磷系阻燃剂的现状与展望
- 格式:doc
- 大小:38.50 KB
- 文档页数:9
磷系阻燃剂TCPP的合成及应用磷系阻燃剂TCPP,全称为三氯丙烷磷酸酯,是一种常用的磷系阻燃剂,广泛应用于聚合物、聚氨酯、涂料、粘合剂等材料中。
它具有优异的阻燃性能,可以有效地提高材料的耐火性能,降低燃烧时释放的烟气和毒气,在工业生产和民用领域中发挥着重要的作用。
下面将对TCPP的合成及应用进行详细介绍。
一、磷系阻燃剂TCPP的合成1. 原料准备:合成TCPP的原料主要包括三氯丙烯、磷酸和氯化磷。
其中,三氯丙烯是合成TCPP的重要原料,而磷酸和氯化磷则是磷酸酯化合物的常用反应试剂。
2. 反应步骤:TCPP的合成通常采用磷酸酯化反应。
首先将三氯丙烯和氯化磷加入反应釜中,控制温度和搅拌条件,进行氯化磷化反应得到三氯丙基磷酰氯。
然后将三氯丙基磷酰氯加入到含有过量磷酸的反应体系中,进行酯化反应得到TCPP产物。
最后对产物进行提纯和干燥处理,得到纯度较高的TCPP产物。
3. 反应条件:TCPP的合成反应需要严格控制温度、压力和反应时间等条件,以保证反应效率和产物质量。
在实际生产中,通常采用高效反应釜和自动化控制系统,提高反应的稳定性和产物的纯度。
二、磷系阻燃剂TCPP的应用1. 聚合物材料中的应用:TCPP广泛应用于各种聚合物材料中,如聚丙烯、聚乙烯、聚氯乙烯、聚丁二烯、聚苯乙烯等。
它可以通过物理混合或化学共混的方式,与聚合物相结合,有效提高材料的阻燃性能,降低燃烧时释放的烟气和毒气,保护人身安全和减少财产损失。
2. 聚氨酯材料中的应用:TCPP还可以用作聚氨酯材料的阻燃剂。
聚氨酯是一种重要的工程塑料,具有优良的机械性能和耐磨性,广泛用于汽车、建筑、电子等领域。
添加TCPP可以显著提高聚氨酯材料的阻燃性能,延缓燃烧速度,降低烟气产生量,提高材料的燃烧等级。
3. 涂料和粘合剂中的应用:TCPP还可用作涂料和粘合剂的阻燃剂。
涂料和粘合剂广泛应用于建筑、船舶、航空等领域,阻燃要求较高。
添加TCPP可以有效提高涂料和粘合剂的阻燃性能,降低火灾事故的发生概率,保护人员和财产安全。
“有机磷系阻燃剂”资料合集目录一、有机磷系阻燃剂在珠江三角洲几类典型动物中的富集与传递二、卤代持久性有机污染物和有机磷系阻燃剂在鱼体内的生物富集、食物链传递及生物转化三、有机磷系阻燃剂的合成与应用研究四、珠江三角洲沉积物和水生生物中有机磷系阻燃剂的分布特征有机磷系阻燃剂在珠江三角洲几类典型动物中的富集与传递随着工业化的进程,各种新型化学物质被广泛应用于日常生活和工业生产中,其中有机磷系阻燃剂(OPFRs)就是一种常见的化学品。
然而,这些化学物质在环境中的行为和归趋,特别是它们在生态系统中如何传递和富集,是当前环境科学领域研究的热点问题。
珠江三角洲作为中国经济发展最为快速的地区之一,其生态环境中OPFRs的富集与传递问题更值得关注。
本文将探讨有机磷系阻燃剂在珠江三角洲几类典型动物中的富集与传递。
有机磷系阻燃剂是一类广泛使用的阻燃剂,主要用于塑料、纺织品、家具等材料的阻燃处理。
虽然这些化合物在提高材料阻燃性方面起到了重要作用,但它们的环境影响也不容忽视。
OPFRs在环境中不易降解,具有较高的持久性,能在生态系统中长期存在,并通过食物链传递和富集。
本文选取珠江三角洲地区的几种典型动物:鱼类、贝类和两栖动物作为研究对象,通过采集这些动物的样品,分析其体内OPFRs的含量。
同时,还对这些动物的生态环境进行了调查,以了解其生活环境中OPFRs的分布情况。
研究结果显示,这些动物体内均检测到了不同程度的OPFRs。
其中,鱼类和贝类中的OPFRs含量相对较高,而两栖动物中的OPFRs含量较低。
这些结果表明,OPFRs在珠江三角洲地区的典型动物中存在不同程度的富集现象。
研究结果表明,有机磷系阻燃剂在珠江三角洲地区的典型动物中存在不同程度的富集现象。
这些化合物在动物体内的富集主要通过食物链完成,即动物通过摄食含有OPFRs的食物或水体而使这些化合物在体内积累。
OPFRs还可通过生物体的直接接触和空气吸入等途径进入体内。
2023年聚磷酸行业市场发展现状聚磷酸是一种重要的无机化合物,广泛应用于阻燃、缓蚀、水处理、金属加工等领域。
据调查,全球聚磷酸市场规模正在不断扩大,预计到2025年将达到45亿美元。
以下是聚磷酸行业市场发展现状的具体介绍。
首先,聚磷酸市场规模在不断扩大。
随着阻燃、缓蚀、水处理、金属加工等行业的不断发展壮大,对聚磷酸的需求也在不断增加。
特别是近年来环保意识的普及,推动了聚磷酸在水处理领域的应用,还带动了聚磷酸行业的发展。
截至2020年,全球聚磷酸市场规模已达到30亿美元。
其次,聚磷酸的种类众多。
聚磷酸不仅有蓝磷酸、红磷酸等无机聚磷酸,还有聚丙烯酰胺磷酸盐、聚酰胺磷酸盐等有机聚磷酸。
这些不同的聚磷酸在应用上各有所长,可以满足不同领域的需求。
第三,聚磷酸行业发展产业链完善。
随着聚磷酸市场规模的扩大,聚磷酸行业产业链不断完善。
生产材料逐渐多元化,从单一的原料生产到装置、成品的生产都有了更多的企业涉足。
特别是随着国家对环保的要求不断提高,多数企业已实现实现了环保生产,促进聚磷酸行业的长足发展。
第四,聚磷酸行业发展前景广阔。
聚磷酸的应用领域广泛,具备较强的市场竞争力。
随着环保、阻燃、缓蚀等领域的不断拓展以及新型材料的不断涌现,聚磷酸作为一种重要的功能性添加剂,具有良好的市场前景。
据预测,未来五年,全球聚磷酸市场规模将以8%的速度增长。
综上所述,随着聚磷酸市场需求的不断增长,聚磷酸行业发展前景广阔。
同时,聚磷酸的应用也越来越广泛,包括防火材料、水处理、金属加工等各个领域。
未来,聚磷酸行业将会继续朝着多元化、专业化、智能化的方向发展。
阻燃剂行业分析报告目录前言 ....................................................................................... 错误!未定义书签。
一、阻燃剂产品分析 (1)(一)阻燃剂定义 (1)(二)阻燃剂分类 (1)(三)阻燃剂概述 (2)(四)磷系阻燃剂情况介绍 (8)(五)氮系阻燃剂情况介绍 (10)二、阻燃剂行业、市场分析 (11)(一)阻燃剂应用情况 (11)(二)三大类阻燃剂的比较 (11)(三)阻燃剂市场总体情况 (12)(四)阻燃剂市场未来发展趋势 (13)(五)有机磷系阻燃剂未来市场容量 (15)(六)国内阻燃剂行业发展的有利、不利因素 (16)(七)主要生产厂商 (19)一、阻燃剂产品分析(一)阻燃剂定义又称难燃剂,耐火剂或防火剂:赋予易燃聚合物难燃性的功能性助剂;阻燃剂是阻燃技术在实际生活中的应用,它是一种用于改善可燃易燃材料燃烧性能的特殊的化工助剂,广泛应用于各类装修材料的阻燃加工中。
经过阻燃剂加工后的材料,在受到外界火源攻击时,能够有效地阻止、延缓或终止火焰的传播,从而达到阻燃的作用。
(二)阻燃剂分类根据不同的划分标准可将阻燃剂分为以下几类:1、按所含阻燃元素分类按所含阻燃元素可将阻燃剂分为卤系阻燃剂、磷系阻燃剂、氮系阻燃剂、磷-卤系阻燃剂、磷-氮系阻燃剂等几类。
卤系阻燃剂在热解过程中,分解出捕获传递燃烧自由基的X及HX,HX能稀释可燃物裂解时产生的可燃气体,隔断可燃气体与空气的接触。
磷系阻燃剂在燃烧过程中产生了磷酸酐或磷酸,促使可燃物脱水炭化,阻止或减少可燃气体产生。
磷酸酐在热解时还形成了类似玻璃状的熔融物覆盖在可燃物表面,促使其氧化生成二氧化碳,起到阻燃作用。
在氮系阻燃剂中,氮的化合物和可燃物作用,促进交链成炭,降低可燃物的分解温度,产生的不燃气体,起到稀释可燃气体的作用。
磷-卤系阻燃剂、磷-氮系阻燃剂主要是通过磷-卤、磷-氮协同效应作用达到阻燃目的,具有磷-卤、磷-氮的双重效应,阻燃效果比较好。
有机磷系阻燃剂阻燃热塑性聚酯的研究进展
邵路山;姚忠樱;冯秀艳;马国儒;马逸飞;陈新同;国爱丽;王丽新
【期刊名称】《工程塑料应用》
【年(卷),期】2024(52)5
【摘要】介绍了近年来针对聚对苯二甲酸乙二酯(PET)、聚对苯二甲酸丁二酯(PBT)和聚碳酸酯(PC)阻燃所使用的有机磷系阻燃剂的最新进展。
有机磷系阻燃剂因其品种繁多,应用广泛,阻燃效果优异,同时还具有增塑剂和润滑剂的功效。
介绍了有机磷系阻燃剂的种类和阻燃机理。
