCK=1;

init1602(); //初始化LCD

while(1)

{

Tem=readtemp(); //读取温度

cmd-wrt(0x01); //清屏

Print(" Temperature:") //显示字符串 Temperature: 且换行

display(Tem); //显示温度

Print(" "); //显示空格

dat-wrt(0xCF); //显示摄氏度

delay(1000); //显示再读取温度显示

}

}

2 display():温度输入转换并显示子程序

该程序为把MLX90614中读出的数据转换为温度输并显示。从MLX90614中读出的

数据(DataH:DataL)换算为温度数据(T,单位为℃)为T=(DataH:DataL)×

0.02-273.15,也可以表示为T=【(DataH:DataL)×2-27315】/100前可以看成

是带着2位小数的数据。

还要注意的是温度可能为正也可能为负值,则需要判断数据值乘以2,大

于等于27315则为正温度或0,小于27315为负值。

在显示过程中数据前面不需要显示“0”值不显示。

void display(uint Tem) //温度输入转换并显示

{

uint T,a,b;

T=Tem*2; //温度数据×2

if(T>= 27315) //温度为正或0

{

T=T-27315; //温度数据×2-27315 a=T/100; //a为温度整数

b=T ‰100; //b为温度小数

if(a>=100) //温度超过100℃

{

dat-wrt(0x30+a/100); //显示温度百位

dat-wrt(0x30=a ‰100/10); //显示温度十位

dat-wrt(0x30+a ‰10); //显示温度个位

}

else if(a>=10) //温度超过10℃

{

dat-wrt(0x30+a ‰100/10); //显示温度十位

dat-wrt(0x30+a‰10); //显示温度个位

}

else //显示不超过10℃

{

dat-wrt(0x30+a); //显示温度个位

}

dat-wrt (0x2e); //显示小数点,ASCII码为0x2e if(b>=10) //显示温度小数点后第1位数不等于0

{

dat-wrt(0x30+b/10); //显示温度小数点后第1位数

dat-wrt(0x30+b‰10); //显示温度小数点后第2位数

}

else //温度小数点后第1位数等于0

{

dat-wrt(0x30); //显示温度小数点后第1位数0

dat-wrt(0x30+b); //显示温度小数点后第2位数

}

}

else //显示为负

{

T=27315-T; //27315-温度数据×2,即温度绝对值

a=T/100; //a为温度整数

b=T%100; //b为温度小数

dat-wrt(0x20); //显示负号

if(a>=10) //温度低于-10℃

{

dat-wrt(0x30+a/10); //显示温度十位

dat-wrt(0x30+a%10); //显示温度个位

}

else //温度高于-10℃

{

dat-wrt(0x30+a); //显示温度个位

}

dat-wrt(0x2e); //显示小数点

if(b>=10) //温度小数点后第1位数不等于0

{

dat-wrt(0x30+b/10); //显示温度小数点后第1位数

dat-wrt(0x30+b%10); //显示温度小数点后弟2位数

}

else //温度小数点后第1位数等于0

{

dat-wrt(0x30); //显示温度小数点后第1位数0

dat-wrt(0x30+b); //显示温度小数点后第2位数

}

}

}

第7章系统误差分析及改进方法

本次设计的红外测温仪系统满足了课题的所有技术要求,为使该系统应用范围更广,可以采取以下的方法:

1 由于普通红外测温仪只限与测量物体外部温度,不方便测量物体内部和存在障碍物时的温度,所以可以在其检测头部加一段光导纤维,并在其前端装一个小视角的透镜,这样被测物体的辐射能经过透镜到光导纤维的内部。在光导纤维里面经过多次反射传到检测器。因为光导纤维可以自由弯曲,使辐射能自由转向,这就解决了物体内部温度的测量问题,可以测量有障碍物挡住的角落等地方的温度。

2 红外线测温仪测温是非接触式的,这样会存在着各种误差,影响误差的因素很多。距离系数(K=S:D)是测温仪到目标的距离S与测温目标直径D的比值,它对红外测温的精度有很大影响,K值越大,分辨率越高。因此,如果红外测温仪由于环境的限制必须安装在远距离目标之处,而又要测量小的目标,就应该选择高光学分辨率的测温仪,以减小测量误差。在实际使用在,许多人忽略了测温仪的光学分辨率。不管被测目标点直径D大小,打开激光束对准目标就测试。实际上他们忽略了测温仪的S:D值的要求,这样测出的温度会有一定的误差。比如,用测温距离与目标直径S:D=8:1的红外线测温仪,测量距离应满足表7.1

第8章课程设计心得体会

本次设计所用的的工具是Protel DXP 2004SP2原理图与PCB设计,用到了书中的原理图设计部分,制建元器件与建立元器件库部分以及综合实例部分。初步掌握了元器件的一般过程,导线的放置命令及放置技巧,放置图纸符号及调整;以及新建原理图元器件或元器件库的方法,了解了绘图工具的使用,复制元器件和元器件添加别名的方法;除上述之外,我还学到了创建项目文件,原理图设计,报表生成等方法;使设计的质量得到了保证。本次课程设计主要是传感器的选型,主要把红外线温度传感器,热释电红外线传感器,热电堆红外线传感器进行比较,热电堆红外线传感器具有较小的热惯性和较高的灵敏度,因此非常适合医学测温它。除上面两大块之外,本次设计还涉及到了单片机的选择。本次课程设计提高了我的综合动手能力和设计能力,它使我的理论知识得到了综合应用,培养我综合运用所学理论的能力和解决较复杂的实际问题的能力。

第9章参考文献

【1】程德福?传感器原理及应用?北京:机械工业出版社,2012年1月

【2】王守中?51单片机开发入门与典型实例?北京:人民邮电出版社,2007年8月

【3】周润景?Altium Desiger原理图与PCB设计?北京:电子工业出版社,2009年6月

【4】胡汉才?单片机原理及其接口技术?北京:清华大学出版社,2004年6月

【5】余永权?单片机在控制系统中的应用?北京:电子工业出版社,2003年8月【6】曾强?红外测温仪—工作原理及误差分析?传感器世界,2007年2月

【7】曹欣荣?环境温度对红外辐射式体温计读数的影响?计量学报,2002年1月. 【8】由富恩?辐射测温仪原理及其检定?北京:中国计量出版社,1990年3月. 【9】高魁明?红外理论与技术?沈阳:东北工学院出版社,1989年6月.

