将军饮马问题(课堂PPT)
- 格式:ppt
- 大小:10.16 MB
- 文档页数:18
将军饮马问题类型一、基本模式类型二、轴对称变换得应用(将军饮马问题)2、如图所示,如果将军从马棚M出发,先赶到河OA上得某一位置P,再马上赶到河OB上得某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P与Q),使得总路程MP+PQ+QN最短.【变式】如图所示,将军希望从马棚M出发,先赶到河OA上得某一位置P,再马上赶到河OB 上得某一位置Q。
请为将军设计一条路线(即选择点P与Q),使得总路程MP+PQ最短.3、将军要检阅一队士兵,要求(如图所示):队伍长为a,沿河OB排开(从点P到点Q);将军从马棚M出发到达队头P,从P至Q检阅队伍后再赶到校场N、请问:在什么位置列队(即选择点P与Q),可以使得将军走得总路程MP+PQ+QN最短?4。
如图,点M在锐角∠AOB内部,在OB边上求作一点P,使点P到点M得距离与点P到OA 边得距离之与最小5已知∠MON内有一点P,P关于OM,ON得对称点分别就是与,分别交OM, ON于点A、B,已知=15,则△PAB 得周长为( )ﻫA。
15 B 7、5 C。
10 D. 24ﻫ6、已知∠AOB,试在∠AOB内确定一点P,如图,使P到OA、OB得距离相等,并且到M、N两点得距离也相等、7、已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB得周长取最小值时,求∠APB得度数、8、如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C、若P就是BC边上一动点,则DP长得最小值为______.ﻫ练习1、已知点在直线外,点为直线上得一个动点,探究就是否存在一个定点,当点在直线上运动时,点与、两点得距离总相等,如果存在,请作出定点;若不存在,请说明理由、2、如图,在公路得同旁有两个仓库、,现需要建一货物中转站,要求到、两仓库得距离与最短,这个中转站应建在公路旁得哪个位置比较合理?3、已知:、两点在直线得同侧, 在上求作一点,使得最小。