重点阐述了磷(膦)酸酯、磷杂菲、有机次膦酸、有机次膦酸盐化合物、磷腈化合物、氧化膦等阻燃剂在PET,PBT和PC等热塑性聚酯中的阻燃性能和作用机理。
最后对热塑性聚酯用有机磷系阻燃剂的不足之处与未来研究趋势进行展望。
【总页数】10页(P171-180)
【作者】邵路山;姚忠樱;冯秀艳;马国儒;马逸飞;陈新同;国爱丽;王丽新
【作者单位】北京建筑材料检验研究院股份有限公司;中国建筑材料科学研究总院有限公司陶瓷科学研究院;国家建筑防火产品安全质量检验检测中心
【正文语种】中文
【中图分类】TQ327
【相关文献】
1.锂离子电池有机磷系阻燃剂的研究进展
2.覆铜板用反应型DOPO基有机磷系阻燃剂的研究进展
3.有机磷-氮系协同阻燃剂的研究进展及其表征
4.棉用环保型有机
磷系阻燃剂的研究进展5.有机磷系阻燃剂在纺织品中的应用及其残留量测试技术研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
第33卷㊀第10期2014年㊀㊀10月环㊀境㊀化㊀学ENVIRONMENTALCHEMISTRYVol.33,No.10October2014㊀2014年5月23日收稿.㊀∗国家高技术研究发展计划(863计划)(2013AA065201)和国家自然科学基金创新群体项目(21321004,21477143)资助.㊀∗∗通讯联系人,TEL:010⁃62333095;E⁃mail:liujm@ustb.edu.cnDOI:10.7524/j.issn.0254⁃6108.2014.10.004有机磷酸酯阻燃剂分析方法及其污染现状研究进展∗高立红1,2㊀厉文辉1㊀史亚利2㊀刘杰民1∗∗㊀蔡亚岐2(1.北京科技大学化学与生物工程学院,北京,100083;2.中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室,北京,100085)摘㊀要㊀有机磷酸酯(OPEs)阻燃剂作为溴代阻燃剂的主要替代品,由于大量广泛使用并且极易释放到环境中而受到广泛关注.毒理学研究表明,多种OPEs具有明显的神经毒性㊁致癌性和基因毒性,对生态环境和人体健康造成潜在威胁.本文介绍了OPEs的使用现状㊁毒性效应㊁不同环境介质中的分析方法,及其在水环境系统中(水㊁污泥㊁沉积物和水生生物)的污染现状和迁移转化行为,最后指出了目前研究中存在的问题,并对未来研究进行了展望.在今后,应该加强污泥和沉积物等复杂环境基质中多种OPEs的分析方法研究;系统研究环境中OPEs的污染现状和迁移转化行为,并开展OPEs的环境风险和人体健康风险研究.关键词㊀有机磷酸酯(OPEs),毒性效应,分析方法,污染现状.AnalyticalmethodsandpollutionstatusoforganophosphateflameretardantsGAOLihong1,2㊀㊀LIWenhui1㊀㊀SHIYali2㊀㊀LIUJiemin1∗∗㊀㊀CAIYaqi2(1.SchoolofChemistryandBiologicalEngineering,UniversityofScienceandTechnologyBeijing,Beijing,100083,China;2.StateKeyLaboratoryofEnvironmentalChemistryandEcotoxicology,ResearchCenterforEco⁃EnvironmentalSciences,ChineseAcademyofSciences,Beijing,100085,China)Abstract:Theoccurrenceoforganophosphateesters(OPEs),asthemainalternativesofbrominatedflameretardant,intheenvironmenthasbecomeincreasinglyconcernedsincetheyarewidelyusedandtheneasilyreleasedintotheenvironment.ToxicitystudieshaveshownthatavarietyofOPEshasobviousnervetoxicity,genetictoxicityandcarcinogenicity,posesapotentialthreattotheecologicalenvironmentandhumanhealth.Inthispaper,theuseandtoxicologicaleffectsofOPEsareintroduced.Then,theanalyticalmethodsofOPEsinvariousenvironmentalsamplesaredescribed.Also,theoccurrenceandtransportationofOPEsintheenvironment,includingwater,sludge,sedimentandbiologicalsamples,aresummarized.Finally,theexistingproblemandfutureresearchdirectionsareproposed.Inthefuture,studiesareneededtoexploreanalyticalmethodsofOPEsincomplexsamplessuchassludgeandsediment.Inaddition,systematicstudiesaboutthepollutionstatus,transportationandtransformationofOPEsintheenvironmentshouldbeenhanced.Moreover,riskassessmentforaquaticorganismsandhumanhealthofOPEsintheenvironmentshouldbedeveloped.Keywords:organophosphateesters(OPEs),toxicologicaleffects,analyticalmethods,pollutionstatus.阻燃剂是一类用于降低各种材料易燃性的化学品,主要包括无机阻燃剂和有机阻燃剂.有机阻燃剂㊀10期高立红等:有机磷酸酯阻燃剂分析方法及其污染现状研究进展1751㊀中,随着欧盟对多溴联苯醚(PBDEs)的禁用,有机磷酸酯(Organophosphateesters,OPEs)阻燃剂由于具有阻燃效果好㊁生产成本低以及生产工艺简单等优点,其用量逐年上升,广泛应用于化工㊁电子㊁纺织㊁家居以及建材等行业中[1⁃4].OPEs在使用中主要以简单的物理添加方式进入到材料中,使其极易释放到周围环境中.目前,已有研究表明OPEs广泛存在于水体,大气以及室内环境中,对环境和人体健康造成潜在危害.对OPEs的毒性研究表明,多种OPEs具有明显的神经毒性㊁致癌性㊁基因毒性,以及引起皮肤刺激和皮炎等[5-9],氯代OPEs则可能具有比有机磷农药和PBDEs等有机污染物相当或更强的神经发育毒性[5].关于OPEs对人体健康的研究表明,室内环境中的OPEs会影响人体内荷尔蒙水平和男性精液质量[10].近年来,国外相关机构已开始广泛关注OPEs的环境污染问题,相关研究逐渐展开.OPEs在环境中的污染现状㊁迁移转化以及风险评价成为人们关注的焦点,同时各国研究人员也纷纷致力于对多种环境介质中OPEs分析检测方法的研究与创新.1㊀OPEs简介及其应用领域有机磷酸酯类化合物(OPEs),不仅具有良好的阻燃作用,而且具有良好的增塑和润滑效果,广泛应用于建筑材料㊁电子产品㊁塑料制品㊁家装饰品和纺织品中.近年来,由于多溴联苯醚(PBDEs)等溴代阻燃剂逐步在世界范围内禁止使用,OPEs阻燃剂的需求量与生产量都获得大幅增长.根据欧洲阻燃剂协会(Europeanflameretardantsassociation,EFRA)的统计,仅作为阻燃剂的OPEs类物质,2006年西欧产量大约为9.1万吨,比2005年提高了7.1%[11].2008年,全球阻燃剂生产和使用量为180万吨,并以每年6.1%的速率快速增长;2010年数据显示,中国㊁北美和西欧是世界范围内消耗阻燃剂最多的国家和地区,约占全球消耗量的60%(图1)[12].2011年,欧洲范围内,磷系阻燃剂的销售量已远远超过溴系阻燃剂(图2)[12].