【10】康华光?模拟电子技术基础?武汉:华中科技大学出版社,2005年7月【11】沙占友?集成传感器应用?北京:中国地理出版社,2005年9月.

【12】王煜东?传感器及应用?北京:机械工业出版社,2003年11月

【13】田立?51单片机C语言程序设?北京:人民邮电出版社,2007年8月.

附录

1 总电路图

2 元器件清单

非接触式红外测温仪

毕业设计(论文) 题目非接触式红外测温仪 学生姓名:李林 指导教师:李宏升 理学院应用物理学专业061 班

非接触式红外测温仪 学生姓名:李林 所在专业:应用物理学班级:061 指导教师:李宏升 申请学位:学士 论文提交日期:20xx -xx-xx 论文答辩日期:20xx -xx-xx 学位授予单位:青岛理工大学

摘要:本文结合国内外红外技术的发展和应用,简绍了红外技术的基础理论,阐述了红外热像仪的工作原理、发展和分类。以及红外测温仪的原理和实现。 关键词:黑体辐射、红外测温仪、普朗克定律、热像仪。 目录 内容摘要 第一章概述 第二章红外基础理论 2.1 扫像仪原理 2.2热像仪的发展 2.3 热像仪分类 第三章红外测温仪的原理及实现 3.1红外测温仪的种类 3.2红外测温仪的工作原理 3.3红外测温仪的性能 第四章红外测温仪的选择 4.1确定测温范围 4.2确定目标尺寸 4.3确定距离系数(光学分辨率) 4.4确定波长范围 4.5确定响应时间 4.6 信号处理功能

4.7环境每件考虑 4.8 红外测温仪的优点 4.9 红外测温仪的缺点 4.10 使用注意事项 第五章结束语 参考文献 第一章概述 红外测温技术在生产过程中,在产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源等方面发挥了着重要作用。近20年来,非接触红外测温仪在技术上得到迅速发展,性能不断完善,功能不断增强,品种不断增多,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。非接触红外测温仪包括便携式、在线式和扫描式三大系列,并备有各种选件和计算机软件,每一系列中又有各种型号及规格。在不同规格的各种型号测温仪中,正确选择红外测温仪型号对用户来说是十分重要的。 红外检测技术是“九五”国家科技成果重点推广项目,红外检测是一种在线监测(不停电)式高科技检测技术,它集光电成像技术、计算机技术、图像处理技术于一身,通过接收物体发出的红外线(红外辐射),将其热像显示在荧光屏上,从而准确判断物体表面的温度分

红外线测温仪原理及应用

红外线测温仪原理及应用 摘要:测量温度的方法有很多种,温度计大致可以分为接触式测温仪表和非接触式测温仪表两类。其中接触式的有我们熟悉的液体式温度计,热电偶式温度计和 热电阻式温度计等等。 关键词:红外线测温辐射光纤 众所周知,温度是供热,供燃气,通风及空调系统中最重要的参数之一。尤其在热工测量过程中,温度的精准程度往往是决定实验成败的关键。因此,一个精确度高的测温仪器在工程中是必不可少的。因此本文就温度测量工具中的红外线测温仪的原理及应用进行一些介绍。 一,红外测温的理论原理 在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中就包含了波段位于0.75μm~100μm的红外线。他最大的特点是在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质称为黑体,并设定他的反射系数为1,其他的物质反射系数小于1,称为灰体,由于黑体的光谱辐射功率P(λT)与绝对温度T之间满足普朗克定。说明在绝对温度T下,波长λ处单位面积上黑体的辐射功率为P(λT)。根据这个关系可以得到图1的关系曲线,从图中可以看出: (1)随着温度的升高,物体的辐射能量越强。这是红外辐射理论的出发点,也是单波段红外测温仪的设计依据。 (2)随着温度升高,辐射峰值向短波方向移动(向左),并且满足维恩位移定理,峰值处的波长与绝对温度T成反比,虚线为处峰值连线。这个公式告诉我们为什么高温测温仪多工作在短波处,低温测温仪多工作在长波处。 (3)辐射能量随温度的变化率,短波处比长波处大,即短波处工作的测温仪相对信噪比高(灵敏度高),抗干扰性强,测温仪应尽量选择工作在峰值波长处,特别是低温小目标的情况下,这一点显得尤为重要。 二,红外线测温仪的原理

人体红外测温仪

目录 摘要................................................................................................................................ I Abstract .......................................................................................................................... II 第一章红外线测温仪的研发背景 . (1) 1.1红外测温仪的实际应用 (1) 1.2红外测温技术的发展历程 (1) 第二章人体红外测温仪的原理和特点 (2) 2.1人体红外线测温仪的理论依据 (2) 2.2人体红外线测温仪的性能指标及作用 (2) 2.3影响温度测量的主要因素及修正方法 (3) 2.4人体红外线测温仪的特点 (5) 第三章人体红外测温仪的硬件设计 (6) 3.1总体设计 (6) 3.1.1 整体框图设计 (6) 3.1.2 电路设计 (7) 3.2温度传感器 (8) 3.3放大电路的设计 (8) 3.4模数转换部分电路 (9) 3.5LCD1602显示电路 (10) 第四章软件设计 (12) 5.1红外测温仪的使用注意事项 (15) 5.2改进方案 (15) 5.3推广及应用 (15) 参考文献 (16) 致谢 (17) 附录1 PCB板图 (18) 附录2 3D效果图 (19) 附录3 程序 (20)

人体红外测温仪 摘要:为了克服传统温度计测量温度的主要缺点——需要测量者与被测目标近距离接触和测量不方便。在顾及仪器测量高精度前提下,以追求最低成本为原则,研制了非接触式热释电红外测温仪,实现了对物体表面温度快速准确的测量。本文也设计了红外测温仪的整体系统构架。根据热释电原理,主要针对人体体温测量进行了具体的设计开发,开发包括整体方案,硬件电路,单片机程序和主机程序。并利用设计出来的红外测温仪在环境温度30℃下对人体温度和水温进行了测量,对人体的温度测量的误差低于±0.1℃,提高了测量精度。人体测温仪的设计主要为适应人体体温快速无接触测量的需要。主要介绍热释电红外传感器的工作原理以及最适宜人体红外线检测的热释电传感器PM611的优点和等效电路,阐述了基于热释电传意器的红外测温仪的工作原理,讨论了该系统的设计与实现方法,简单介绍了测温系统的适用条件。 关键词:温度测量,热释电,A T89C51

