将军饮马问题
- 格式:ppt
- 大小:10.03 MB
- 文档页数:18
将军饮马问题的11个模型及例题将军饮马问题是一个经典的逻辑问题,涉及到将军如何用有限数量的马和酒到达目的地。
本文将介绍将军饮马问题的11个模型及相应的例题。
1. 直线模型将军与目的地之间没有障碍物,可以直线前进。
此时,将军只需将马拉到目的地即可。
例题1:将军与目的地之间距离为10公里,马的速度为每小时5公里,将军能否在2小时内到达目的地?2. 单个障碍物模型在将军与目的地之间存在一个障碍物,将军可以绕过该障碍物。
例题2:将军与目的地之间距离为15公里,马的速度为每小时4公里,障碍物位于距离将军起点5公里处,将军能否在3小时内到达目的地?3. 多个障碍物模型在将军与目的地之间存在多个障碍物,将军需要逐一绕过这些障碍物。
例题3:将军与目的地之间距离为20公里,马的速度为每小时6公里,障碍物位于距离将军起点分别为5公里、10公里和15公里的位置,将军能否在4小时内到达目的地?4. 跳跃模型将军可以让马跳过障碍物,从而直接到达目的地。
例题4:将军与目的地之间距离为12公里,马的速度为每小时8公里,将军在距离起点6公里处设置一个障碍物,将军能否在2小时内到达目的地?5. 限时模型将军需要在规定的时间内到达目的地。
例题5:将军与目的地之间距离为30公里,马的速度为每小时10公里,将军需要在3小时内到达目的地,是否可能?6. 守备模型目标地点有守备军,将军需要巧妙规避守备军。
例题6:将军与目的地之间距离为25公里,马的速度为每小时7公里,目的地有一支守备军位于距离目标地点10公里处,将军能否在4小时内到达目的地?7. 短平快模型将军不借助马匹,直接徒步走到目的地。
例题7:将军与目的地之间距离为8公里,将军的步行速度为每小时2公里,将军能否在4小时内到达目的地?8. 时间窗模型将军只能在规定时间范围内到达目的地。
例题8:将军与目的地之间距离为18公里,马的速度为每小时6公里,将军需要在3小时到4小时之间到达目的地,是否可能?9. 兵变模型将军需要利用敌军马匹达到目的地。
“将军饮马”常见模型及18道典型习题何为将军饮马?2000多年以前。
古希腊的亚历山大城里住着一位睿智的数学家海伦。
一天,城里来了一位将军,听闻海伦盛名,特来向他请教一个问题。
将军说,每天早上,他都骑着马儿从营帐出发,到河边让马儿饮水,然后,再去河岸同一侧的一块草地上带着马儿去吃草,问题时,在河岸的哪个具体位置喝水,行程最短?海伦略做沉思,给出了将军最佳方案。
此之谓“将军饮马”。
最佳方案为何?且阅下文:一、将军饮马常见的5种模型:1、一动两定(和最小):如图,点A是将军和马居住的营帐,点B是一块指定的草地,一条小河L潺潺流过,P是将军带着马儿喝水的地方,P点在何处时,将军和马儿走过的路PA+PB的值最小?解析:做A点关于L的对称点A’,连接A’B,与L的交点即为P点。
为什么这时PA+PB最小?假设L上有一点M(与P点不重合)。
∵A点与A’关于L对称∴AP=A’P;AM=A’M;∴AP + BP =A’P +BP =A’B而AM + BM = A’M +MB在△A’MB中,两边之和大于第三边∴A’B < A’M +MB;而M为L上任一点(与P点不重合)。
∴动点P在A’B与L交点处时AP+BP最小。
2、一定两动:如图,点A是将军和马居住的营帐,小河L1依然像上题中一样潺潺流过,P是将军带着马儿喝水的地方,不同的是,这次吃草的地方不在是一个指定的点,而是L2所代表的一片草地,Q则是将军骑马吃草的地方,水足草饱以后,将军和马儿会再回到营帐。
那么,P点、Q点在何处时,将军走过的路AP+PQ+QA的值最小?解析:做A点关于L1的对称点A’;做A点关于L2的对称点A‘’;连接A’A‘’,与L1和L2的交点即为P、Q。
为什么此时,AP+PQ+AQ的和最小?假设L1上有点M(不与P重合)、L2上有点N(不与Q重合)。
∵A点与A’关于L1对称;A点与A‘’关于L2对称。
∴AP=A’P;AQ=A”Q;AM=A’M;AN=A”N;∴AP+PQ+AQ = A’P+PQ+A”Q =A’A”;AM+MN+AN = A’M+MN+A”N在四边形A’MNA”中:A’M+MN+A”N >A’A”∴P、Q位于A’A”与L1和L2的交点处时,AP+PQ+AQ的和最小。
将军饮马问题例题