图1㊀全球各国家和地区阻燃剂消耗量(2010年)[12]Fig.1㊀Worldconsumptionofflameretardants(2010)[12]图2㊀欧洲不同类型阻燃剂销售量(2011年)[12]Fig.2㊀SalesofdifferentypesofflameretardantswithinEurope(2011)[12]OPEs是一类人工合成的磷酸衍生物,根据取代基不同可以分为烷基取代㊁含卤原子的烷基取代以及芳香基取代的OPEs,目前广泛使用的OPEs的结构如图3所示.由不同取代基酯化得到的OPEs,其理化性质有很大差异(表1).例如,分子量最小的磷酸三甲酯(TMP)极性最强,辛醇⁃水分配系数(Kow)的对数值为-0.65,因此易溶于水,并且容易挥发;而分子量较大的磷酸三(2⁃乙基己基)酯(TEHP)极性较弱,辛醇⁃水分配系数(Kow)的对数值为9.49,因此难溶于水,并且不容易挥发.不同类型的OPEs,其应用领域也有所不同.芳香基取代的OPEs(TPP和TCP等)主要作为阻燃增塑剂应用于PVC材料㊁纤维素聚合物㊁热塑性塑料以及合成橡胶中[6];含氯原子的烷基取代的OPEs(TCEP㊁TCPP和TDCPP等)常常作为阻燃剂添加到硬质和软质的聚氨酯泡沫材料中[13];不含氯原子的烷基取代的OPEs(TEP㊁TnBP和TiBP等)主要作为增塑剂应用于不饱和聚酯树脂㊁醋酸纤维素㊁聚氯乙烯以及合成橡胶等材料中[14],此外还可以作为消泡剂添加到涂料㊁液压油和地板蜡中[15],以及在湿法冶金工艺中作为非离子型萃取剂使用[16];其中,直链烷基取代的三正丁基磷酸酯(TnBP)更是一种核燃料处理工艺中的重要萃取剂[17⁃18].OPEs主要以掺杂混合而非化学键合方式加入到材料中,由于大多数OPEs具有半挥发性,因此1752㊀环㊀㊀境㊀㊀化㊀㊀学33卷很容易通过挥发㊁产品磨损和渗漏等方式进入到各种环境介质中.图3㊀主要OPEs的分子结构Fig.3㊀StructuresofthemostcommonOPEs表1㊀主要OPEs名称及理化性质Table1㊀Nameandphysic⁃chemicaldataofthemostcommonOPEs缩写英文名称中文名称分子式分子量CAS号lgKow[11]Vp/Torr[11]TMPTrimethylphosphate磷酸三甲酯C3H9O4P140.08512⁃56⁃1⁃0.658.50ˑ10-1TEPTriethylphosphate磷酸三乙酯C6H15O4P182.1678⁃40⁃00.803.93ˑ10-1TPrPTripropylphosphate磷酸三丙酯C9H21O4P224.23513⁃08⁃061.874.33ˑ10-3TnBPTri⁃n⁃butylphosphate磷酸三正丁酯C12H27O4P266.31126⁃73⁃84.001.13ˑ10-3TiBPTri⁃iso⁃butylphosphate磷酸三异丁酯C12H27O4P266.31126⁃71⁃63.601.28ˑ10-2TBEPTributoxyethylphosphate磷酸三丁氧乙酯C18H39O7P398.4778⁃51⁃33.752.50ˑ10-8TEHPTri(2⁃ethylhexyl)phosphate磷酸三(2⁃乙基己基)酯C24H51O4P434.6378⁃42⁃29.498.45ˑ10-8TCEPTri(2⁃chloroethyl)phosphate磷酸三(2⁃氯乙基)酯C6H12Cl3O4P285.49115⁃96⁃81.446.13ˑ10-2TCPPTri(chloropropyl)phosphate磷酸三(1⁃氯⁃2⁃丙基)酯C9H18Cl3O4P327.5713674⁃84⁃52.592.02ˑ10-5TDCPPTri(dichloropropyl)phosphate磷酸三(1,3⁃二氯⁃2⁃丙基)酯C9H15Cl6O4P430.9013674⁃87⁃83.657.36ˑ10-8TPP/TPhPTriphenylphosphate磷酸三苯酯C18H15O4P326.28115⁃86⁃64.596.28ˑ10-6TCP/TCrPTricresylphosphate磷酸三甲苯酯C21H21O4P368.36563⁃04⁃25.116.00ˑ10-7CDPPCresyldiphenylphosphate磷酸甲苯二苯酯C19H17O4P340.3126444⁃49⁃5EHDPP2⁃Ethylhexyldiphenylphosphate2⁃乙基己基二苯基磷酸酯C20H27O4P362.411241⁃94⁃76.646.49ˑ10-7BDPBisphenolAbis(diphenylphosphate)双酚A双(二苯基)磷酸酯C39H34O8P2692.635945⁃33⁃5RDPResorcinolbis(diphenylphosphate)间苯二酚双(二苯基)磷酸酯C30H24O8P2574.4557583⁃54⁃7TPPOTriphenylphosphineoxide三苯基氧化膦C18H15OP278.28791⁃28⁃62㊀OPEs的毒性效应研究表明多种OPEs具有神经毒性㊁基因毒性以及致癌性.Dishaw等[5]研究发现,与有机磷农药(毒死蜱)和四溴联苯醚(BDE⁃47)相比,TCPP㊁TCEP㊁TDCPP等具有与其相当或更强的神经发育毒性.Liu等[7]对斑马鱼的暴露实验发现,分别在0.2mg㊃L-1TCP㊁1mg㊃L-1TDCPP和1mg㊃L-1TPP暴露水平下,斑马鱼体内性激素平衡(E2/T和E2/11⁃KT)均受到明显的影响,表明3种OPEs具有一定的内分泌干扰㊀10期高立红等:有机磷酸酯阻燃剂分析方法及其污染现状研究进展1753㊀作用.Farhat等[19]研究发现TCPP在9240ng㊃g-1和51600ng㊃g-1(鸡蛋)暴露剂量下,对小鸡的孵化具有明显的延迟作用;TDCPP在45000ng㊃g-1(鸡蛋)暴露剂量下可显著减小小鸡胚胎质量㊁胆囊大小以及头部和嘴巴的长度,说明这两种OPEs对小鸡的孵化和生长发育产生明显的抑制作用.具有较高Kow值的OPEs可以通过疏水作用吸附在水中溶解性有机质上,而这种吸附作用越强,OPEs对大型蚤的毒性作用也会随之增强,说明OPEs与溶解性有机质的吸附可能会影响其在环境中的迁移㊁降解和生物可利用性[9].已有研究表明室内灰尘中含有多种较高浓度的OPEs[20⁃22],Brommer等[20]在汽车灰尘中检测到TDCPP浓度可达到620μg㊃g-1,远远高于灰尘中PBDEs的浓度水平.环境中的OPEs可能会通过呼吸和皮肤接触进入人体,对人体健康产生影响,研究发现,TPP对人体羧酸酯酶具有很强的抑制作用,可以引起接触性皮炎[23];室内灰尘中的TDCPP和TPP会抑制人体内荷尔蒙水平,并显著降低男性精液质量[10].3㊀OPEs分析方法OPEs广泛分布于各种环境介质中,目前已有许多研究致力于不同样品基质中OPEs的前处理和检测方法.不同取代基的OPEs其物理化学性质有很大差异,例如TMP易溶于水并且挥发性较强,而TEHP既难溶于水又难挥发,因此对OPEs的样品前处理和检测技术提出了挑战.下面将分别对这两方面的研究进行总结介绍.3.1㊀样品前处理方法对于不同的样品,前处理方法也有所差异,一般可以归纳为以下几步:匀浆或研磨㊁提取㊁净化和浓缩检测.样品提取和净化是整个前处理过程中的关键步骤.3.1.1㊀水样前处理技术水样中OPEs主要分析方法如表2所示.固相萃取(Solid⁃phaseextraction,SPE)是萃取富集水样OPEs最常用的前处理技术,由于OPEs理化性质差异较大,例如TMP极性较强,TEHP极性很弱,因此,SPE小柱的选择十分重要.目前,常用的HLB小柱对水中大部分OPEs具有良好的萃取效果,但是HLB小柱对TMP的萃取效率仅为23%[24],这主要是由于TMP具有很强的亲水性和挥发性,因此很难在SPE小柱上保留.相比之下,其他SPE小柱对TMP的萃取效率也不理想,C18㊁WAX和MAX等小柱对TMP的回收率均小于20%[25],Bakerbond(Hydrophilic⁃DVB)小柱对TMP的回收率稍有提高,仅为35%[24].Rodil等[26]考察了HLB和RP⁃18小柱对9种OPEs的萃取效率,研究发现HLB小柱对大部分OPEs具有较高的回收率(65% 90%),但是这两种小柱对TEHP的回收率均较差,分别为28%和21%.