最新在线红外测温仪说明书

在线红外测温仪说明 书

北京圣达骏业科技有限公司 SDA系列红外测温仪 中文使用手册 IR-LT0801014-C 仅供学习与交流,如有侵权请联系网站删除谢谢9

1介绍 感谢您选择SDA系列红外测温仪。 红外测温仪可以不接触目标而通过测量目标发射的红外辐射强度计算出物体的表面温度。非接触测温是红外测温仪最大的优点,使用户可以方便地测量难以接近或移动的目标。 SDA系列红外测温仪为一体化集成式红外测温仪,传感器、光学系统与电子线路共同集成在不锈钢壳体内;SDA系列易于安装,金属壳体上的标准螺纹可与安装部位快速连接;同时,SDA系列还有各型选件(例如吹扫器、安装支架、可调安装支架、吹扫保护套等)以满足各种工况场合要求。 2参数描述 a.基本性能 保护等级 IP65 (NEMA-4) 环境温度 0 ~60°C 存储温度 -20 ~ 80°C 相对湿度 10 – 95%(不结露) 材料不锈钢 电缆长度 1.5 m (标准) , 其它特殊规格(定制)仅供学习与交流,如有侵权请联系网站删除谢谢9

b.电气参数 工作电源 24 VDC 最大电流 50mA 输出信号 4 ~ 20mA 或0-5V 线性 c.测量参数 光谱范围 8 ~ 14 μm 温度范围 700-1700℃ 光学分辨率 16:1 (LT-05AW为8:1) 响应时间 300 ms (95%) 测温精度测量值的±1%或±1.5℃,取大值 重复精度测量值的±0.5%或±1℃,取大值 发射率 0.95固定(sda717辐射率0.10-1.00可 调) d. 光路图 仅供学习与交流,如有侵权请联系网站删除谢谢9

红外温度计使用说明书

产品名称:表面红外温度计 型号:TES-1326S 检测项目:表面温度测定 检测样品:各类食品、食品包装、食品生产环境 产品简介: 本产品为一只手携式、使用简单,设计坚实之红外线温度计,并附有雷射指标点,此产品不但有显示器背光阅读功能,并有自动读值锁定功能及自动开机功能。红外线温度计可用于测量那些不适合使用传统接触式测量方法来测量舞台的表面温度(例如移动舞台,带电表面和难接触到的物体) 适用范围:a、高压危险区域。b、高温不可接触的物体。 c、量测物距离遥远。 d、转动中或运动中的物体。 产品规格 2-1一般规格: 显示器:LCD数位显示有背光功能。 自动关机:大约15秒。 资料记忆容量:50笔(可直接于LCD上读取)。 超过测量范围指示:“OL”或“-OL”。 电池电力指示:当电池电压不足时,将显示“”。 电源:单个9V电池,006P或IEC6F22或neda1604。 电源寿命:约100小时(雷射指标及显示器背光灯均不使用时)。 (碱性电池) 操作温湿度: 0℃至50℃(32℉至122℉)低于80%RH。 储存温度:-10℃至60℃(14℉至140℉)低于70%RH。 尺寸: 172(长)*118(宽)*46(高)mm。 重量:约220公克。 附件:说明书,9V电池。 2-2电器规格: 温度量测范围:-35℃至500℃(-31℉至932℉)。 解析度: 0.1℃/0.2℉

准确度:±2%读值或±2℃或±4℉(以误差较大者为准且操作环 境温度在 18℃至28℃范围内)。 温度系数:操作环境温度>28℃或<18℃时,每增减1 ℃须增加0.1 倍的误差。 反应时间: 0.5秒。 感应光谱:约6至14um 距离与目标比: 12:1;25mm最小点尺寸。 照准:单束雷射光 <1豪瓦特(class2)。 侦测感应器:热电堆。 特点 1、可选择℃/℉单位。 2、背光显示。 3、雷射指示测量位置。 4、自动锁定读值功能。 5、最大、最小读值记录功能。 6、测试资料记忆存储及读取功能。 7、自动关机功能。 品牌:天迈生物 产地:杭州

便携式红外热像仪与在线式红外热像仪的区别_

便携式红外热像仪与在线式红外热像仪的区别_ 根据不同的使用形式,可以将红外热像仪分为在线式红外热像仪跟便携式红外热像仪。今天我们就来说说这两款热像仪以及它们之间的区别所在。 一、不同点 1、供电方式不同 便携式红外热像仪都带有电池,而在线式红外热像仪则需要外部实时供电; 2、使用方式不同 便携式红外热像仪带有手柄,使用灵活,开机即可使用,走到哪用到哪。而在线式红外热像仪需要固定安装使用,一般只能看到固定区域内的红外热图像。当然了,如果选配武汉永盛科技的云台和手动或电动调焦镜头,会观测到更大的区域。 3、应用领域不同 便携式红外热像仪一般用于不需要每天24小时连续使用的场合,如日常巡检、故障排查、品质检测、执法巡逻等等。而在线式红外热像仪一般用在需要24小时连续监测的场合,如石油炼制、化工生产、安防等等。 4、PC机数据处理软件不同 与便携式红外热像仪不同,一般在线式红外热像仪的PC软件功能更强大、

更丰富,如在线式红外热像仪不仅能实时显示红外热图,还能实时显示热图中高或低温度点变化曲线。 便携式红外热像仪是一款外形比较小巧,结构紧凑、轻巧便携的红外热像仪器,而且配有电池,可以很大程度的满足不同工作场合的使用。是建筑围护、改修和修缮、检查以及屋面应用的好工具。便携式红外热像仪这款高性能、全辐射成像仪是专门用来针对恶劣的工作环境而优化设计的,适用于电气安装、机电设备、过程设备、HVAC/R设备及其它更多应用的排障工作。能提供快速发现故障所需的清晰、锐利图像的热灵敏度可用于发现很多细微的可能预示着故障问题的温度差异。而且便携式红外热像仪的使用简单,操作直观,用一个大拇指即可轻松的实现导览,无需携带纸笔仅需讲话即可记录发现的所有细节,大大方便我们的试验操作。 在线式红外热像仪在线式热像仪不同于手持式热像仪的一点就是,在线式的要固定在被监测对象的周围,好的的在线式红外热像仪几乎可以安装在任何地方,监控关键设备或其他重要资产。它可帮助您保护生产现场,监测现场状况,使您提前发现异常情况,从而避免财产损失、停工,并保障工人的安危。在线式红外热像仪主要应用于:石油炼制及开采,石化工厂: 甲烷的处理、运输和储存、储存区域防火、监控耐火材料衬里、检查火焰、生产过程质量控制。

