最短路径(将军饮马造桥选址)
- 格式:pptx
- 大小:1.37 MB
- 文档页数:32
课程主题:最短路径问题学习目标1、掌握和最小、差最大、造桥选址类、两点之间线段最短类的最短路径问题模型2、熟练运用模型在代数、几何中进行转化教学内容1、如图,E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,F、G是垂足,若正方形ABCD周长为a,则EF+EG等于。
2、如图,菱形ABCD中,AB=4,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是。
1、回顾将军饮马问题、造桥选址问题EDCBAP知识点一(最短路径问题)【知识梳理】1、两动点最短距离:两点之间,线段最短2、点到直线的距离:垂线段最短3、PA+PB最短:将军饮马问题,对称A.B不同侧,两点之间线段最短4、|PA-PB|最大:差最大,保证A.B同侧,当P.A.B三点共线时差最大5、造桥选址问题:先压缩桥变成将军饮马问题利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:(1)两点之间线段最短;(2)三角形两边之和大于第三边;(3)垂线段最短。
初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。
下面对三类线段和的最值问题进行分析、讨论。
(1)两点一线的最值问题: (两个定点 + 一个动点)问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。
核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。
方法:1.定点过动点所在直线做对称。
2.连结对称点与另一个定点,则直线段长度就是我们所求。
变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。
1.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。
将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。
证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。
最值模型之垂线段最短、将军饮马及造桥选址模型模型一垂线段最短模型典例1(2023春•莲湖区期中)如图,OC平分∠AOB,P是OC上一点,PH⊥OB于点H,Q是射线OA上的一个动点,若PH=3,则PQ长的最小值为()A.1B.2C.3D.4【思路引领】当PQ⊥OA时,PQ有最小值,利用角平分线的性质可得PH=PQ=5,即可解答.【解答】解:如图:当PQ⊥OA时,PQ有最小值,∵OC平分∠AOB,PH⊥OB,PQ⊥OA,∴PH=PQ=3,∴PQ长的最小值为3,故选:C.【总结提升】本题考查了角平分线的性质,垂线段最短,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.针对练习1.(2023秋•通州区期末)如图,在△ABC中,∠ABC=60°,BC=6,CD是△ABC的一条高线.若E,F 分别是CD和BC上的动点,则BE+EF的最小值是()A.6B.3√2C.3√3D.3【思路引领】作B关于CD的对称点B′,过B′作B′F⊥BC于F交CD于E,则B′F的长度即为BE+EF的最小值,根据直角三角形的性质得到BD=12CD,根据已知条件得到BB′=BC,推出△CDB≌△BB′F,于是得到B′F=CD=√32BC=3√3.【解答】解:作B关于CD的对称点B′,过B′作B′F⊥BC于F交CD于E,则B′F的长度即为BE+EF的最小值,∵∠ABC=60°,CD⊥AB,∴∠BCD=30°,∴BD=12CD,∵BD=12BB′,∴BB′=BC,在△CDB与△B′FB中,{∠CDB=∠B′FB ∠B′BF=∠CBD CD=BB′,∴△CDB≌△BB′F,∴B′F=CD=√32BC=3√3.故选:C.【总结提升】本题考查了轴对称﹣最短路线问题,解题的关键是正确的作出对称点和利用垂直平分线的性质证明BE+EF的最小值为B′F的长度.2.(2022春•临湘市期末)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,CD=2,BD =3,Q为AB上一动点,则DQ的最小值为()A.1B.2C.2.5D.√5【思路引领】作DH⊥AB于H,根据角平分线的性质得到DH=DC=2,然后根据垂线段最短求解.