这主要是由于TEHP疏水性较强,容易在瓶壁吸附而造成损失,从而使回收率降低.Rodil等[26]采取措施对SPE方法进行优化:上样后,采用5mL甲醇对样品瓶和SPE装置管路清洗两次,并将这些甲醇溶液作为洗脱液加入SPE小柱中对目标化合物进行洗脱;优化后,HLB小柱对TEHP的回收率可提高为50% 70%.Wang等[25]考察了5种SPE小柱对12种OPEs的萃取效果,结果发现,HLB和C18小柱对TEHP表现出良好的萃取效果,回收率分别为75%和65%.SPE萃取时,洗脱溶剂可根据目标OPEs的性质以及后续检测方法的不同进行选择,常用的洗脱溶剂包括甲醇㊁乙腈㊁丙酮㊁乙酸乙酯和二氯甲烷等.固相微萃取(solid⁃phasemicroextraction,SPME)是用于富集水样中OPEs的另一重要前处理技术.与SPE相比,SPME具有水样无需过滤,节省有机溶剂,萃取后可直接进行气相色谱(GC)测定等优点.Rodriguez等[27]采用SPME技术萃取水样中9种OPEs,结果发现PDMS⁃DVB纤维对河水中大部分OPEs具有良好的回收率(86% 119%),但是对极性较弱的TEHP其回收率较差仅为26.7%.Gao等[3]采用自制的[AMIM][BF4]溶胶凝胶纤维顶空萃取水样中的OPEs,对污水㊁湖水和自来水中TEHP等7种OPEs的回收率为73.2% 101.8%,萃取效果明显优于商品化的PDMS⁃DVB纤维.此外,还有一些微萃取技术不断应用于水样中OPEs的富集净化.Quintana等[28]采用薄膜辅助溶剂萃取(membrane⁃assistedsolventextraction,MASE)技术,以环己烷为萃取溶剂富集污水中8种OPEs,方法定量限(LOQs)可达到1 25ng㊃L-1,与SPE相比,MASE还具有较弱的基质效应;MASE方法对TCEP以外7种OPEs有良好的萃取效果(63% 98%),但是对极性较强的TCEP萃取效率仅为5%.García⁃López等[29]采用分散液液微萃取(dispersiveliquid⁃liquidmicroextraction,DLLME)技术,以三氯乙烷和丙1754㊀环㊀㊀境㊀㊀化㊀㊀学33卷酮分别作为萃取溶剂和分散剂萃取水样中10种OPEs,萃取效率优于SPME方法,并且方法快速简便,具有良好的重现性(RSD=2% 17%)和较低的定量限(10 80ng㊃L-1);但是,DLLME方法中,污水等复杂水样对TiBP和TEHP具有显著的基质抑制效应.García⁃López等[30]采用聚丙烯微孔膜辅助液⁃液微萃取技术(microporousmembraneliquid⁃liquidextraction,MMLLE)富集水样中11种OPEs,与DLLME和MASE方法相比,MMLLE对大部分OPEs具有更高的富集因子,方法定量限可达到8 120ng㊃L-1;但是,MMLLE方法同样对极性较强的TCEP和极性较弱的TEHP回收率较差,仅为2%和4%,并且复杂水样对TEHP具有明显的基质抑制效应.表2㊀水样中OPEs主要分析方法Table2㊀AnalyticalmethodsofOPEsinwatersamples基质类型前处理方法检测方法回收率/%定量限/(ng㊃L-1)参考文献废水SPELC⁃MS50 1283 80[26]地表水/饮用水SPELC⁃MS80 112(TMP:16 22)0.2 3.9[24]地表水SPEUPLC⁃MS69 1102 6[25]地表水SPEGC⁃MS70.3 114.3(TEHP:31.2)0.015 2[31]地表水SPMEGC⁃NPD86.1 119.2(TEHP:26.7)10 25[27]地表水/废水SPMEGC⁃FPD75.2 101.81.0 2.8[3]地表水/废水LLELC⁃MS/MS63 942.6 13[32]地表水/废水MMLLEGC⁃NPD28 61(TCEP:2;TEHP:4)8 120[30]地表水/废水DLLMEGC⁃NPD66 107(TEHP:40 57)10 80[29]废水MASELC⁃MS/MS63 98(TCEP:5)1 25[28]3.1.2㊀固体样品前处理技术固体样品的前处理过程主要包括样品的提取和净化两部分.对于基质简单的样品,萃取后可直接进样分析,但是对于污泥和底泥等有机质含量高基质复杂的样品,萃取后需要经过净化才能上机测定,净化的目的是去除干扰,降低基体效应,提高方法的准确度和灵敏度,并保护仪器以及延长分析柱寿命.固体样品中OPEs的分析方法如表3所示.García⁃López等[33]采用微波辅助萃取(microwave⁃assistedextraction,MAE),以丙酮为萃取剂提取沉积物中10种OPEs,提取液经氮气浓缩后采用硅胶柱进行净化,最后用1mL乙酸乙酯洗脱目标化合物;方法采用内标法定量,10种OPEs相对回收率为78% 105%,并且具有良好的重现性(RSD<12%),方法定量限可达到2 4μg㊃kg-1(干重).Chung等[34]同样采用MAE方法萃取沉积物中5种OPEs,提取液经去离子水稀释后采用HLB固相萃取柱进行净化,最后以2.5mL乙酸乙酯进行洗脱;方法同样具有良好的回收率(62% 106%)和重现性(RSD=1% 11%),并且定量限更低,达到0.1 0.4μg㊃kg-1(干重).㊀加速溶剂萃取(acceleratedsolventextraction,ASE)或加压液相萃取(pressurizedliquidextraction,PLE)技术由于具有节省有机溶剂㊁简便快速,自动化程度高等特点,在污泥㊁沉积物和生物固体等样品前处理中得到广泛应用.García⁃López等[35]采用PLE方法提取沉积物中7种OPEs,提取液采用HLB小柱进行净化,方法回收率为77% 111%,并且重现性良好(RSD<10%),定量限可达到0.5 5μg㊃kg-1.Sundkvist等[36]采用ASE技术提取水生生物体中12种OPEs,提取液经凝胶渗透色谱(GPC)净化后,采用GC⁃MS分析检测,方法回收率为64% 110%,但对贻贝和脂肪含量较高的鱼肉样品回收率偏高为132%,方法检出限为0.05 23μg㊃kg-1.Cristale和Lacorte[37]以乙酸乙酯/环己烷(5ʒ2)混合溶液作为萃取剂,采用超声辅助提取沉积物㊁污泥和灰尘中10种OPEs,提取液采用弗罗里硅土(Florisil)正相SPE柱进行净化,沉积物㊁污泥和灰尘中10种OPEs的加标回收率分别为48% 138%㊁64% 131%和70% 141%,方法检出限分别为1.9 60μg㊃kg-1,28 575μg㊃kg-1和3.8 288μg㊃kg-1,其中对TBEP的回收率较低并且检出限较高.微波辅助萃取(MAE)和基质固相分散方法(matrixsolid⁃phasedispersion,MSPD)在灰尘样品的提取中也有所应㊀10期高立红等:有机磷酸酯阻燃剂分析方法及其污染现状研究进展1755㊀用.García等[38⁃39]分别采用MAE和MSPD方法萃取灰尘样品中的OPEs,两种方法对OPEs均具有良好的萃取效果,加标回收率分别为85% 104%和80% 116%,并且具有良好的重现性(RSD<11%).表3㊀固体样品中OPEs主要分析方法Table3㊀AnalyticalmethodsofOPEsinsolidsamples基质类型前处理方法检测方法回收率/%检出限或定量限/(μg㊃kg-1)参考文献沉积物PLE+SPEGC⁃EIMS/MS77 1110.5 5[35]沉积物MAEGC⁃ICP⁃MS78 1052 4[33]沉积物MAEGC⁃EIMS62 1060.1 0.4[34]沉积物超声+氮气浓缩LC⁃MS/MS74 1040.48 11[32]沉积物/污泥/灰尘超声+SPEGC⁃EIMS/MS48 138/64 131/70 1411.9 60/28 575/3.8 288[37]灰尘MSPDGC⁃NPD80 11640 50[39]灰尘MAE+SPEGC⁃NPD85 10440 50[38]灰尘超声+SPEGC⁃EIMS81 23510 370[40]污泥PLE+GPCGC⁃MS93 1170.2 5.1[41]生物固体PLE+GPCGC⁃MS64 1320.05 23[36]生物固体ASE+硅胶净化UPLC⁃MS/MS58.1 1140.001 0.014[42]3.2㊀检测方法3.2.1㊀气相色谱法由于部分OPEs具有挥发性,因此常常采用气相色谱法(GC)分析检测样品中的OPEs,常用的检测器包括质谱检测器(MS)[31,37,43⁃47]和氮磷检测器(NPD)[27,29,30,38⁃39,48].