(完整word版)在线测温仪校准规范.doc

河北敬业集团 测量设备对比规范 JYJJF0001—2014 在线测温仪对比规范 2014 年 12 月 10 日发布2014年12月25日实施河北敬业集团能源管控中心发布

`JYJJF 0001-2014 在线测温仪对比规范 JYJJF 0001-2014 本校准规范经河北敬业集团能源管控中心2014年 12 月 10日批准并自 2014 年 12 月 25 日施行。 归口单位: 起草单位: 批准人签字: 本规范由起草单位负责解释

JYJJF 0001-2014 目录 1.范围及目的 1 2.引用技术文件 1 3、计量性能要求 1 4、校准方法 1 5.校准结果的处理及校准周期 2 6.附加说明 2 7. 附录 A 3 8. 附录 B 4

`JYJJF 0001-2014 1、范围及目的: 本规范适用于在河北敬业集团各分厂生产过程中使用的在线测温仪的校准。对集团生产工序所用加热炉、热处理炉等设备的温度及工件产品在生产过程中的温度控制测量所需的红外测温仪实施校准,以确保其结果满足测量准确度的要求。 2.引用技术文件 2.1产品技术说明书 2.2JJG415-2001《工作用辐射温度计检定规程》 2.2.3JJG67-2003《工作用全辐射温度计检定规程》 3.计量性能要求 3.1 所用参考便携红外测温仪的示值误差不得大于±5℃。 3.1 红外测温仪基本误差: 在线红外测温仪最大基本误差见下表: 参考标准温度范围(℃)基本误差(℃) ≤300 0.5 300~600 2 600~900 4 900~1100 5 1100~2000 8 4.校准方法 4.1 外观检查 4.1.1 测温仪的型号、名称、规格、测量范围、准确度等级、制造厂名或商标、出厂编号、制造年月等均应有明确的标记。 4.1.2 测温仪显示值应清晰。 4.1.3 测温仪的外形结构应完好。

IT系列红外测温仪说明书

IT系列红外测温仪

目录 1 概述 2 技术参数 3 外形结构 3.1 IT-5外形结构 3.1 IT-6/ITL-500外形结构及面板说明 3.2 IT-8外形结构及面板说明 4 选型表 4.1 ITL-500选型表 4.2 IT-5选型说明 4.2 IT-6/8选型表 5 使用 5.1 安装 5.2 引出线定义 5.3 输出选择 5.4 瞄准及距离系数

1 概述 IT红外测温仪分为,ITL-500,IT-5,IT-6,IT-8四大种系列产品,各系列产品各具特色,可分别适用于各种不同的场合。ITL-500用于从负温度起到1200℃的温度测量,IT-5用于安装空间小,测量目标小的场合,IT-6是一款性价比高,适应性很强的测温仪,可广泛运用于金属加工,科研试验等领域。IT-8是IT红外测温仪的高端产品,适合有色金属加工,例如铝材,铜材等。 IT各系列红外测温仪产品均具有激光瞄准功能,安装使用方便,温度测量范围覆盖了-25℃-3000℃,各系列产品可在其有效的测量范围内自由分段。可以满足用户各种温度测量的需求。IT红外测温仪采用优异的光学结构及工艺;电路处理单元采用32bit(部分产品使用16bit)MCU。严谨的制作工艺及严格的质量管理,使得本测温仪的测量精度和重复性有了很好的保证。非接触测量的特性,使得IT红外测温仪可广泛运用于运动物体,带电导体,真空环境或其他特殊要求的目标进行非接触温度检测。 IT红外测温仪可广泛应用于食品,塑料加工,铸造、粉末冶金、轧钢、电力、化工、玻璃、陶瓷生产、热处理,中高频感应加热,线材生产,焦化,热压烧结、焊接等行业。 选型使用推荐及各系列产品适用的行业: ITL-500 该型号测温仪由于波长,温度范围的特点,适用于温度较低,常规材料辐射率比较接近1的场合,行业包括感应加热的电磁线高频烧结,塑料,化工,电机热安装等行业 IT-5 安装空间狭窄或者对精确瞄准及快速响应要求较高的场合,例如高频焊接,中频钎焊等行业,目前较典型的如全自动焊齿机IT-6 中频长短棒料透热,窑炉,中频钎焊,轧钢,玻璃,陶瓷,粉末冶金,热压烧结,精密铸造等行业 IT-8

(完整版)红外测温传感器

红外光电传感器测温仪 1红外测温传感器结构 红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内的算法和目标发射率校正后转变为被测目标的温度值。 2红外测温传感器工作原理 在自然界中,一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射量。根

据基尔霍夫定律、普朗克定律、维恩公式这三大辐射定律,物体的红外辐射能量的大小及其按波长的分布与其表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 三大辐射定律均是以“黑体”作为研究对象分析得出的。但是,自然界中存在的实际物体都不是黑体,所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法以及表面状态和环境条件等因素有关。因此,为了使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在0-1之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。物体表面发射率主要决定于材料性质和表面状态( 如表面氧化情况,涂层材料,粗糙程度及污秽状态等)。 当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中的红外线在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质成为黑体,其他的波段的最大值成为灰体。事实上,自然界中并不存在黑体,只是为了获得红外线的分布规律才提出的,从而导出了普朗克黑体辐射定律。 普朗克黑体辐射定律是用于描述在任意温度下从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础用公式可表达为: E=δε(T-To ) E 是辐射出射度.单位是W /m3; δ是斯蒂芬一波尔兹曼常数,5.67x10-8W /(m2·K4); ε是物体的辐射率: T 是物体的温度(K ); To 是物体周围的环境温度(K )。 红外测温仪电路比较复杂, 包括前置放大, 选频放大, 温度补偿, 线性化, 发射率ε (比辐射率 )调节等。目前已有一种带单片机的智能红外测温仪, 利用单片机与软件的功能, 大大简化了硬件电路, 提高了仪表的稳定性、可靠性和准确性。 红外测温仪的光学系统可以是透射式, 也可以是反射式。 反射式光学系统多采用凹面玻璃反射镜, 并在镜的表面镀金、 铝、镍或铬等对红外辐射反射率很高的金属材料。 3红外测温理论基础 3.1红外辐射(红外线、红外光) 红外线是电磁波谱中,波长0.76μm -1000μm 范围的电磁辐射,位于红外光与无线电波之间。与可见光的反射、折射、干涉、衍射和偏振等特性相同。同时具有粒子性。对人的眼睛不敏感,要用对红外敏感的探测器才能接收到。红外辐射的本质是热辐射,热辐射包括紫外光、可见光辐射,但是在0.76μm -40μm 红外辐射热效应最大。 自然界中一切温度高于绝对零度的有生命和无生命的物体,时时刻刻都在不停地辐射红外线。辐射的量主要由物体的温度和材料本身的性质决定;特别热辐射的强度及光谱成份取决于辐射体的温度。 3.2黑体辐射规律 黑体红外辐射的基本规律揭示的是黑体发射的红外热辐射随温度及波长的定量关系。黑体一种理想物体,它们在相同的温度下都发出同样的电磁波谱,而与黑体的具体成分和形状特性无关。斯特藩和玻耳兹曼通过实验和计算得出黑体辐射定律: 4 0)(T T M σ=