【解答】解:作DH⊥AB于H,如图,∵AD平分∠BAC,DH⊥AB,DC⊥AC,∴DH=DC=2,∵Q为AB上一动点,∴DQ的最小值为DH的长,即DQ的最小值为2.故选:B.【总结提升】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了垂线段最短.3.(2023•龙岩模拟)如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC于D,点E,F分别在AD,AB 上,则BE+EF的最小值是()A.4B.4.8C.5D.5.4【思路引领】作F关于AD的对称点M,连接BM交AD于E,连接EF,过B作BN⊥AC于N,根据三线合一定理求出BD的长和AD平分∠BAC,根据勾股定理求出AD,根据三角形面积公式求出BN,根据对称性质求出BE+EF=BM,根据垂线段最短得出BE+EF≥4.8,即可得出答案.【解答】解:作F关于AD的对称点M,连接BM交AD于E,连接EF,过B作BN⊥AC于N,∵AB=AC=5,BC=6,AD⊥BC于D,∴BD=DC=3,AD平分∠BAC,∴M在AC上,在Rt△ABD中,由勾股定理得:AD=√52−32=4,∴S△ABC=12×BC×AD=12×AC×BN,∴BN=BC×ADAC =6×45=4.8,∵F关于AD的对称点M,∴EF=EM,∴BE+EF=BE+EM=BM,根据垂线段最短得出:BM≥BN,即BE+EF≥4.8,即BF+EF的最小值是4.8,故选:B.【总结提升】此题主要考了等腰三角形的性质,勾股定理,轴对称﹣最短路线问题等知识点的理解和掌握,能求出BE+EF=BM的长是解此题的关键.题目具有一定的代表性,是一道比较好的题目.4.(2023春•鄄城县期中)已知∠ABC=60°,点P为平面内一点,且BP为定长,∠ABP=20°,Q为射线BC上一动点,连接PQ,当BP+PQ的值最小时,∠BPQ=.【思路引领】分两种情况讨论,当BP+PQ的值最小时,PQ最小,此时PQ⊥BC,据此解答即可.【解答】解:当点P 在∠ABC 内部时,∵BP 为定长,∴当BP +PQ 的值最小时,PQ 最小,此时PQ ⊥BC ,∴∠PQB =90°,∵∠ABC =60°,∠ABP =20°,∴∠PBQ =40°,∴∠BPQ =90°﹣40°=50°,当点P 在∠ABC 外部时,同理可求∠BPQ =10°,故答案为:50°或10°.【总结提升】本题考查了直角三角形的性质,正确理解点到直线上所有连线中垂线段最短是解题的关键.5.(2022秋•东港区校级期末)在Rt △ABC 中,∠C =90°,∠BAC =15°,点P 为AC 边上的动点,点D 为AB 边上的动点,若AB =6cm ,则PB +PD 的最小值为 cm .【思路引领】如图所示,延长BC 到E 使得CE =BC ,连接EP ,AE ,证明△ACB ≌△ACE ,得到AE =AB =6cm ,∠CAE =∠BAC =15°,则∠BAE =30°,再证明△BCP ≌△ECP ,得BP =EP ,推出当D 、P 、E 三点共线且ED ⊥AD 时PD+PE 有最小值即PB+PD 有最小值(PB +PD)最小值=DE 最小值=12AE =3cm . 【解答】解:如图所示,延长BC 到E 使得CE =BC ,连接EP ,AE ,∵∠ACB=90°,∴∠ACE=∠ACB=90°,又∵AC=AC,BC=EC,∴△ACB≌△ACE(SAS),∴AE=AB=6cm,∠CAE=∠BAC=15°,∴∠BAE=30°,同理可证△BCP≌△ECP(SAS),∴BP=EP,∴PB+PD=PD+PE,∴当D、P、E三点共线且ED⊥AD时,PD+PE有最小值,即PB+PD有最小值,∴(PB+PD)最小值=DE最小值=12AE=3cm,故答案为:3.【总结提升】本本题主要考查轴对称﹣最短路线问题,全等三角形的性质与判定,含30度角的直角三角形的性质,正确作出辅助线构造全等三角形是解题的关键.模型二将军饮马模型类型一一直线同侧两定点典例2 (2022秋•和平区校级期末)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,CE=5,AD=7,P是AD上一个动点,则BP+EP的最小值是()A .7B .3.5C .5D .2.5【思路引领】利用将军饮马模型找出使BP+EP 取得最小值时的点P 的位置即可求得结论.【解答】解:∵AB =AC ,AD ⊥BC ,∴BD =CD ,∴AD 为BC 的垂直平分线,∴B ,C 关于AD 对称,∴连接EC 与AD 的交点即为使BP+EP 取得最小值时的点P ,∴BP+EP 的最小值=EC =5,故选:C .