对于部分磷酸酯类化合物,除磷酸质子化的基峰(m/z=99)外,EI⁃MS无法给出其他碎片离子进行定量分析,并且低质量端的离子受基质干扰较严重,因此GC⁃EI⁃MS常常只作为OPEs的定性分析手段,定量分析则通常采用GC⁃NPD技术.与GC⁃EI⁃MS相比,GC⁃NPD对含磷化合物具有更好的选择性和更高的灵敏度,在OPEs的分析检测中广泛应用.但是,NPD检测器中的铷珠会在使用过程中持续损耗,需要定期对其进行更换,因此造成NPD检测器的稳定性较差.火焰光度检测器(FPD)具有与NPD检测器相似的灵敏度和选择性,在定量测定OPEs的研究中也有应用[49⁃51].对于复杂环境样品,正化学电离-离子阱质谱检测器(PCI⁃ITMS/MS)具有比NPD和EI⁃MS更高的选择性和灵敏度,但是PCI电离源依然很难获得TiBP和TEHP等化合物的分子离子信息[47,52].原子发射光谱(AED)[53]和电感耦合等离子体质谱(ICP⁃MS)[54]在OPEs的分析检测中也有所应用,但是AED对含磷化合物的灵敏度较低,ICP⁃MS由于需要安装碰撞反应池而使其成本较高,因此限制了这两种方法的广泛应用.GC⁃NPD或GC⁃MS等分析检测技术对OPEs具有很好的灵敏度和选择性,但是气相色谱法普遍存在色谱峰拖尾的现象,尤其是TBEP和TPPO更为严重,制约了气相色谱法的应用.3.2.2㊀液相色谱法近年来,液相色谱⁃质谱联用技术(LC⁃MS)在OPEs的分析检测中得到越来越多的应用[24⁃26,28,55⁃57].与GC⁃MS相比,LC⁃MS更适用于对极性较强的OPEs(例如TMP)以及分子量较大,不易挥发的OPEs(例如TEHP㊁RDP和BDP)进行分析检测.此外,LC⁃MS特有的软电离方式,可以获得目标化合物的分子离子信息.采用LC⁃MS/MS对OPEs进行分析检测时,离子源常用电喷雾离子源(ESI)和大气压化学电离源(APCI),两种电离源都采用正离子模式.Rodil等[26]采用LC⁃ESI⁃MS/MS分析检测了水样中包括TEHP㊁RDP㊁BDP和TPPO在内的11种OPEs,水样采用SPE进行富集净化,方法定量限可达到3 80ng㊃L-1;并且LC⁃ESI⁃MS对于OPEs浓度较低的水样(μg㊃L-1),可不经过萃取而直接进行测定,方法快速简便.虽然ESI离子源容易受到样品基质的干扰,但通过SPE或MASE等前处理方法,可以在一定程度上净化样品,抑制基质效应,提高方法的检出限.研究发现,在检测血液样品中的OPEs时,APCI电离源可以更加有效地抑制样品的基质效应[58].液相色谱法测定OPEs常用的色谱柱为C18和C8反相柱,流动相常㊀环㊀㊀境㊀㊀化㊀㊀学33卷1756用甲醇㊁乙腈和甲酸水溶液.4㊀水环境系统中OPEs的污染现状和迁移转化对于OPEs的环境污染问题研究最早可追溯到1978年一个对美国德拉瓦河中有机污染物的调查,研究结果显示,河水中3种OPEs的浓度水平为0.06 3μg㊃L-1[59].到20世纪80年代时,研究认为大部分烷基和芳香基取代的OPEs可在环境中自行降解,因此对于OPEs的关注逐渐下降,相关研究逐渐减少.直到1997年,OPEs环境污染研究的状况有了一定变化,Carlsson等[53]在室内空气中检测到较高浓度的TCEP,氯代OPEs分别在1995年和2000年先后两次被列入欧盟优先控制污染物名单[11],并且研究发现氯代OPEs污染在环境中具有持久性[49],因此,OPEs重新作为一类新型污染物,在世界范围内得到研究者和有关组织机构的重视.4.1㊀污水和污泥OPEs可以随着日常用品的废弃和生活污水的排放进入污水处理厂,污水处理厂作为许多污染物的汇集地而受到广泛关注.目前,国外已有研究报道在污水处理厂进水和出水中检出多种OPEs的存在[32,41,60,61],其中TBEP㊁TCEP㊁TCPP和TnBP是各研究报道中浓度水平和检出率较高的化合物.污水中OPEs的污染现状如表4所示.Meyer和Bester[61]研究发现,TnBP㊁TiBP和TBEP在污水处理工艺中的去除效率为57% 86%,而氯代OPEs(TCPP㊁TDCPP和TCEP)则几乎没有去除.Marklund等[41]研究了12种OPEs在瑞士11个污水处理厂进出水和污泥中的污染水平㊁分布特征以及污染来源,研究结果同样表明,烷基取代的OPEs相对容易去除,而氯代OPEs在污水处理工艺中几乎不能被去除或降解;TBEP和TnBP是进水和出水中的主要化合物,其次是TCPP,进水中TnBP最高浓度为52μg㊃L-1.在污水处理过程中,很多化合物通过吸附在活性污泥中得到去除,因此污泥中可能存在较高浓度的污染物.Bester等[60]研究发现污泥中TCPP浓度水平可达到1000 20000μg㊃kg-1(干重).Marklund等[41]在瑞典污水处理厂污泥中检出较高浓度的OPEs,其中主要是EHDPP和TCPP,浓度水平分别为420 4600μg㊃kg-1和61 1900μg㊃kg-1(干重).表4㊀污水中OPEs的污染现状研究Table4㊀StudiesontheoccurrenceofOPEsinwastewater化合物基质类型地点时间参考文献TEP㊁TCEP㊁TCPP㊁TPhP㊁TDCPP㊁TBP㊁TBEP㊁TCP㊁TEHP出水(16个WWTPs)奥地利2007[32]TiBP㊁TnBP㊁TCEP㊁TCPP㊁TDCPP㊁TBEP㊁TPP进水㊁出水(2个WWTPs)德国2003[61]TBEP㊁TiBP㊁TnBP㊁TPrP㊁TCPP㊁TCEP㊁TDCPP㊁TPP㊁TMP㊁TEHP㊁EHDPP㊁DOPP进水㊁出水㊁污泥(7个WWTPs)瑞典2005[41]TCPP进水㊁出水(1个WWTPs)德国2005[60]TCEP㊁TCPP㊁TPPO㊁TDCPP㊁TPhP㊁TBEP㊁TnBP㊁RDP㊁BDP㊁TEHP进水㊁出水(1个WWTPs)德国2004[26]TCEP㊁TCPP㊁TPPO㊁TDCPP㊁TBEP㊁TnBP㊁TiBP㊁TPhP进水㊁出水(1个WWTPs)德国2004[28]TCEP㊁TCPP进水㊁出水(8个WWTPs)欧洲2003 2004[63]TiBP㊁TnBP㊁TCEP㊁TCPP㊁TDCPP㊁TPP㊁TBEP出水(4个WWTPs)德国2002[64]TiBP㊁TnBP㊁TCEP㊁TEP垃圾渗滤液德国1998[62]TEP㊁TCPP垃圾渗滤液挪威2010[65]此外,垃圾填埋场是城市垃圾的重要归宿,垃圾渗滤液中可能存在来自废弃物中的各种污染物,并且可以预见其污染程度复杂和污染水平较高.目前,已有研究表明在垃圾渗滤液中检出较高浓度水平的OPEs.Schwarzbauer等[62]在垃圾渗滤液中检出TiBP㊁TnBP㊁TCEP和TEP等化合物,其中TiBP最高浓度可达到350μg㊃L-1.Kawagoshi等[49]对海洋垃圾填埋场渗滤液中OPEs的研究发现,渗滤液中烷基和芳香基OPEs浓度水平在短时间内降低,说明其容易被降解;氯代OPEs(TCEP和TDCPP)虽然浓度水平㊀㊀10期高立红等:有机磷酸酯阻燃剂分析方法及其污染现状研究进展1757随时间有所降低,但并不确定其是否被生物降解,而TCPP浓度水平在80d后仍然没有降低,说明TCPP可能具有持久污染性.4.2㊀地表水环境4.2.1㊀地表水由于OPEs在污水处理厂中不能完全去除,尤其是氯代OPEs几乎没有去除,因此污水处理厂出水被认为是向河流湖泊等地表水环境中释放OPEs的一个主要的源.