红外测温仪使用说明书

红外测温仪及二次表现场使用 说明书

双波长红外测温仪 为了解决温度的测量问题,温度的自由选择问题,以及长期稳定的校准需要等,威廉姆森设计了双波长高温计,这使得威廉姆森温度的测量上远远超过了业界的其它测温产品,显示出威廉姆森显著的优势 传感器概述: 相对与单波长温度传感器,双波长红外测温仪的主要优点在于: ●对于难测量的物体(如灰色金属表面),红外测温仪采用自动 补偿的方法从而增加准确度。 ●目标大小小于传感器目标直径,如电线,或移动的目标等,它 也可以准确无误的测量。 ●目标在部分受到阻挡镜头模糊时,或干预媒体,如烟雾,灰尘, 和/或水喷雾,双波长红外测温仪仍然可以准确和可靠的测量

williamson 有两种类型的高温计的设计。双波长及双色彩设计。这两种温度测量技术是基于相同的物理原理主要涉及测量红外能量 在两个相邻的波长之间计算的比例通过这两项测量,确定温度。两者的设计不同点在于:双色彩设计采用了两个层次的红外探测器被称为“夹心探测器” ,而双波长技术采用“单一探测器”的设计(见图) 。 基于其独特的技术测量红外能量,双波长红外测温仪设计提供了一些优势。 一, 在恶劣的环境下更高的稀释信号因子。提高了传感器的控制能力,使它可以穿过脏的窗口或水喷淋,喷雾油,烟,和尘埃等。从而也提高了测量精度这使得它对被测物体表面的氧化物,熔融金属,有光泽的金属(低辐射)等都不会受到影响 ,包括应用目标大小小于传感器目标直径,如电线,或移动的目标等,它也可以准确无误的测量。 双波长 双色彩

二、可根据需要定制温度范围,测量目标的温度可以低至300 C 以 下 三、长期稳定的校准过程监测与控制等方面的应用,使得测量结果准 确无误。 红外测温仪现场连接方式按现场接线图连接 工作正常时LCD上应显示LO TEMP 红外测温仪工作基本原理

红外测温仪使用指南2

红外测温仪使用指南 红外测温仪是一种非接触式测温仪器,通过吸收被测物体发出的红外辐射来测量其温度。可1秒快速测温,达到快速筛查体温异常的目的,并防止交叉传染。 [种类] ●红外人体表面温度快速筛检仪 (红外筛检仪) 多点测温图像识别追踪,适用于机场口岸、地铁、车站、码头、医院等人流密集的场合,用于体温异常人员的快速筛查。 ●红外体表温度计(红外额温计) 适用于企事业单位、住宅、社区等人流较少的场合,适合移动巡检,目前大量应用于防疫控制中。 ●红外耳温计 通过耳腔和鼓膜测量体温,适用于家庭、个人及严格消毒的医院非发热普通门诊。 [准确性] 红外耳温计>红外额温计>红外筛检仪 [使用须知] ●红外筛检仪 1、通电预热,与环境达到热平衡后再使用; 2、避免强电磁干扰,无较大的气流,环境条件应保持恒定,温度不应有较大变化; 3、当被测者来自与测量环境温度差异较大时,建议等候(5~10)分钟,两者达到热平衡后再测量为佳; 4、保持设备的探测镜头干净整洁,避免触碰损伤镜头,影响测量准确性。 ●红外额温计 1、使用前确认“体温”测量模式; 2、保持额温计在(16~35)℃之间工作,使用时应避免阳光直晒和环境热辐射,额温计、被测者和环境温度保持热平衡为佳; 3、额温计应垂直于额头中心、眉心上方,其距离按说明书规定的要求一般为3~5cm,如未说明的按照3cm距离测量,不能紧贴被测者额头; 4、被测者前额应无水迹、汗渍、无化妆品,无帽子、毛发等遮挡物; 5、严格按照使用说明书进行操作。

●红外耳温计 1、测量前保持耳道清洁,清理耳垢等污物; 2、测量时对准耳道和鼓膜中心位置,不偏不移; 3、耳温计须配备一次性卫生耳套使用,避免多人使用交叉感染; 4、严格按照仪器使用说明书进行操作。 [遇到红外额温计数值不准怎么办?] 1、确认是否选择“体温”模式; 2、防止额温计长时间暴露在低温环境,一般不超过3分钟,要采取适当保温措施; 3、测量多次取平均值,一般两次测量数据之差不超过0.3℃; 4、人员长时间在寒冷环境下会导致额温偏低,可转移至温暖环境中复测; 5、如出现较大误差或异常情情况时,可用玻璃体温计或电子体温计核查进行数据修正。 ●简易修正方法: 第一步:在相同环境条件下,同时用玻璃体温计(或电子体温计)和红外额温计测量多名健康人员的体温,可测量多次,分别记录玻璃体温计(或电子体温计)和红外额温计测量平均值,两者的差距为修正值; 第二部:使用红外额温计测量时,测量值加上修正值即为人员体温。 [温馨提示] 1、红外测温仪可用于初筛,一旦发现体温异常,应使用经玻璃体温计或医用电子体温计进行二次确认,作为诊断最终依据。 2、如发现红外测温仪数据误差大、示值重复性差、性能不稳定的,则建议停止使用,送计量技术机构校准,并结合校准数据使用,以减少测量误差。 3、测量前20~30分钟要避免剧烈运动、进食、喝酒、喝冷水或热水、冷敷或热敷。测量时须严格按照仪器使用说明执行。