例题:一个将军饮马,有三个酒坛,其中一个酒坛里装着毒酒,另外两个酒坛里装着普通的酒。
这三个酒坛外观相同,将军无法通过外观来判断哪个酒坛是有毒的。
在喝下一杯毒酒后,将军将会立即死亡。
现在将军有一匹马,这匹马可以闻出毒酒,如果马喝下一杯毒酒,它将会在30分钟后死亡。
将军只有30
分钟的时间来确定哪个酒坛里装着毒酒,并且不允许酒坛之间进行任何类型的测量。
解法:将军可以按照以下步骤确定毒酒所在的酒坛:
1. 为了节省时间,将将军的马分成三组,每组10匹马。
标记
这三组马为A、B、C。
2. 让A组的马尝试第一个酒坛,让B组尝试第二个酒坛,C
组尝试第三个酒坛。
3. 让所有的马者都喝下一杯酒。
4. 等待15分钟。
5. 如果A组的马中有马死亡,那么第一个酒坛是有毒的;如
果B组的马中有马死亡,那么第二个酒坛是有毒的;如果C
组的马中有马死亡,那么第三个酒坛是有毒的。
6. 如果在15分钟内没有任何马死亡,那么第一个酒坛是安全的,因此第二个酒坛是有毒的;如果A和B组的马都没有死
亡,那么第三个酒坛是有毒的。
这样,将军可以在30分钟内确定哪个酒坛里装着毒酒。
将军饮马问题起源:古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦。
有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题:将军从A地出发到河边饮马,然后再到B地军营视察,显然有许多走法。
问走什么样的路线最短呢?精通数理的海伦稍加思索,便作了完善的回答。
这个问题后来被人们称作“将军饮马”问题。
让我们来看看数学家是怎样解决的。
海伦发现这是一个求折线和最短的数学问题。
根据公理1连接两点的所有线中,直线段最短。
只知道两点间直线段最短,那么显然要把折线变成直线再解。
如果直接连AB,与I不会相交,怎么办呢?当A、B位于I的异侧时,就有交点了。
于是我们就希望在I的另一侧找一点A ',使得连A ' B与I相交于P点后(这时A ' P+ PB最短)线段A ' P与AP 一样长.由对称的知识可知道,A关于I的对称点就有资格扮演A '的角色。
解:如图1先作A关于I的对称点A ',连接A ' B与I相交于P点,则AP + PB就最小.那么这样作出的AP + PB是否真的最小呢?要证明它只需要在I 上任取一点P',证明AP'+P‘ A >AP + PB就行了。
这点好证明:事实上因为A '、A关于I对称,有AP =A ' P、AP ' = A ' P',又由公理2:三角形的两边之和大于第三边.AP'+ P‘ B=A ' P'+ P‘ B>A ' B = A ' P+ PB= AP+ PB.原来海伦解决本问题时,是利用作对称点把折线问题转化成直线问题求解的。
后来这一方法已形成了思想,它在解决许多问题中都在起作用。
现在人们把凡是用对称点来实现解题的思想方法叫对称原理。
例题分析:1、已知A,B两点在MN同侧,如图所示,在MN上求一点P,使:I PA- PB| 最大连接BA并延长交MN于P | PA-PB| =|AB|在MN上再任意取一点P'三角形P'AB中 | P'A-P'B | <AB=| PA —PB| 2、两点在直线的异侧如何做直线上一点是其到两点之差最短作线段AB 的中垂线,交直线I于点P,点P即为所求。
将军饮马做题顺序
“将军饮马”问题的做题顺序可以遵循以下步骤:
1.确定动点和定点:在题目中,将军的行走路径是动态的,而马的位置和军营是固定的。
因此,首先需要确定这些动点和定点。
2.转化动点为定点:根据“两点之间线段最短”的原则,可以通过找对称点的方法,将动点(将军的位置)转化为定点。
具体来说,就是找到将军关于河岸的对称点,这个点就是将军饮马的位置。
3.连接定点:连接军营(起点)、饮马点(转化后的定点)和B地(终点),形成一条线段。
这条线段就是将军行走的最短路径。
4.计算最短路径的长度:利用勾股定理或其他方法,计算出这条最短路径的长度。
以上就是“将军饮马”问题的做题顺序。
需要注意的是,在实际做题过程中,还需要根据题目的具体情况进行灵活处理。
将军饮马问题的原理
将军饮马问题是一个经典的数学问题,它的原理是利用线性方程组来解决实际问题。
这个问题的背景是:有一位将军要带兵过河,他手下有若干个骑兵和步兵,每个骑兵需要2匹马来驮运,每个步兵需要1匹马来驮运。
现在将军手中有一定数量的马,问能否满足所有人的渡河需求?