已有大量研究证明地表水中广泛存在OPEs的污染(表5),并且以TCPP㊁TCEP㊁TnBP和TBEP等化合物为主,其组成与污水处理厂进出水中OPEs的组成高度一致,说明污水处理厂污水的排放是地表水中OPEs的一个重要来源.Cristale等[66]在英国亚耳河(RiverAire)河水中检出TCEP㊁TCPP㊁TDCPP和TPP等化合物,其中TCPP浓度水平为113 26050ng㊃L-1,明显高于同时检出的17 295ng㊃L-1的溴代阻燃剂BDE⁃209浓度水平,而且OPEs在污水排入口附近河水中具有较高的浓度水平,说明污水处理厂污水的排放可能是亚耳河中OPEs的重要来源.Regnery等[67]对德国城市和农村地区湖泊中OPEs的污染现状进行了研究,发现TCEP和TCPP是湖水中检出的主要OPEs,并且城市地区湖水中OPEs浓度水平明显高于农村地区,说明人类活动对城市湖泊中OPEs的污染具有重要影响.国际上少量研究考察了河流或湖泊中OPEs的时间和空间变化趋势.Bacaloni等[68]分析了2006年6月到2007年6月这一年间内OPEs在意大利3个火山湖泊中的时间变化,研究发现TBEP浓度随时间的变化无明显规律,而湖水中其他OPEs最高浓度出现在10 11月份,最低浓度则出现在3 4月份.Bollmann等[69]同样发现河水中OPEs的浓度水平具有一定的季节变化,非卤代OPEs在夏季浓度低于冬季时浓度水平,这可能主要是由于非卤代OPEs在夏季容易被生物降解或光降解所致.但是,Regnery等[67]在德国城市湖泊中并未发现明显的OPEs浓度的季节变化趋势.此外,还有一些研究报道了河水中OPEs的空间迁移行为.Fries等[70]研究证明河水中的OPEs可通过渗滤作用向地下水中迁移.Kawagoshi等[71]研究了OPEs在固体垃圾海洋填埋场水体以及沉积物中的污染水平及环境行为,研究发现水溶性较强的OPEs从填埋点释放后主要以溶解态存在于水体中,并且除TCPP外,其他OPEs在水体和悬浮颗粒物中的浓度水平并无显著联系;水溶性较差的OPEs则主要存在于沉积物中,在水体中并无检出,说明Kow较大的OPEs可能是与垃圾填埋场产生的固体废物一起直接沉降富集在底部沉积物中,其在水体中的迁移性并不强.表5㊀地表水中OPEs的污染现状研究Table5㊀StudiesontheoccurrenceofOPEsinsurfacewater化合物基质类型地点时间参考文献TEP㊁TCEP㊁TCPP㊁TPhP㊁TDCPP㊁TBP㊁TBEP㊁TCP㊁TEHP河水㊁底泥奥地利2007[32]TMP㊁TEP㊁TCEP㊁TPPO㊁TPrP㊁TCPP㊁TDCPP㊁TPP㊁TiBP㊁TnBP㊁TBEP㊁TCP湖水意大利2006 2007[68]TCEP㊁TCPP㊁TDCPP㊁TPhP河水(亚耳河)英国2011[66]TBP㊁TCEP㊁TBEP河水德国2000[72]TBP㊁TCEP㊁TBEP河水(奥得河)德国2000 2001[70]TCPP㊁TCEP㊁TDCPP㊁TEP㊁TiBP㊁TBEP㊁TPhP㊁TPPO河水㊁海水德国2010[69]TCEP㊁TCPP㊁TBEP㊁TiBP㊁TnBP湖水德国2007 2009[67]TiBP㊁TnBP㊁TCEP㊁TCPP㊁TDCPP㊁TPP㊁TBEP河水(鲁尔河)德国2002[64]4.2.2㊀沉积物和水生生物沉积物和水生生物是河流湖泊等地表水体内不可或缺的重要组成部分,但是由于复杂基质中多种OPEs的快速准确分析方法不够完善等限制性原因,目前国际上对于沉积物和水生生物体内OPEs的污染状况研究极少.1999年,Kawagoshi等[71]在固体废物海洋填埋场沉积物中检测到较高浓度的OPEs,TCEP和TBEP是沉积物中检出的主要化合物,浓度水平分别为64 7395μg㊃kg-1和63 1969μg㊃kg-1(干重),并且在水体中未检出的TEHP在沉积物中也有较高浓度检出.Martínez⁃Carballo等[32]同样在沉㊀环㊀㊀境㊀㊀化㊀㊀学33卷1758积物中检出OPEs的存在,其中TCPP浓度最高可达到1300μg㊃kg-1(干重),而在水中未检出的TEHP在沉积物中浓度可达到140μg㊃kg-1(干重).上述结果在一定程度上说明部分OPEs在沉积物中有较高的分配富集.水体和沉积物中的OPEs可能会通过呼吸㊁食入和皮肤渗透等途径进入生物体内.Sundkvist等[36]在瑞典某湖泊鱼体肌肉中检出OPEs的存在,其中以TCPP和TPP为主,浓度水平分别为170 770μg㊃kg-1和21 180μg㊃kg-1(脂重),并且研究发现鱼肉中OPEs浓度水平与组成主要受到附近污染源的影响,而与脂肪含量无明显关系.Kim等[42]对马尼拉湾鱼体中OPEs的污染状况研究发现,OPEs在20种生物体中几乎都有检出,最高浓度可达到mg㊃kg-1水平(脂重),并且研究发现生物体内OPEs浓度水平与生物体长度㊁重量以及脂肪含量等无明显相关性;底栖生物体内具有较高浓度的OPEs,TPP可能容易随颗粒物沉降到底泥中,然后通过水底食物网在生物体内累积.上述研究初步说明部分OPEs在水生生物体内具有一定的富集和累积,但由于目前开展的研究很少,且缺乏从水体到沉积物和食物网的系统研究,各研究的结论往往并不完全一致,导致对OPEs在水生环境中的生物累积行为及其规律认识不够深入和系统.4.3㊀地下水和饮用水地表水中的OPEs可通过地下渗漏作用进入地下水,已有研究报道在地下水中检出多种OPEs.Regnery等[73]研究发现TCPP和TCEP是地下水中检出的主要OPEs化合物,并且考察了降水㊁河水以及垃圾渗滤液的渗滤作用对地下水中OPEs的影响,结果发现降水对农村地下水中OPEs的影响较小,而降水和地表径流对城市地下水中OPEs的污染则具有明显影响;随着距离河堤渗滤位置越来越远,地下水中非氯代OPEs浓度水平逐渐降低,这可能是由于生物转化和吸附作用的影响.地表水和地下水作为饮用水源,可能会造成饮用水中OPEs的污染.Stackelberg等[74]在饮用水厂原水和最终出水中检出TCEP和TDCPP等化合物,表明饮用水中存在OPEs的暴露风险.Andresen和Bester[75]研究了TDCPP㊁TCPP㊁TCEP等6种OPEs在饮用水厂净化工艺过程中的去除效果,研究发现非卤代OPEs在净化过程中可得到有效去除;活性炭吸附工艺对氯代OPEs具有明显的去除效果,而臭氧氧化㊁多层过滤和沉淀絮凝等工艺对其去除效果不明显.5 结语与展望近年来,OPEs的产量持续快速增长,应用领域不断扩大.作为一类新型污染物,OPEs已广泛分布于各种环境介质中,对生态系统和人体健康造成巨大的威胁与影响.目前,国外关于OPEs的分析方法和污染现状研究已经取得了初步的成果,我国相关研究工作正处于起步阶段,分析方法还不够完善,研究深度和广度还有待加强,重视程度也远远不够.总结相关研究进展,今后应加强以下几个方面的研究工作:研究污泥和沉积物等复杂环境基质中多种OPEs的快速准确分析方法;系统研究OPEs在水⁃沉积物⁃生物体中的迁移转化过程;研究OPEs在生物体中的富集放大规律,并对其环境风险和人体健康风险进行评价.参㊀考㊀文㊀献[1]㊀SolbuK,ThorudS,HerssonM,etal.Determinationofairbornetrialkylandtriarylorganophosphatesoriginatingfromhydraulicfluidsbygaschromatography⁃massspectrometry⁃developmentofmethodologyforcombinedaerosolandvaporsampling[J].JournalofChromatographyA,2007,1161(1/2):275⁃283[2]㊀ChenD,LetcherRJ,ChuS.Determinationofnon⁃halogenated,chlorinatedandbrominatedorganophosphateflameretardantsinherringgulleggsbasedonliquidchromatography⁃tandemquadrupolemassspectrometry[J].JournalofChromatographyA,2012,1220:169⁃174[3]㊀GaoZQ,DengYH,HuXB,etal.Determinationoforganophosphateestersinwatersamplesusinganionicliquid⁃basedsol⁃gelfiberforheadspacesolid⁃phasemicroextractioncoupledtogaschromatography⁃flamephotometricdetector[J].JournalofChromatographyA,2013,1300:141⁃150[4]㊀BrandsmaSH,deBoerJ,LeonardsPEG,etal.Organophosphorusflame⁃retardantandplasticizeranalysis,includingrecommendationsfromthefirstworldwideinterlaboratorystudy[J].Trac⁃TrendsinAnalyticalChemistry,2013,43:217⁃228[5]㊀DishawLV,PowersCM,RydeIT,etal.Isthepentabdereplacement,tris(1,3⁃dichloropropyl)phosphate(TDCPP),adevelopmentalneurotoxicant?StudiesinPC12cells[J].ToxicologyandAppliedPharmacology,2011,256(3):281⁃289。