红外测温仪操作使用方法

红外测温仪操作使用法 1.操作测温仪 测温仪会在按下扳机或按下黄色键时打开。若连续8秒钟没有检测到活动,测温仪会自动关闭。测量温度时,将测温仪瞄准目标,拉起并保持扳机按下不动。松开扳机以保持温度读数。一定要考虑距离与光点尺寸比以及视场。激光仅用于瞄准目标物体。 1)找出热点或冷点 要找出热点或冷点,将测温仪瞄准目标区域之外。然后,缓慢地上下移动以扫描整个区域,直到找到热点或冷点为止。见图 5。 图5 找出热点或冷点 2)距离与光点尺寸 随着与被测目标距离(D)的增大,仪器所测区域的光点尺寸(S)变大。光点尺寸表示 90 % 圆能量。当测温仪与目标之间的距离为 1000 mm(100 in),产生 20 mm(2 in)的光点尺寸时,即可取得最大 D:S。见图 6。 图6 距离与光点尺寸

3)视场 要确保目标大于光点的大小。目标越小,则应离它越近。(见图7) 图7 视场 4)发射率 发射率表征的是材料能量辐射的特征。大多数有机材料和涂漆或氧化处理表面的发射率大约为。如果可能,可用遮蔽胶带或无光黑漆(< 150 ℃/302℉)将待测表面盖住并使用高发射率设置,补偿测量光亮的金属表面可能导致的错误读数。等待一段时间,使胶带或油渍达到与下面被覆盖物体的表面相同的温度。测量盖有胶带或油漆的表面温度。 如果不能涂漆或使用胶带,可使用发射率选择器来提高您的测量准确度。即使是使用发射率选择器,对带有光亮或金属表面的目标也很难取得完全准确的红外测量值。 5)用户设置操作 SET键:循环切换设置状态,循环次序为发射率设定锁定测量设定℃/℉选择设定正常测量。按黄色键可直接保存设置并退出。 6)发射率设定 此功能为改变发射率的值。 设定时“E=0.”字样闪烁。 单击▲递加,长按快速增加,当加到后停止。 单击▼递减,长按快速减少,当减到后停止。 可根据不同被测物体设置相应的发射率。请参见表2。表所列的发射率设置为对典型情况的建议。您的特定情况可能有所不同。 7)锁定测量设定 此功能设定锁定测量打开或关闭,锁定测量打开后,无需抠扳机仪表保持正常测量;锁定测量关闭后,用户抠住扳机仪表正常测量,放开扳机仪表自动保持测量结果。设定时屏幕下显示“SET”及“on”或“oFF”。单击▲/▼循环选择“on” /“oFF”。 8)℃/℉选择设定 此功能选择仪表显示℃或℉。 设定时屏幕下显示“SET”。 单击▲/▼循环选择“℃”/ “℉”。 9)HAL限值设定 此功能为设定高限值操作,测量时温度高过此值时连续蜂鸣报警。 按黄色键切换至屏幕下显示“HAL”字样,单击▲递增,长按快速增加,当

红外线测温仪

1.红外线测温仪概述 红外线测温仪技术在生产过程中,在产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源等方面发挥了着重要作用。近20年来,非接触红外测温仪在技术上得到迅速发展,性能不断完善,功能不断增强,品种不断增多,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外线测温仪有着响应时间快、非接触、使用安全及使用寿命长等优点。非接触红外线测温仪包括便携式、在线式和扫描式三大系列,并备有各种选件和计算机软件,每一系列中又有各种型号及规格。在不同规格的各种型号测温仪中,正确选择红外线测温仪型号对用户来说是十分重要的。 红外检测技术是“九五”国家科技成果重点推广项目,红外检测是一种在线监测不停电式高科技检测技术,它集光电成像技术、计算机技术、图像处理技术于一身,通过接收物体发出的红外线红外辐射,将其热像显示在荧光屏上,从而准确判断物体表面的温度分布情况,具有准确、实时、快速等优点。任何物体由于其自身分子的运动,不停地向外辐射红外热能,从而在物体表面形成一定的温度场,俗称“热像”。红外诊断技术正是通过吸收这种红外辐射能量,测出设备表面的温度及温度场的分布,从而判断设备发热情况。目前应用红外诊技术的测试设备比较多,如红外测温仪、红外热电视、红外热像仪等等。像红外热电视、红外热像仪等设备利用热成像技术将这种看不见的“热像”转变成可见光图像,使测试效果直观,灵敏度高,能检测出设备细微的热状态变化,准确反映设备内部、外部的发热情况,可靠性高,对发现设备隐患非常有效。 红外诊断技术对电气设备的早期故障缺陷及绝缘性能做出可靠的预测,使传统电气设备的预防性试验维修预防试验是50年代引进前苏联的标准提高到预知状态检修,这也是现代电力企业发展的方向。特别是现在大机组、超高电压的发展,对电力系统的可靠运行,关系到电网的稳定,提出了越来越高的要求。随着现代科学技术不断发展成熟与日益完善,利用红外状态监测和诊断技术具有远距离、不接触、不取样、不解体,又具有准确、快速、直观等特点,实时地在线监测和诊断电气设备大多数故障几乎可以覆盖所有电气设备各种故障的检测。它备受国内外电力行业的重视国外70年代后期普遍应用的一种先进状态检修体制,并得到快速发展。红外检测技术的应用,对提高电气设备的可靠性与有效性,提高运行经济效益,降低维修成本都有很重要的意义。是目前在预知检修领域中普遍推广的一种很好手段,又能使维修水平和设备的健康水平上一个台阶。 采用红外成像检测技术可以对正在运行的设备进行非接触检测,拍摄其温度场的分布、测量任何部位的温度值,据此对各种外部及内部故障进行诊断,具有实时、遥测、直观和定量测温等优点,用来检测发电厂、变电所和输电线路的运转设备和带电设备非常方便、有效。 利用热像仪检测在线电气设备的方法是红外温度记录法。红外温度记录法是工业上用来无损探测,检测设备性能和掌握其运行状态的一项新技术。与传统的测温方式如热电偶、不同熔点的蜡片等放置在被测物表面或体内相比,热像仪可在一定距离内实时、定量、在线检测发热点的温度,通过扫描,还可以绘出设备在运行中的温度梯度热像图,而且灵敏度高,不受电磁场干扰,便于现场使用。它可以在-20℃~2000℃的宽量程内以0.05℃的高分辨率检测电气设备的热致故障,揭示出如导线接头或线夹发热,以及电气设备中的局部过热点等等。 带电设备的红外诊断技术是一门新兴的学科。它是利用带电设备的致热效应,采用专用设备获取从设备表面发出的红外辐射信息,进而判断设备状况和缺陷性质的一门综合技术。 2.红外线测温仪基础理论 1672年,人们发现太阳光(白光)是由各种颜色的光复合而成,同时,牛顿做出了单色光在性质上比白色光更简单的著名结论。使用分光棱镜就把太阳光(白光)分解为红、橙、黄、绿、青、