为了解决这个问题,我们可以设骑兵的数量为x,步兵的数量为y,马的数量为z。
根据题意,我们可以得到以下两个方程:2x + y = z (每匹马可以驮运一个骑兵或两个步兵)
x + y = z/2 (将军手中的马只能驮运部分人)
将第二个方程式变形得到 x = z/2 - y,将其代入第一个方程式中,消去x,得到:
2(z/2 - y) + y = z
化简后得到:
3y = z
因此,无论将军手中的马有多少只,只要骑兵和步兵的数量之比为2:1,就可以满足所有人的渡河需求。
这就是将军饮马问题的原理。
通过建立线性方程组并求解,我们可以找到问题的最优解。
将军饮马18道典型习题将军饮马"是一个古希腊数学问题,源于2000多年前。
当时,一位将军向城里的著名数学家海伦请教:他每天早上都要骑马到河边让马喝水,然后到河岸同一侧的一块草地上让马吃草。
将军想知道,在河岸的哪个具体位置让马喝水,可以让他和马儿走的路程最短。
经过思考,海伦给出了答案,这就是"将军饮马"问题。
以下是"将军饮马"问题的五种常见模型:1.一动两定(和最小)模型:假设点A是将军和马儿居住的营帐,点B是指定的草地,小河L在两点之间流过。
问题是,将军和马儿在哪个具体位置喝水,可以让他们走的路程最短?解决方法是,做A点关于L的对称点A',连接A'B,与L的交点即为P点。
这时,PA+PB最小。
为什么呢?因为在L 上任意取一点M(不与P重合),根据几何原理,PA+PB=A'P+PB=A'B,AM+MB>A'B,所以动点P在A'B与L 交点处时,PA+PB最小。
2.一定两动模型:假设点A和小河L1与第一种模型一样,但是这次,草地不是指定的点,而是由L2代表的一片草地。
问题是,在哪个具体位置喝水和吃草,可以让将军和马儿走的路程最短?解决方法是,做A点关于L1的对称点A',做A点关于L2的对称点A'',连接A'A'',与L1和L2的交点即为P、Q。
这时,AP+PQ+QA的和最小。
为什么呢?因为在L1上取点M(不与P重合),在L2上取点N(不与Q重合),根据几何原理,AP+PQ+AQ=A'P+PQ+A''Q=A'A'',AM+MN+AN>A'A'',所以动点P和Q在A'A''与L1、L2的交点处时,AP+PQ+QA的和最小。
3.两动一定模型:假设点A和小河L1与第一种模型一样,但是这次,将军要骑马到L2代表的一片草地吃草,然后再回到营帐。
关于将军饮马难题的练习10题
1. 将军饮马难题是著名的逻辑难题之一,以下是10个练题帮助理解和解决这个难题。
2. 题目一:题目一:
- 将军饮马难题描述了将军通过一条连续的河流骑马前行的情景。
- 请阐述将军饮马难题的具体要求和条件。
3. 题目二:题目二:
- 给定一个车辆的行驶速度、将军饮马的速度以及将军饮马的间隔时间,请计算将军饮马时车辆与将军的距离。
4. 题目三:题目三:
- 假设将军饮马的路径有所改变,如何调整速度和时间间隔,才能保持将军和车辆的固定距离?
5. 题目四:题目四:
- 假设将军饮马时遇到突发情况,需要停下来处理,重新上路后可以追上车辆吗?
6. 题目五:题目五:
- 若车辆的速度变化,将军饮马的速度还能保持不变吗?请解释为什么?
7. 题目六:题目六:
- 假设将军饮马的速度变化,车辆的速度保持不变,将军和车辆之间的相对距离如何变化?
8. 题目七:题目七:
- 将军饮马难题中是否有其他影响将军和车辆距离的因素?请列举并解释。
9. 题目八:题目八:
- 假设将军饮马的速度快于车辆的速度,将军和车辆之间的相对距离会怎样变化?
10. 题目九:题目九:
- 将军饮马难题中的数学模型是什么?使用该模型可以解决哪些相关问题?
11. 题目十:题目十:
- 将军饮马难题中是否存在法律或道德层面的问题?请阐述你的观点和理由。
以上是关于将军饮马难题的练习10题,希望能帮助你更好地理解和解决这个难题。