2024年六氯环三磷腈市场分析现状概述六氯环三磷腈(hexachlorocyclotriphosphazene,简称HCCP)是一种具有广泛应用前景的无机化合物。
它具有优异的热稳定性和阻燃性能,广泛用于聚合物材料的阻燃改性,电子材料的敷层和填充等领域。
本文将对六氯环三磷腈的市场分析现状进行详细探讨。
市场需求在近些年,随着人们对环境友好型和高性能材料的需求增加,六氯环三磷腈作为一种绿色环保型阻燃剂得到了广泛的应用。
其在建筑、电子、汽车等行业的需求不断上升,推动了市场的快速增长。
此外,随着全球环保意识的增强,六氯环三磷腈作为代替有机阻燃剂的无机材料,具有更高的安全性和可持续发展性,因此市场前景广阔。
市场现状目前,六氯环三磷腈市场呈现良好的发展势头。
以下是市场现状的几个关键方面:1. 市场规模扩大六氯环三磷腈市场规模不断扩大,市场需求的增加带动了产能的扩展。
据统计,预计未来几年市场规模将保持稳定增长,并且有望达到数十亿美元。
2. 应用领域广泛六氯环三磷腈作为一种多功能材料,在多个领域均有应用。
建筑领域中,它被广泛应用于聚合物发泡材料的阻燃改性,提高了建筑材料的防火性能;电子行业中,六氯环三磷腈可用作敷层材料,提供电子元器件的绝缘和阻燃功能;汽车行业中,六氯环三磷腈在橡胶密封件和线束等部件中被广泛使用。
3. 市场竞争日益激烈随着市场规模的扩大,六氯环三磷腈市场竞争日益激烈。
目前市场上存在着多家生产商,主要集中在发达国家和地区。
为了在市场中保持竞争力,企业需要不断提高产品的品质和研发创新能力。
4. 技术发展和创新是关键随着科技的不断进步,六氯环三磷腈的生产工艺和应用技术也不断改进和创新。
近年来,一些企业开始研发更环保、高效的生产工艺,以减少对环境的影响。
同时,也有公司加强对六氯环三磷腈材料的应用研究,拓宽其应用领域。
技术发展和创新将是企业保持竞争力和市场占有率的关键。
市场前景六氯环三磷腈作为一种具有广泛应用前景的无机化合物,其市场前景非常看好。
阻燃剂及有机磷系阻燃剂的综述1引言材料是实现工业、农业、国防和科学技术现代化的重要物质基础,它与信息、能源并列为现代文明的三大支柱,是现代社会赖以生存和发展的基本条件之一。
然而,自20世纪30年代,有机高分子材料进入国民经济的各个领域及人民生活的各个方面后,人类即开始面临新的火灾威胁,原因是这类材料大部分是易燃或可燃的。
这不但限制了它们的应用,还给人类社会带来频繁的火灾危害和严重的经济损失,表1.1列举了半个世纪以来世界各国部分特大火灾。
据统计,经济发达的国家和地区在1989-1993年间的年均火灾损失达国民生产总值的0.1-0.4%。
因此,阻燃已成为当前人类提高社会消防能力,确保人民生命和财产免遭火灾的重要措施,以阻燃为目的的高分子材料改性也愈加引人注目,从而大大促进了阻燃材料和技术的研究、生产。
制备应用低烟、低毒和环境污染低的阻燃剂是加工绿色阻燃材料的需求。
阻燃剂是用以提高材料抗燃性,即阻止材料被引燃及抑制火焰传播的助剂。
阻燃剂主要用于阻燃合成和天然高分子材料(包括塑料、橡胶、纤维、木材、纸张、涂料等)。
一个理想的阻燃剂最好能同时满足下述条件,但这实际上几乎是不可能的,所以选择实用的阻燃剂时大多是在满足基本要求的前提下,在其他要求间折中和求得的最佳的平衡:(1)阻燃效率高,获得单位阻燃效能所需的用量少。
(2)本身低毒或基本无毒(对大鼠口服的LD50)5000mg/kg),燃烧时生成的有毒和腐蚀性气体量及烟量尽可能少。
(3)与被阻燃基材的相容性好,不易迁移和渗出。
(4)具有足够高的热稳定性,在被阻燃基材加工温度下不分解,但分解温度也不宜过高,以在250~400度之间为宜。
(5)不致过多恶化被阻燃基材的加工性能和最后产品的物理-机械及电气性能。
可以认为,现有的阻燃剂和阻燃工艺无一不或多或少地对被阻燃高聚物的某一性能或某几种性能会产生不利的影响,而且阻燃剂用量越多,影响越大,所以性能优良的阻燃剂和合理的阻燃剂配方在于能在材料阻燃性和实用性间求得和谐的统一。
磷硅阻燃剂协同效应及其应用在阻燃剂的生产和应用中,人们在探索合成新型高效阻燃剂的同时,也对阻燃效果较好的阻燃剂进行复配。
所谓复配,主要是利用阻燃剂之间的相互作用,以期提高阻燃效能,即通常所称的阻燃剂“协同效应”。
具有协同效应的阻燃体系阻燃效果好,阻燃性能增强,既可阻燃又可抑烟,还具有一些特殊功能;其应用范围广,成本低,能提高经济效益,是实现阻燃剂低卤无卤化有效途径之一。
大多数含磷阻燃剂与含氮或卤素的化合物共同使用时,能大幅度提高阻燃效果。
前人对磷/氮协同体系及磷/卤素协同体系的作用机理及应用都已作了不少综述]。
但对磷/硅的协同阻燃效应及应用却鲜有报道。
有机硅系阻燃剂[3]是一种新型的无卤阻燃剂,也是一种成炭型抑烟剂,还是一种良好的分散剂,能增加材料间的相容性。
它作为一类高分子阻燃剂,具有高效、无毒、低烟、防滴落、无污染等特点。
有机磷阻燃剂具有高热稳定性,耐析出性好,高效低毒,不挥发等特点。
将两者结合起来,通过复配,可以获得阻燃效果更佳的复合型阻燃剂。
1磷/硅阻燃剂阻燃机理传统的协同体系有卤/磷、锑/卤、磷/氮等,还可将阻燃剂进行复配,以达到降低阻燃剂用量,提高阻燃性能的目的。
磷/硅协同体系是近几年才引起专家学者们注意的一类无卤阻燃剂。
磷/硅阻燃剂有两类:1)磷系化合物与硅系化合物复配的阻燃剂。
2)阻燃剂化合物本身含有磷及硅元素。
磷系阻燃剂[4]包括无机磷系阻燃剂和有机磷系阻燃剂两大类。
无机磷系阻燃剂主要包括红磷、磷酸铵盐和聚磷酸铵等,它们稳定性好,不挥发,不产生腐蚀性气体,阻燃效果持久,毒性较低。
有机磷系阻燃剂主要包括对磷酸酯、膦酸酯、氧化膦、磷杂环化合物、缩聚磷酸酯和有机磷酸盐等。
与卤系相比,虽然有一定的毒性,但它们的致畸性不高,分解产物的腐蚀性和毒性也很少,除阻燃效果好以外,磷系阻燃剂对提高高分子材料的综合性能也有十分重要的作用。
磷系阻燃机理[5]分为三类:一是磷具有强脱水性,磷系阻燃剂高温燃烧时的生成磷酸或聚磷酸,容易在燃烧物表面形成高粘度的熔融玻璃质和致密的炭化层,使基质与热和氧隔绝开来。
磷系阻燃剂的现状与展望 摘要:阻燃剂又名耐火剂、防火剂,是提高可燃物难燃性的一种功能性助剂。在所有的阻燃剂中,磷系阻燃剂是研究的最多也是最复杂的一种。随着工业的改进以及合成方法的不断完善,磷系阻燃剂的种类也在不断增加,性能也在不断增强。磷系阻燃剂解决了含卤型阻燃剂燃烧烟雾大、气体腐蚀性强以及无机阻燃剂高添加量而影响材料物理机械性能等缺点,具有高阻燃性、低烟、无毒、低卤等优点,因此,对于磷系阻燃剂的研究具有非常重要的现实意义。本文主要就磷系阻燃剂的现状与展望方面展开研究,分析了磷系阻燃剂的阻燃机理以及种类,最后介绍了磷系阻燃剂在今后的发展趋势。 关键词:磷系阻燃剂;阻燃机理;种类;展望 引 言 随着高分子材料科学与工程的发展,各种高分子复合材料正在逐步取代传统材料而应用于社会生产与生活的各个领域。但是,高分子复合材料具有优越性能的同时,还具有可燃性,这给人们的生产与生活带来了一定的隐患,因此,对于高分子复合材料的燃烧特性以及防火技术的研究具有重要的意义。阻燃剂在塑料助剂中的消耗量仅次于增塑剂,已成为塑料助剂中用量第二的大品种,其中,磷系阻燃剂由于其自身的特点与优势,非常符合阻燃剂的发展方向,具有很好的发展前景。