红外测温仪使用指南

2 附件红外测温仪使用指南 红外测温仪是一种非接触式测温仪器,通过探测被测秒测温,达到物体发出的红外辐射来测量其温度。最快1 快速筛查体温异常的目的,并防止交叉传染。种类][(红外热成像筛检仪)红外人体表面温度快速筛检仪●多点测温图像识别追踪,适用于机场口岸、地铁、车站、码头、医院等人流密集的场合,超温报警用于体温异常人员的快速筛查。 红外体表温度计(红外额温计)●适用于企事业单位、住宅、社区等人流较少的场合,易于便携适合移动巡检,目前大量应用于防疫控制中。红外耳温计● 通过耳腔和鼓膜测量体温,适用于家庭、个人及严格消毒的医院非发热普通门诊。 ] 准确性[- 1 - 红外耳温计>红外额温计>红外筛检仪] [使用须知●红外热成像筛检仪1、通电预热,与环境达 到热平衡后再使用;、避免强电磁干扰,无较大的气流,环境条件应保持2 恒定,温度不应有较大变化;、当被测者来

自与测量环境温度差异较大时,建议等3 5候(~10)分钟,两者达到热平衡后再测量为佳;、保持设备的探测镜头干净整洁,避免触碰损伤镜4 头,影响测量准确性。●红外额温计1、使用前确认“体温”测量模式;)℃之间工作,使用时应避16~35、保持额温计在(2额温计、被测者和环境温度保持,免阳光直晒和环境热辐射热平衡为佳;- 2 - 、额温计应垂直于额头中心、眉心上方,其距离按说3,如未说明的按照明书规定的要求,一般为()cm3~5 3cm距离测量为佳,不能紧贴被测者额头;、被测者前额应无水迹、汗渍、无化妆品,无帽子、4 毛发等遮挡物;、严格按照使用说明书进行操作。5红外耳温计● 1、测量前保持耳道清洁,清理耳垢等污物; 2、测量时对准耳道和鼓膜中心位置,不偏不移;、耳温计须配备一次性卫生耳套使用,避免多人使用3 交叉感染;、严格按照仪器使用说明书进行操作。4 ] [遇到红外额温计数值不准怎么办?、确认是否选择“体温”模式,以及是否还有足够电1 量;- 3 - 32、防止额温计长时间暴露在低温环境,一般不超过分钟,要采取适当保温措施;、测量多次取平均值,一般两次测量

变电所红外线测温仪使用管理制度标准版本

文件编号:RHD-QB-K6476 (管理制度范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 变电所红外线测温仪使用管理制度标准版本

变电所红外线测温仪使用管理制度 标准版本 操作指导:该管理制度文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 一、目的:为了保证变电所人员能够正确管理和使用,特制订本制度. 二、职责:所长是测温仪管理的总负责人,负责测温仪的管理及组织测温、检查测温情况,值班长负责本班测温仪管理及设备测温,值班员协助值班长做好设备测温工作。 三、工作程序: 1. 传递过程的管理: 1) 测温仪的传递由所长负责。传递日期以测温仪排序表为准(见测温仪排序表),特殊情况经变电

段或车间运行主任同意后转借他人的(需有借条),不能按排序表日期测温的应在“测温记录”及“运行记录”内注明原因。 2) 传递日所长可提前两小时离所进行测温仪交接,离所时在运行记录中进行记录。如所内在传递日有工作所长脱离不开经车间同意可以适当提前或顺延。 3) 测温仪的传递路线为测温仪所在地至下一个变电所的必经之路。传递过程中测温仪出现任何问题均由传递人负责。 4) 交接时交接人员要做好交接检查验收工作,并将验收情况记入运行记录簿中。接收后出现任何问题均由接收方负责。 测温仪在变电所内的管理: 1) 测温仪到所后,由所长负责管理,按值移

交;交接班时交接人员要做好交接检查验收工作,在运行记录簿中做明确记载,接收后出现任何问题均由接收方负责。 2) 测温仪应按规定时间交接,不得变更,如遇特殊情况须经变电段或车间运行主任同意,服从车间安排。 3) 测温仪到所后,每天早晨由所长向段里汇报。 2. 测温仪的使用及测温要求: 1) 在使用测温仪时要了解测温仪性能和使用方法,按正确的方法操作,即: a、测量被测物体的温度:将测温仪对准被测物体并用食指扣住扳机,便可从显示屏上读取瞬时温度值,下部显示温度最大值(MAX),松开扳机仪器即停止测温,显示温度值保持7秒钟后仪器自动关

红外线人体测温仪与工业红外测温仪区别

红外线人体测温仪与工业红外测温仪区别红外测温技术在生产过程中,在产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源等方面发挥了着重要作用。 了解红外测温仪的工作原理、技术指标、环境工作条件及操作和维修等是用户正确地选择和使用红外测温仪的基础。光学系统汇集其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件以及位置决定。红外能量聚焦在光电探测仪上并转变为相应的电信号。该信号经过放大器和信号处理电路按照仪器内部的算法和目标发射率校正后转变为被测目标的温度值。除此之外,还应考虑目标和测温仪所在的环境条件,如温度、气氛、污染和干扰等因素对性能指标的影响及修正方法。 一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切

