四则混合运算知识点
- 格式:docx
- 大小:15.61 KB
- 文档页数:5
四则混合运算的运算法则和运算顺序1.运算法则:在进行四则混合运算时,需要遵循以下几个基本的运算法则:1.1加法法则:两个数相加,结果等于这两个数的和。
例如:2+3=51.2减法法则:两个数相减,结果等于第一个数减去第二个数。
例如:5-3=21.3乘法法则:两个数相乘,结果等于这两个数的乘积。
例如:2×3=61.4除法法则:两个数相除,结果等于第一个数除以第二个数。
例如:6÷3=21.5括号法则:在括号中的运算先于其他运算进行。
例如:(2+3)×4=20。
2.运算顺序:在进行四则混合运算时,需要按照一定的运算顺序来进行。
具体的运算顺序如下:2.1先进行括号内的运算:括号内的运算优先级最高,要先计算括号内的运算。
例如:(2+3)×4,先计算括号内的2+3,得到5,再将5与4相乘,最终结果为20。
2.2其次进行乘法和除法运算:乘法和除法运算的优先级高于加法和减法运算。
例如:5×3+2÷4,先计算5×3得到15,再计算2÷4得到0.5,最后将15加上0.5,得到15.52.3最后进行加法和减法运算:加法和减法运算的优先级较低,要在前面的运算完成后进行。
例如:15+5-3,先计算15+5得到20,再将20减去3,最终结果为17需要注意的是,当存在同一优先级的运算时,按照从左到右的顺序进行计算。
例如:6÷3×2,先计算6÷3得到2,再将2与2相乘,最终结果为4综上所述,四则混合运算的运算法则包括加法、减法、乘法和除法法则,运算顺序为先进行括号内的运算,然后进行乘法和除法运算,最后进行加法和减法运算。
遵循这些法则和顺序,能够正确地进行四则混合运算,得出正确的结果。
第5讲分数四则混合运算(思维导图+知识梳理+例题精讲+易错专练)一、思维导图二、知识点梳理知识点一:分数四则混合运算的运算顺序1、运算顺序(1)分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同。
(2)在一个算式里,如果只含有同级运算,要按照从左往右的顺序进行计算。
(3)在一个算式里,如果含有两级运算,要先算二级运算(乘法或除法),后算一级运算(加法或减法)。
(4)在一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的,最后算中括号外面的。
2、分数四则混合运算的简便运算。
(1)整数的运算律或运算性质对于分数同样适用。
①加法交换律:a+b=b+a②加法结合律:(a+b)+c=a+(b+c)③乘法交换律:a×b =b×a④乘法结合律:(a×b )×c =a×(b×c )⑤乘法分配律:(a +b )×c =a×c +b×c(2)恰当地运用运算律或运算性质可以使计算简便。
在加减混合运算中,加括号或去括号时要注意括号前面的符号,如果是加号,括号里面不变号;如果是减号,括号里面加变减、减变加。
知识点二:用乘法和加、减法解决稍复杂的实际问题1.已知总量及一个部分量占总量的几分之几,求另一个部分量时,可以列形如a -a×bc或a×(1)b c -的算式解题(b≠0)。
2.已知一个量及另一个量比它多(或少)几分之几,求另一个量时,可以列形如a±a×bc或a×(1)b c ±的算式解题(b≠0)。
三、例题精讲考点一:分数四则混合运算的运算顺序1.计算下面各题,能简算的要简算。
215÷7×5989×25+35÷98(1-23×35)×56(719+2117)×17+1417110÷[35×(45-710)]2.一个数的13是15,求它的13的13是多少,列式是()。
小学数学四则混合运算知识点归纳知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没括号的算式里,如果只有提、加法或者只有乘坐、乘法,都必须从左往右按顺序排序。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式存有括号,必须先算括号里面的,再算括号外面的;小、中、小括号的排序顺序为小→中→小。