【总结提升】本题主要考查了轴对称的性质,最短线路问题,等腰三角形的性质,利用等腰三角形的三线合一的性质和将军饮马模型找出使BP+EP 取得最小值时的点P 的位置是解题的关键.类型二 两射线一顶点两动点典例3(2021秋•颍东区期末)如图,∠AOB =30°,点P 是∠AOB 内的定点且OP =3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .3B .23C .43D .6【思路引领】作点P 关于OB 的对称点P',点P 关于OA 的对称点P'',连接P'P''与OA ,OB 分别交于点M 与N ,则P'P''的长即为△PMN 周长的最小值;连接OP',OP'',利用已知条件可以证明∠P ′OP ″=60°即可求出P'P'';【解答】解:作点P关于OB的对称点P',点P关于OA的对称点P'',连接P'P''与OA,OB分别交于点M与N,则P'P''的长即为△PMN周长的最小值,连接OP',OP'',∵OP=3,∠AOB=30°,由对称性可知OP=OP'=OP'',∠P′OP″=60°,∴∠OP'P″=∠OP''P′=60°,∴OP′=OP''=P'P'',∴P'P''=3;故选:A.【总结提升】本题考查利用轴对称求最短距离问题;通过轴对称将△PMN周长转化为P'P''的长是解题的关键.针对练习1.(2021秋•天津期末)如图,在△ABC中,AB的垂直平分线DE交BC于点D,垂足为E,M为DE上任意一点,BA=3,AC=4,BC=6,则△AMC周长的最小值为()A.7B.6C.9D.10【思路引领】连接BM,依据DE是AB的垂直平分线,可得AM=BM,进而得到当B,M,C在同一直线上时,AM+CM的最小值为BC的长,依据AC=4,BC=6,即可得到△AMC周长的最小值.【解答】解:如图所示,连接BM,∵DE是AB的垂直平分线,∴AM=BM,∴AM+CM=BM+CM,当B,M,C在同一直线上时,AM+CM的最小值为BC的长,又∵AC=4,BC=6,∴△AMC周长的最小值=6+4=10,故选:D.【总结提升】本题考查了轴对称—最短路线问题以及线段垂直平分线的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.2.(2021秋•丛台区校级期末)如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80°B.90°C.100°D.130°【思路引领】作A点关于CD的对称点F,作A点关于BC的对称点E,连接EF交CD于N,交BC于M,连接AM、AN,此时△AMN的周长有最小值,由对称性求出∠BAM+∠FAN=50°,则有∠MAN=80°,即可求∠ANM+∠AMN=180°﹣∠MAN=100°.【解答】解:作A点关于CD的对称点F,作A点关于BC的对称点E,连接EF交CD于N,交BC于M,连接AM、AN,∵∠B=∠D=90°,∴AN=NF,AM=EM,∴△AMN的周长=AM+AN+MN=NF+MN+EM=EF,此时△AMN的周长有最小值,∵∠FAN=∠F,∠E=∠EAM,∴∠E+∠F=180°﹣∠BAD,∵∠BAD=130°,∴∠E+∠F=50°,∴∠BAM+∠FAN=50°,∴∠MAN=130°﹣50°=80°,∴∠ANM+∠AMN=180°﹣∠MAN=100°,故选:C.【总结提升】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,三角形内角和定理是解题的关键.3.(2020秋•西城区校级期中)在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE P点的位置在()A.△ABC三条中线的交点处B.AD的中点处C.A点处D.D点处【思路引领】由点D是等边三角形ABC的中点得到AD所在的直线是△ABC的中垂线,在AB上作点E关于AD的对称点F,连接CF,即可得到△PCE的最小周长.【解答】解:∵点D、E分别是等边三角形ABC的边BC、AC的中点,∴CE长度不变,AD所在的直线是△ABC的对称轴,∴当△PCE的周长最小时,PE+PC最小,如图,在AB上作点E关于AD的对称点F,连接CF,∴点F是AB的中点,∴CF⊥AB,此时,CF即为PE+PC的最小值,点P是△ABC的三条中线交点,∴当△PCE的周长最小时,P点是△ABC的三条中线的交点.故选:A.【总结提升】本题考查了等边三角形的性质、轴对称的性质,解题的关键是利用轴对称的性质与垂线段最短找到△PCE周长最小的点P位置.