的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 在此我们要说明一点:红外测温仪不论是人体的还是工业的原理都是一样的。 主要区别在于信号的数据处理过程和在一定距离下的温度标定过程。温度标定是所有红外测温仪精度的检测过程。人体测温仪在普通的测温仪基础上做了更符合人体温度的范围,如30-45度这个温度范围。在标定过程中也只对这一段温度进行更细致的校准。普通工业测温仪只是温度范围更广,测量距离更远,一般测量高温比较多。 浙江大立科技股份有限公司供应各式红外测温仪,大立科技专业从事非制冷焦平面探测器、红外热像仪、红外热成像系统的研发、生产和销售多年,经过长期稳健的发展,已从研究所成长为具有较强自主研发和技术创新能力且经营业绩稳定增长的上市公司。 红外线人体测温仪与工业红外测温仪区别就讲到这里,大立科技将继续沿着改革、创新、求实、发展的道路前进,力争成为世界上优佳的红外热像产品生产企业,并用优良的业绩回报社会。 更多详情请拨打咨询热线或登录浙江大立科技股份有限公司官网https://www.doczj.com/doc/9f11253363.html,/咨询。

红外线测温仪AR330使用说明

T&C ENGINEERING DESIGN(H.K.)CO.LTD. 资料收集任务书项目名称公司编号RW-1-1-001公司名称 编制人员朱荷根校对人员审核人员 收集网址:https://www.doczj.com/doc/9f11253363.html,/cp.asp?id=4648&xid=663&bdclkid=WVAEJK10QSc4_CpofSoA 1、测量某物体温度 操作方法: a.按住测温仪手柄上的开关 b.当显示屏上出现SCAN 图标;指向被测物 c、此时已经开始测量指向点的温度 d、松开开关,显示“HOLD”标志,处于数据保持状态 e、读取显示屏上示数并记录下来 f、完成测量,10秒后会自动关机 2、摄氏度与华氏度的转换 操作方法: a.处于数据保持状态时按图示箭头处按键 b.显示屏上会进行摄氏度与华氏度的转换 c、读取显示屏上示数并记录下来 d、完成测量,10秒钟后会自动关机 Iavynm_K0gsDy0Qszki3WY6NpIXi3J 苏州天源节能项目管理有限公司编号 2012.08.06FROM clsj 红外线测温仪ar330使用手册

3、使用红外线激光发射器 操作方法: a.按住测温仪手柄上的开关 b.当显示屏上出现SCAN 图标;按图示箭头处按键,即开 启或者关闭红外线激光发射器 c、指向被测物,测量红外线点处的温度 d、松开开关,显示“HOLD”标志,处于数据保持状态 e、读取显示屏上示数并记录下来 f、完成测量,10秒后会自动关机 4、使用显示屏上的灯光 操作方法: a.在光线不足处读取显示屏上示数时 b.按图示箭头处按键,即开启显示屏灯光 c、显示屏会出现灯光符号 d、同时变亮,便于读取记录正确读数 e、完成测量,10秒后会自动关机 注意事项: 1、避免在电磁场所如弧焊机、感受加热器等使用 2、不要将本机靠放在高温处 3、不要将本机直接对准眼睛或者通过反射性的表面间接射向眼睛 4、物距比是指测量距离和被测物体表面积的比值,因此测量是一定要确保被测目标要大过 本机的测量区域,被测区域的最小直径需在1.5平方厘米以上。推荐最佳测试距离为20cm (假设被测物体大小事10*10cm) 5、透镜清洁:用干净的压缩空气吹去杂物,再用驼绒毛擦刷去残留的微小杂物,最后用湿 棉布小心将表面擦拭 6、红色激光点只表示测量点大概位置,下面的探测孔才是检测温度的主要部位

在线式红外成像测温系统

在线式红外成像测温预警系统

目录 一、系统简介 (3) 二、技术背景 (4) 三、红外热成像原理 (5) 四、传统测温方法介绍 (6) 五、全视场红外成像测温系统 (8) 六、系统组网方案 (11) 七、系统参数 (15) 八、系统安装与系统出厂清单 (16) 附页1:报表格式 (18)

一、系统简介 在线式全视场红外成像测温系统是一种全天候、全自动的非接触式温度监测与报警设备。它集红外测温技术、计算机网络技术、现代通信网络技术、嵌入式技术、图像处理算法、智能信息处理算法等先进技术于一体,为电力设施的温度在线监测和故障诊断提供有力保障。该设备通过云台若干预置位的设置实现全视场成像,从而覆盖视场内所有电力设备,达到能见即能测的目的;通过距离估算、目标识别等技术,结合先验数据实现温度数据的校正,有效提高温度测量精度。红外温度图像通过以太网络实时传输到监控终端,用户可通过终端监控界面中的实时视频及系统参数了解现场设备温度运行状况,当设备由于故障出现温度上升时,系统声光报警,并自动生成设备运行报表,提供详细图表报告,为设备故障的及时排除提供有力保障。该设备的应用能大大降低传统设备维护人员的工作压力,促进电网运行自动化和智能化的建设,有效推动智能电网的发展。

二、技术背景 高压输电线、变配电设备等在电力系统中有着极其重要的地位,一旦出现故障,会造成巨大财产损失及不良社会影响等严重后果。电力设备故障一般是由于过流、过载、老化、接触不良、漏电、设备内部缺陷或其他异常导致的,且上述故障一般都会伴随有发热异常现象,通过监控设备表面温度变化就能基本判定设备的运行状态。 随着科学技术的发展,红外测温技术由于具备非接触测温的能力,对设备缺陷具有很强的诊断和预警能力,迅速成为电力设备温度监测的首选技术。目前,电力系统对电力设施表面温度的监测都是安排工作人员定期使用手持式红外热像仪进行巡检。巡检方式下,工作人员须在规定的安全距离外将红外热像仪对准被测设备,调整焦距,获得目标的温度值,在完成上一个节点测量后再进行下一个节点的测量。人工巡检测温方式存在以下问题: ◆人工操作。浪费人力并且温度测量准确度人为因素影响较大 ◆单点测温。测温点多时工作强度大 ◆人工巡查,不能自动报警,存在监控真空 ◆测量数据存储在红外热像仪的存储卡中,共享性差 ◆人工制作报表,工作量大 为适应智能化电网建设的需求,深圳键桥通讯技术股份有限公司诚挚推出在线式全视场红外成像测温预警系统,该系统采用最前沿的红外成像技术及先进的红外图像处理算法,实现镜头内全视场的远距离准确测温,基于成熟的通信及网络,实时在线地对分布广泛的变电设施进行集中统一的温度监控及预警。

相关主题
文本预览
相关文档 最新文档