括号里面的排序顺序遵从以上1、2、3条的排序顺序。
知识点二:0的运算1、0无法搞除数;字母则表示:并无,a÷0就是错误的抒发2、一个数加上0还得原数;字母表示:a+0=a3、一个数乘以0互相关照原数;字母则表示:a-0=a4、一个数减去它本身,差是0;字母表示:a-a=05、一个数和0相加,仍得0;字母则表示:a×0=06、0除以任何非0的数,还得0;字母表示:0÷a=0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数,等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
数字的四则混合运算知识点总结数学作为一门重要的学科,四则混合运算是其中的基础内容之一。
掌握好四则混合运算的知识点,对于解决实际问题、提高计算能力都有着重要的意义。
本文将对数字的四则混合运算知识点进行总结,并探讨一些常见的应用场景。
一、加法运算加法是最基础的运算符之一,其运算规则如下:1. 相同符号的两个数相加,符号不变,绝对值相加;2. 不同符号的两个数相加,绝对值相减,结果的符号取较大数的符号。
例如:求解表达式4 + (-7)的结果。
根据规则2,绝对值相减得到结果为3,然后根据规则2,结果的符号取较大数-7的符号,即为负号。
所以,4 + (-7) = -3。
二、减法运算减法是加法的逆运算,其运算规则如下:1. 减去一个正数等于加上一个负数;2. 减去一个负数等于加上一个正数。
例如:求解表达式8 - (-3)的结果。
根据规则2,减去一个负数可以转化为加上该负数的相反数,即8 - (-3) = 8 + 3 = 11。
三、乘法运算乘法是基本的运算符之一,其运算规则如下:1. 相同符号的两个数相乘,结果为正,绝对值相乘;2. 不同符号的两个数相乘,结果为负,绝对值相乘。
例如:求解表达式(-2) × (-5)的结果。
根据规则1,相同符号的两个数相乘,结果为正,绝对值相乘;所以,(-2) × (-5) = |(-2)| × |(-5)| = 2 ×5 = 10。
四、除法运算除法是乘法的逆运算,其运算规则如下:1. 除以一个正数等于乘以该正数的倒数;2. 除以一个负数等于乘以该负数的倒数。
例如:求解表达式12 ÷ (-3)的结果。
根据规则2,除以一个负数等于乘以该负数的倒数;所以,12 ÷ (-3) = 12 × (-1/3) = -4。
五、混合运算混合运算即在一个算式中同时包含加、减、乘、除运算,按照“先乘除后加减”的原则进行运算。
例如:求解表达式3 × (-4) + 2 ÷ (-1)的结果。
小学数学四则混合运算知识点归纳知识点一:四则运算的概念和运算顺序1.加法、除法和减法统称为四种运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3.在没有括号的公式中,如果有乘、除、加、减,应先计算乘除法,然后再计算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点2:0的操作1、0不能做除数;字母表示:无,a÷0是错误的表达2.数字加0返回原始数字;字母表示:a+0=a3、一个数减去0还得原数;字母表示:a-0=a4.一个数减去它本身,差为0;字母表示:A-A=05、一个数和0相乘,仍得0;字母表示:a×0=06.将0除以除0以外的任何数字得到0;字母表示:0÷a=0(a≠ 0)知识点三:运算定律1.加法交换定律:在两个数的加法运算中,两个加数的位置交换,总和不变。
字母表明:a+b=b+a2.加法组合定律:三个数相加时,先将前两个数相加,再加另一个加数;或者先把最后两个数相加,再加上另一个加数,其和保持不变。
字母表明:(a+b)+c=a+(b+c)3.乘法交换定律:在两个数相乘的乘法运算中,两个乘法器的位置交换,乘积不变。
字母表明:a×b=b×a4.乘法组合法则:三个数相乘时,先将前两个数相乘,或先将后两个数相乘,乘积不变。
字母表明:(a×b)×c=a×(b×c)5.乘法分布律:两个数相加(或减法),然后再乘以另一个数,等于该数分别与两个加数(减法)相乘,然后将两个乘积相加(减法)得到相同的数。