模型三造桥选址模型类型一异侧两定点一定长典例1(2021春•奉化区校级期末)如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A.B.【思路引领】虽然P,Q两点在河两侧,但连接P,Q的线段不垂直于河岸.关键在于使PM+NQ最短,但PM与QN未连起来,要用线段公理就要想办法使M与N重合起来,利用平行四边形的特征可以实现这一目的.【解答】解:如图,作PP'垂直于河岸L,使PP′等于河宽,连接QP′,与河岸L相交于N,作NM⊥L,则MN∥PP′且MN=PP′,于是四边形PMNP′为平行四边形,故PM=NP′.根据“两点之间线段最短”,QP′最短,即PM+NQ最短.观察选项,选项C符合题意.故选:C.【总结提升】考查了轴对称﹣最短路径问题,要利用“两点之间线段最短”,但许多实际问题没这么简单,往往利用对称性、平行四边形的相关知识进行转化,以后还会学习一些线段转化的方法.类型二同侧两定点一定长典例2(2019•安徽模拟)如图,在矩形ABCD中,AB=5,BC=4,E、F分别是AD、BC的中点,点P、Q在EF上.且满足PQ=2,则四边形APQB周长的最小值为()A.10B.12C.14D.16【思路引领】因为PQ和AB是定长,所以要使四边形APQB周长的周长最小,只要AP+BQ最小即可;在AB【解答】解:四边形APQB周长=AP+PQ+QB+AB,∴AB=5,BC=4,PQ=2,∴四边形APQB周长=AP+PQ+QB+AB=7+AP+BQ,要使四边形APQB周长的周长最小,只要AP+BQ最小即可;在AB上截取AM=PQ,F是BC的中点,所以点B关于EF的对称点是C点,连接CM与EF交于点Q,则CM即为AP+BQ的最小值;∴BQ=CQ,∴MB=3,BC=4,∴MC=5,∴四边形APQB周长=AP+PQ+QB+AB=7+AP+BQ=12;故选:B.【总结提升】本题考查矩形的性质,直角三角形的性质,轴对称求最短距离;能够将四边形的周长转化为AP+BQ的最小值是解题的关键;针对练习1.有一以互相平行的直线a、b为岸的河流,其两侧有村庄A和村庄B,现在要在河上建一座桥梁MN(桥与河岸垂直),使两村庄之间的距离最短,从作图痕迹上来看,正确的是()A.B.C.D.【思路引领】根据轴对称确定最短路线问题,过村庄B作河岸的垂线并且等于河的宽度,然后与村庄A连接与河岸a相交于一点M,过点M作MN⊥a与b相交于点N,连接AM、BN,则AM+MN+BN即为最短距离.【总结提升】本题考查了轴对称确定最短路线问题,是此类题目的第二种类型,难度较大,利用的原理为平行四边形的对边相等.2.(2023•浠水县二模)如图,矩形ABCD中,AB=4,BC=8,E为CD边的中点,点P、Q为BC边上的两个动点,且PQ=2,当BP=()时,四边形APQE的周长最小.A.3B.4C.5D.2√2【思路引领】要使四边形APQE的周长最小,由于AE与PQ都是定值,只需AP+EQ的值最小即可.为此,先在BC边上确定点P、Q的位置,可在AD上截取线段AF=DE=2,作F点关于BC的对称点G,连接EG 与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,则此时AP+EQ=EG最小,然后过G点作BC的平行线交DC的延长线于H点,那么先证明∠GEH=45°,再由CQ=EC即可求出BP的长度.【解答】解:如图,在AD上截取线段AF=PQ=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,过G点作BC的平行线交DC的延长线于H点.∵GH=DF=6,EH=2+4=6,∠H=90°,∴∠GEH=45°,∴∠CEQ=45°,设BP=x,则CQ=BC﹣BP﹣PQ=8﹣x﹣2=6﹣x,在△CQE中,∠QCE=90°,∠CEQ=45°,∴CQ=EC,故选:B.【总结提升】本题考查了矩形的性质,轴对称﹣最短路线问题的应用,题目具有一定的代表性,是一道难度较大的题目,对学生提出了较高的要求.3.(2022秋•离石区期末)为贯彻国家城乡建设一体化和要致富先修路的理念,某市决定修建道路和一座桥,方便张庄A和李庄B的群众出行到河岸a.张庄A和李庄B位于一条河流的同一侧,河的两岸是平行的直线,经测量,张庄A和李庄B到河岸b的距离分别为AC=p(m),BD=q(m),且CD=(p+q)m,如图所示.现要求:建造的桥长要最短,然后考虑两村庄到河流另一侧桥头的路程之和最短,则这座桥应建造在C,D间距离C m处.