1 含磷阻燃剂的阻燃机理阐释
长期以来,有关含磷阻燃剂阻燃机理有很多,但是已经得到普遍认可的机理有3种。 1.1气相阻燃机理 含磷化合物在火焰中分解成小分子量组分如P,PO,P02和HP02,这些组分与气相火焰区中的氢自由基和羟基自由基互相作用,减缓了燃烧链反应进程…。在阻燃过程中,磷系阻燃剂产生的水蒸气可降低聚合物表面的温度与稀释气相火焰区可燃物的浓度,从而达到阻燃效果。
1.2凝缩相阻燃机理
在燃烧时,磷化合物分解生成磷酸液态膜,其沸点可达300℃。同时,磷酸又进一步脱水生成偏磷酸,偏磷酸进一步聚合生成聚偏磷酸旧J。生成的聚偏磷酸是强酸,具有很强的脱水作用,促使高聚物脱水炭化,降低材料的质量损失速度和可燃物的生成量,而磷大部分残留于炭层中。
1.3协同阻燃机理 当一种含磷阻燃剂与另外一种协同剂并用时,产生的阻燃作用往往要大于由单一组分所产生的阻2.有机磷系阻燃剂种类及研究现状燃作用之和,这就是协同效应。目前被实验所证实了的具有协同效应的有很多,如磷一卤协同、磷一氦协同、磷-磷协同等。 2磷系阻燃剂的应用进展 2.1聚碳酸酯阻燃剂及其掺合物 到20世纪为止,有关聚碳酸酯(PCs)阻燃剂及其掺和物的研究很多,远远超过了其他聚合物。目前应用于聚碳酸酯的阻燃剂有单磷酸酯和双磷酸酯2种。 单磷酸芳基磷酸酯常用于PC,/ABS合金,其中磷酸三苯酯(’I胛)的性价比很高。’I聊对PC/ABS的阻燃十分有效,添加量在12%一18%。在TPP.基础上改进的叔丁基磷酸三苯酯的性能比TPP更为优越。叔丁基磷酸三苯酯为液体,在树脂中其持久性与水解稳定性更佳,且不易产生表面应力龟裂。但叔丁基磷酸三苯酯的挥发性较高。桥联的芳基双磷酸酯具有优良的热稳定性和水解稳定性、低粘度以及低挥发性,因此这类双磷酸酯的市场好于单磷酸酯,且应用范围日益广泛。其中间苯二酚一双(磷酸二苯酯)和双酚A一双(磷酸二苯酯)的效果尤其好。例如双酚A-双(磷酸二苯酯)的商品名为Fyrolflex BDP常用于PC/ABS,其中丙烯腈一丁二烯-苯乙烯共聚物(ABS)装填量≤25%,一般情况下,BDP与联合添加剂PTFE的装填量需要≥12%才能达到V—O级。作为新型有机磷系阻燃剂,BDP在聚合物中发挥作用主要通过促使材料迅速产生炭层,以减少聚合物表面热量,抑制聚合物热裂解或燃烧,降低聚合物火灾危险性,在高分子材料中应用广泛,并取得较好的效果。但是由于其在应用中存在耐热性差、挥发性大以及易迁移等缺点,因此在发挥阻燃作用的过程中,熔融滴落现象严重,容易引发二次火灾【4J。环苯氧磷腈类物质是热稳定性好的磷氮化合物。掺和物中大多包括三磷腈和四磷腈,且还含一些大环。当这些掺和物含量占PC/ABS质量的12%一15%时,阻燃效果很好。芳香族双磷酸酯(RDP或BDP)或单磷酸酯(’I即)与环磷腈发生协同作用,联合使用具有更好的阻燃效果㈣。 综上所述,芳基磷酸酯常应用于无卤阻燃PC/ABS合金中。单磷酸芳基磷酸酯类阻燃剂中磷酸三苯酯与叔丁基磷酸三苯酯在PC/ABS中较为有效。双磷酸芳基磷酸酯类阻燃剂中桥联的芳基双磷酸酯,尤其是间苯二酚一双(磷酸二苯酯)(RDP)、双酚A一双(磷酸二苯酯)(BDP)以及某些程度上的间苯二酚一双(2,6-二甲苯基磷酸酯)(RXP),由于优异的热稳定性、高效的阻燃性、较低的挥发性而比单磷酸酯(唧)获得更为广泛的应用。由于不同的磷酸酯在固相和气相之间存在协同的阻燃作用,实际应用中也常将双磷酸酯和单磷酸酯组合使用哺j。 2.2聚氨基甲酸乙酯(PU)泡沫阻燃剂 应用于聚氨酯泡沫塑料的磷系阻燃剂中,卤代磷酸酯类化合物的应用广泛、效果显著,是一类添加型液态有机阻燃剂,它具有挥发性低、无色、无臭、耐水解等优点,阻燃效率高、挥发量低。三(2一氯乙基)磷酸酯(TCEP)是最早使用的阻燃剂之一,是一种添加型阻燃剂,在聚氨酯软泡、硬泡中都能使用,它具有较好的耐水解性和较高的阻燃效率,但阻燃持久性差,且易挥发损失o¨。常用的卤代双磷酸酯类阻燃剂具有耐水性和热稳定性较好等特点,可以广泛适用于多种软质聚氨酯泡沫塑料,应用前景广阔。典型的产品有阻燃剂v6,化学名为四(2-氯乙基)·2,2--'(氯甲基)-l,3-亚丙基二磷酸酯,由美国Monsanto公司首先开发成功【8驯,商品名为Phosgard2xC-20。还有美国Olin公司产品牌号为Thermolinl01,国内有生产,化学名为l,2-亚乙基一四(2.氯乙基)二磷酸酯,是一种低挥发的持久性阻燃剂,它对泡沫的发泡工艺和物理性能影响很小,阻燃效果好。许多磷酸酯可以用作聚氨酯的阻燃剂,同时具有增塑剂的作用。甲基磷酸二甲酯(DMMP)是一种常用的高磷液态磷酸酯类阻燃剂,添加量一般在3%一15%。它的特点是含磷量高、阻燃性能优良、添加量少、价格低等。乙基磷酸二乙酯(DEEP)是一种新型的高效磷阻燃剂,粘度低,在聚醚多元醇和异氰酸酯的双组分体系中十分稳定【7J。含有19%磷的低聚磷酸三乙酯添加剂满足关于汽车行业的低雾视法/挥发性的有机含量(VOC)排放许可,在MVSS302测试中,与氯烷基磷酸盐类相比,这种低聚物的效果平均好于40%-50%【l们。无卤含磷、氮添加型阻燃剂(CMA)可以有效提高软质聚氨酯泡沫的阻燃性:当CMA的添加量为10%时,软质聚氨酯泡沫即可通过Cal.117A测试,其LOI值也从17.3提高到23.0;随阻燃剂添加量的增加。软质聚氨酯泡沫的阻燃性能也逐渐提高。TG测试结果表明,CMA的加入对软质聚氨酯泡沫的热稳定性没有多大影响¨¨。 2.3多酯类与尼龙阻燃剂 应用于多酯类与尼龙的阻燃剂要求优异的热稳定性及不起霜,而很多磷系阻燃剂热稳定性都不能满足要求。经过改性,现在市场上常用磷系阻燃剂为红磷、磷酸酯和膦酸酯类、磷氮类阻燃剂。无机磷系阻燃剂中,红磷作为一种用于多酯类和尼龙的有效的阻燃剂,逐渐成为研究的热点。大多数磷化合物在高处理温度(大约在280℃)的热稳定性不好,易分解,不能发挥作用,而红磷在尼龙6.6中很有效。但是红磷并不能直接应用,这是由于红磷降低了尼龙的热解温度,使点燃温度升高;易吸潮,放出磷化氢气体,与高分子材料相容性差。微 胶囊化红磷阻燃剂降低了红磷的活性,解决了相容性,从而使红磷在实际应用中发挥了重要的作用。 有机磷系阻燃剂中,常用的是磷酸酯和膦酸酯类。例如:9,10。二氢-9一乙二酸一10磷杂菲一lO一氧化物(DOPO)与衣康酸的加合物是商品阻燃剂的活性成分,常作为共反应剂用于聚酯纤维¨引。在PET纤维中以低装填量(0.3%一0.65%)的阻燃效果好。含磷PET的阻燃剂很容易出现熔滴现象,可能是在燃烧中氧化降解产生的聚磷酸所导致。氧氮化磷(PON)。是另一种在尼龙中有效的磷氮类阻燃剂。磷氮氧化合物可在多酯类化合物中与三聚
氰胺磷酸盐、三聚氰胺氰尿酸酯、多磷酸铵、二乙基次膦酸钙u叫联合使用。含30%的(PON)。可使PA6的LOI值由22增至32,能促进PA6的深度成炭。(PON)。和Fe:O,结合阻燃PA 6在UL 94试验中能达到UL 94V-0级。P:S,与双氰氨的缩合产是(PON)。的含硫类似物,其效果好于(PoN)。【I引。(PON)。是很好的焦化剂。用Fe:03替换5%(PON),可以改善焦化。另一种(PON)。的阻燃模式是当燃烧时在聚合物表面它可得到少量的熔化璃。 2.4环氧树脂阻燃剂 环氧树脂的磷系阻燃剂大多是通过在环氧树脂的网状结构中掺入含磷物质得到的。添加型阻燃剂是通过物理的方法引入到聚合物中,但是相容性差,阻燃效果不持久;反应型阻燃剂是将含磷阻燃单体与高聚物单体进行共聚,将阻燃基团导入高分子链或侧链,以共价键结合起来的本体阻燃聚合物,这样得到的树脂既可有持久的阻燃效果,又能保持树脂原有的热学性质和力学性能等。反应型阻燃剂可以通过含有羟基的磷化合物与环氧乙烷反应,直接将有机磷基团引入环氧树脂体系的树脂¨6|,例如DGEBA/DDS树脂,用磷酸二烷基酯进行化改性,得到反应性的预聚体,使用胺类固化剂交联后,可获得良好的阻燃性能,LOI可达到32。与添加型的磷酸三烷基酯相比,反应型的效果更好。Tokly等【l”对多羟基苯酚进行选择性磷酸化合成了一系列的反应型阻燃剂,将这些阻燃单体与环氧树脂反应,发现LOI值得到大大提高,是环氧树脂很有效的阻燃剂。无卤磷系阻燃剂Fyrol PMP通过插入到磷酸酯基团之中来固化环氧树脂,大大提高了聚合物的阻燃特性。Fyrol PMP是一种具有固