字母表明:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b-c)=a×b-a×c;a×b-a×c=a×(b-c)6、连减定律:① 一个连续减去两个数的数等于减去该数后两个数的和,且该数保持不变;字母表明:a—b—c=a—(b+c);a—(b+c)=a—b—c;② 在三个数字的加法和减法运算中,最后两个数字的位置被交换,并且数字保持不变。
小数四则混合运算知识点总结嘿,朋友们!今天咱来聊聊小数四则混合运算的知识点哈。
咱先说说加和减吧,就好比你去买零食,薯片 5.5 元一包,果冻 3.2 元一个,那你买一包薯片和一个果冻一共要花多少钱呀,这就是加法嘛,5.5 加 3.2 等于 8.7 元。
要是你有 10 元钱,买完这些东西还剩多少钱呢,这就是减法啦,10 减 8.7 等于 1.3 元。
再来说说乘,比如说你看到一种巧克力,一小盒有 1.5 块,一大盒里有5 小盒,那一大盒里有多少块巧克力呀,这就得用乘法啦,1.5 乘 5 等于7.5 块。
然后是除,有一次我和朋友去分蛋糕吃,一个大蛋糕重 12.6 千克,我们要分给 6 个人,那每个人能分到多少蛋糕呢,就是 12.6 除以 6 等于 2.1 千克呀。
四则混合运算呢,就是这些运算都可能掺和在一起。
就像上次我和小伙伴们玩游戏,游戏里有各种任务,有的任务要先加法再乘法,有的要先减法再除法,可复杂啦,但我们玩得可带劲了!我们就像在小数四则混合运算的世界里冒险一样,要仔细思考每一步该怎么做。
哎呀呀,小数四则混合运算其实就像我们生活中的各种小事情一样,只要我们用心去对待,就一定能搞明白滴!大家加油哦,以后遇到小数四则混合运算就不会头疼啦,哈哈!
以上就是我对小数四则混合运算知识点的总结啦,希望对大家有帮助哟!。
四则混合运算知识点讲解学习
1.运算顺序:按照运算顺序进行四则混合运算是解决问题的基本原则。
运算顺序是指先乘除后加减,如果有多个乘法或除法运算,按照从左到右
的顺序进行。
括号里的运算按照特定的顺序进行。
例如,表达式2+3×4
的运算顺序是先进行乘法3×4得到12,再加2得到14
2.加法和减法:加法是将两个数或多个数相加,减法是将一个数减去
另一个数。
在进行加法和减法时,只需要按照运算顺序进行即可。
例如,20+15-8的运算顺序是先进行加法20+15得到35,再进行减法35-8得到
27
3.乘法:乘法是将两个数相乘得到积。
在进行乘法运算时,只需要将
两个数相乘即可。
例如,5×6的结果是30。
4.除法:除法是将一个数除以另一个数得到商。
在进行除法运算时,
需要注意除数不能为0。
除数为0会导致无法得到有效的结果。
例如,
10÷2的结果是5
5.括号运算:在四则混合运算中,括号运算是最先进行的运算。
在有
括号的表达式中,先计算括号内的表达式再进行其他运算。
例如,表达式
2×(3+4)的括号运算先计算括号内的3+4得到7,再进行乘法2×7得到
14
通过对四则混合运算的学习,我们能够在面对复杂的数学问题时能够
清晰地进行思考解决。
若要在四则混合运算中迅速准确地得出结果,需要
灵活运用运算顺序和基本运算法则,注意数学中的特殊情况,如除数不能
为0等。
此外,还需要多做练习,通过不断实践提高运算的速度和准确性。
四则混合运算法则在数学中,四则混合运算是一种基本的数学运算方式,包括加法、减法、乘法和除法。
这些运算法则是数学学习的基础,也是解决实际问题的重要工具。
在本文中,我们将深入探讨四则混合运算法则的应用和相关知识。
一、加法。
加法是最基本的运算法则之一,用来表示两个或多个数的总和。
例如,2 + 3 = 5,表示两个数相加的结果为5。
在实际生活中,加法常常用来表示物品的累加数量,比如购物时计算总价,或者工程中计算总量等。
二、减法。
减法是用来表示两个数之间的差值。
例如,5 3 = 2,表示5减去3的结果为2。
减法常常用来表示物品的剩余数量,比如库存管理中的减少量,或者时间管理中的剩余时间等。
三、乘法。
乘法是用来表示两个或多个数的相乘结果。
例如,2 × 3 = 6,表示2和3相乘的结果为6。