(河岸边上的点到河对岸的距离都相等)【思路引领】作B点关于直线b的对称点B',连接AB'交b于点P,此时P点到A与B的距离和最短.【解答】解:作B点关于直线b的对称点B',连接AB'交直线b于点P,∴BP=B'P,∴AP+BP=AP+B'P≥AB',此时P点到A与B的距离和最小,过B'作B'M∥CD,延长AC与B'M交于点M,∴B'M=CD,∵AC=p(m)、BD=q(m),CD=(p+q)m,∴AM=(p+q)m,∴∠CAP=45°,【总结提升】此题主要考查了最短路线问题,正确作出辅助线,构造出最短路线为斜边的直角三角形是解决本题的解题关键.4.如图,某条护城河在CC'处直角转弯,河宽不变,从A处到达B处,须经两座桥,如何恰当地架桥才能使从A地到B地的路程最短?【思路引领】由于含有固定线段“桥”,导致不能将ADD′E′EB通过轴对称直接转化为线段,需要构造平行四边形将AD、BE平移至D′F、E′B',即可得到桥所在位置.【解答】解:如图,作AF⊥CM,作BB'⊥CN,截取AF=BB',连接B'F交两河岸为D',E',作D'D⊥CM于D,作E'E⊥CN于E,连接AD,BE,则折线ADD′E′EB的长度等于折线AFD′E′B′B的长度,等于折线FD′E′B′的长度+AF+BB′.而折线FD′E′B′以线段FB′最短,∴确定两座桥的位置是线段DD'和BB'.【总结提升】此题考查了轴对称﹣最短路径问题,由于有固定长度的线段,常用的方法是构造平行四边形,。
最短路径——“将军饮马”问题基本类型总结【问题1】作法图形原理在直线l 上求一点P ,使PA +PB 值最小.连AB ,与l 交点即为P .两点之间线段最短.PA +PB 最小值为AB .【问题2】“将军饮马”作法图形原理在直线l 上求一点P ,使PA +PB 值最小.作B 关于l 的对称点B '连A B ',与l 交点即为P .两点之间线段最短.PA +PB 最小值为A B '.【问题3】作法图形原理在直线l 1、l 2上分别求点M 、N ,使△PMN 的周长最小.分别作点P 关于两直线的对称点P '和P '',连P 'P '',与两直线交点即为M ,N .两点之间线段最短.PM +MN +PN 的最小值为线段P 'P ''的长.在直线1l 、2l 上分别求点N ,使四边形PQMN 的周长最小.【问题5】“造桥选址”图形直线m ∥n ,在m 、上分别求点M 、N ,使m ,且AM +MN +BN 的值最小.【问题6】图形在直线l 上求两点M 、在左),使a MN ,并使MN +NB 的值最小.【问题7】图形1上求点A ,在2l ,使PA +AB 值最小.m n BA【问题8】作法图形原理A 为1l 上一定点,B 为2l 上一定点,在2l 上求点M ,在1l 上求点N ,使AM +MN +NB 的值最小.作点A 关于2l 的对称点A ',作点B 关于1l 的对称点B ',连A 'B '交2l 于M ,交1l 于N .两点之间线段最短.AM +MN +NB 的最小值为线段A 'B '的长.【问题9】作法图形原理在直线l 上求一点P ,使PB PA -的值最小.连AB ,作AB 的中垂线与直线l 的交点即为P .垂直平分上的点到线段两端点的距离相等.PB PA -=0.【问题10】作法图形原理在直线l上求一点P,使PB PA -的值最大.作直线AB ,与直线l 的交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB .PB PA -的最大值=AB .【问题11】作法图形原理在直线l 上求一点P ,使PB PA -的值最大.作B 关于l 的对称点B '作直线A B ',与l 交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB '.PB PA -最大值=AB '.【问题12】“费马点”作法图形原理△ABC 中每一内角都小于120°,在△ABC 内求一点P ,使PA +PB +PC 值最小.所求点为“费马点”,即满足∠APB =∠BPC =∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P即为所求.两点之间线段最短.PA +PB +PC 最小值=CD .。
17.1(11)勾股定理--与最短路径问题一.【知识要点】1.两点之间线段最短:⑴将军饮马型;⑵几何体上两点最短型2.垂线段最短型3.造桥选址型二.【经典例题】1.如图一个圆柱,底圆周长10cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .2.如图一个圆柱,底圆周长10cm ,高4cm ,点B 距离上边缘1cm,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .3.如图,圆柱形容器中,高为0.4m ,底面周长为1m ,在容器内壁..离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁..,与蚊子相对..的点A 处,求壁虎捕捉蚊子的最短距离(容器厚度忽略不计).4.编制一个底面半径为6cm 、高为16cm 的圆柱形花柱架,需用沿圆柱表面绕织一周的竹条若干根,如图中的111AC B ,222,A CB ,则每一根这样的竹条的长度最少是__________.5.如图,圆柱底面半径为cm ,高为9cm ,点A 、B 分别是圆柱两底面圆周上的点,且A 、B在同一高上,用一根棉线从A 点顺着圆柱侧面绕3圈到B 点,则这根棉线的长度最短为______.6.一只蚂蚁从长为4cm,宽为3 cm ,高是5 cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是____________cm 。
7.已知 A (1,1)、B (4,2).P 为 x 轴上一动点,求 PA+PB 的最小值.8.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是__________dm.2A B三.【题库】【A 】1.如图,一个长方体盒子,一只蚂蚁由A 出发,在盒子的表面上爬到点C 1,已知AB=7cm ,BC=CC 1=5 cm ,则这只蚂蚁爬行的最短路程是________.2.如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则这只蚂蚁沿着台阶面爬行的最短路程是________.3.如图,∠ABC =30°,点D 、E 分别在射线BC 、BA 上,且BD =2,BE =4,点M 、N 分别是射线BA 、BC 上的动点,当DM +MN +NE 最小时,(DM +MN +NE )2的值为( )A 、20B 、26C 、32D 、36【B 】1.如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,使 PD+PE 的和最小,则这个最小值为( ) A.23 B. 26 C.3 D.6A 1B 1C 1D 1 A B C D2.如图,一个无盖的长方体长、宽、高分别为8cm 、8cm 、12cm ,一只蚂蚁从A 爬到C 1,怎样爬路线最短,最短路径是多少?3.如图,在Rt ABC ∆中,90,45,2B BCA AC ︒︒∠=∠==,点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .22-B .2C .21+D .14.如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .4dmB .2dmC .2dmD .4dm8cm 8cm12cm【C 】 1.(8分)如图,要在河边修建一个水泵站,分别向张村A 和李庄B 送水,已知张村A. 李庄B 到河边的距离分别为2km 和7km ,且张、李二村庄相距13km.(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置;(2)如果铺设水管的工程费用为每千米1500元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元?2.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=DC=5,点P 在BC 上移动,则当PA+PD 取最小值时,PA+PD 长为( )A .8 B.4+15 C .152 D .1723.如图,在边长为 2 的菱形 ABCD 中,∠ABC =60°,若将△ACD 绕点 A 旋转,当 AC ′、AD ′分别与 BC 、CD 交于点 E 、F ,则△CEF 的周长的最小值为( )A.2B.23C.2+3D. 44.如图,在矩形ABCD 中,AB =5,BC =8,点E 是BC 中点,点F 是边CD 上的任意一点,则△AEF 的周长最小时值为( )A .17B .21C .13+41 D. 13+345.如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为( )。
初二数学最短路径问题
【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.
②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.
③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.
④全局最短路径问题 - 求图中所有的最短路径.
【问题原型】“将军饮马”,“造桥选址”,“费马点”.
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.
【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.
【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.。
初二数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题 - 求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.在直线l 上求一点P ,使PB PA -的值最大.作直线AB ,与直线l 的交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB .PB PA -的最大值=AB .【问题11】 作法图形 原理在直线l 上求一点P ,使PB PA -的值最大.作B 关于l 的对称点B '作直线A B ',与l 交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB '. PB PA -最大值=AB '.【问题12】“费马点” 作法图形 原理△ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小.所求点为“费马点”,即满足∠APB =∠BPC =∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求.两点之间线段最短. P A +PB +PC 最小值=CD .【精品练习】1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( )A .3B .26C .3D 62.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2B .32C .32+D .4lBAlPABl ABlBPAB'ABCPEDCBAADEPB C3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为( )A .120°B .130°C .110°D .140°4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重合), 且ED =AE ,则线段AE 的取值范围是 .6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+)7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0).OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______. DEABCD MABMN8.已知A (2,4)、B (4,2).C 在y 轴上,D 在x 轴上,则四边形ABCD 的周长最小值为 ,此时 C 、D 两点的坐标分别为 .9.已知A (1,1)、B (4,2).(1)P 为x 轴上一动点,求PA +PB 的最小值和此时P 点的坐标;(2)P 为x 轴上一动点,求PB PA 的值最大时P 点的坐标;(3)CD 为x 轴上一条动线段,D 在C 点右边且CD =1,求当AC +CD +DB 的最小值和此时C 点的坐标;10.点C 为∠AOB 内一点.(1)在OA 求作点D ,OB 上求作点E ,使△CDE 的周长最小,请画出图形;(2)在(1)的条件下,若∠AOB =30°,OC =10,求△CDE 周长的最小值和此时∠DCE 的度数.图①12.荆州护城河在CC'处直角转弯,河宽相等,从A处到达B处,需经过两座桥DD'、EE',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使A到B点路径最短?。
“PA+k·PB”型的最值问题 当k 值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“将军饮马”模型来处理,即可以转化为轴对称问题来处理。
当k 取任意不为1的正数时,通常以动点P 所在图像的不同来分类,一般分为2类研究。
其中 点P 在直线上运动的类型称之为“胡不归”问题;点P 在圆周上运动的类型称之为“阿氏圆”问题。
一、“将军饮马”模型“将军饮马”:把河岸看作直线L ,先取A (或B )关于直线L 的对称点A′(或B′),连接A′B (或B′A ),并与直线交于一点P ,则点P 就是将军饮马的地点,即PA+PB 即为最短路线。
例1. 如图,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 。
例2. 如图,在矩形ABCD 中,AB =10,AD =6,动点P 满足S △PAB =31S 矩形ABCD ,则点P 到A ,B 两点距离之和PA+PB 的最小值为 .例3. 如图,∠AOB=30°,点M 、N 分别是射线OA 、OB 上的动点,OP 平分∠AOB ,且OP=6,△PMN 的周长最小值为 ;当△PMN 的周长取最小值时,四边形PMON 的面积为 。
变式:“造桥选址”模型例4. 如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a的距离为2,点B 到直线b 的距离为3,AB=302.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB 的值为 。
例5. 如图,CD 是直线y=x 上的一条定长的动线段,且CD=2,点A(4,0),连接AC 、AD ,设C 点横坐标为m ,求m 为何值时,△ACD的周长最小,并求出这个最小值。
二、“胡不归”模型有一则历史故事:说的是一个身在他乡的小伙子,得知父亲病危的消息后便日夜赶路回家。