乘法在实际生活中有着广泛的应用,比如计算面积、体积、速度等。
四、除法。
除法是用来表示一个数被另一个数整除的结果。
例如,6 ÷ 3= 2,表示6被3整除的结果为2。
除法在实际生活中常常用来表示比率、百分比、平均数等。
以上是四则混合运算的基本法则,下面我们将深入探讨这些运算法则的应用和相关知识。
四则混合运算的应用。
四则混合运算在实际生活中有着广泛的应用,比如在购物、做饭、工程、金融等方面都有着重要的作用。
下面我们将分别介绍四则混合运算在不同领域的应用。
1. 购物。
在购物时,我们常常需要进行四则混合运算,比如计算总价、折扣、找零等。
通过加法和乘法,我们可以计算出购物车中各种商品的总价;通过减法,我们可以计算出打折后的价格;通过除法,我们可以计算出每件商品的平均价格等。
2. 做饭。
在做饭时,我们也需要进行四则混合运算,比如计算食材的用量、烹饪时间、热量等。
通过乘法,我们可以计算出不同食材的配比;通过减法,我们可以计算出烹饪后的剩余量;通过除法,我们可以计算出每份食物的热量等。
3. 工程。
在工程中,四则混合运算也有着重要的应用,比如计算材料的用量、工程周期、成本等。
知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
四则混合运算混合运算是指在一个表达式中同时使用了不同的四则运算。
在进行混合运算时,需要遵循运算的优先级规则,以确保计算结果的准确性。
本文将介绍四则混合运算的基本概念、优先级规则以及一些示例来巩固理解。
一、基本概念四则混合运算由加法、减法、乘法和除法组成。
在进行混合运算时,需要根据运算符的优先级和结合性进行计算。
四则混合运算常见的运算符有+、-、*和/。
二、运算符优先级规则在四则混合运算中,有一定的运算符优先级规则,一般按照以下顺序进行计算:1. 括号内的表达式具有最高优先级,先计算括号内的表达式。
2. 乘法和除法的优先级高于加法和减法,先进行乘法和除法运算。
3. 同等优先级的加法和减法按照从左到右的顺序进行计算。
三、示例演算为了更好地理解四则混合运算的原理,我们来看几个示例演算。
示例1:计算表达式:2 + 3 * 4 - 5首先按照优先级规则,先计算乘法运算:2 + 12 - 5接下来按照从左到右的顺序计算加法和减法运算:14 - 5最终结果为:9示例2:计算表达式:(7 + 3) * (6 - 2)根据括号具有最高优先级的规则,首先计算括号内的表达式:10 * (6 - 2)接下来按照从左到右的顺序计算乘法运算:10 * 4最终结果为:40示例3:计算表达式:18 / 2 + 5 * 3按照乘法和除法优先级高于加法和减法的规则,先进行除法和乘法运算:9 + 5 * 3接下来按照从左到右的顺序计算加法运算:9 + 15最终结果为:24通过以上示例演算,我们可以看出,按照四则混合运算的优先级规则,可以确保计算结果的准确性。
四、结论四则混合运算是数学中常见的运算形式,涉及到加法、减法、乘法和除法的综合运算。
在进行混合运算时,需要按照运算符的优先级规则,合理进行计算。
了解四则混合运算的基本概念和优先级规则,可以帮助我们更好地理解和解决相关的问题。
通过本文对四则混合运算的介绍,相信读者对该知识点有了更深入的理解。
小学六年级数学上册四则混合运算4大知识点汇总(全)知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
2024年小学四年级数学四则混合运算知识总结一、四则混合运算的概念及基本规则四则混合运算是指在一个数学题中同时出现了加法、减法、乘法和除法的运算。
在进行四则混合运算时,我们需要遵守以下基本规则:1. 首先计算括号内的运算;2. 其次计算乘法和除法运算;3. 最后计算加法和减法运算;4. 如果存在多个括号,根据运算优先级依次计算。
二、整数的四则混合运算1. 加法运算:将两个整数按照加法的规则相加。
例如:321 + 123 = 444。
2. 减法运算:将两个整数按照减法的规则相减。
例如:543 - 321 = 222。
3. 乘法运算:将两个整数按照乘法的规则相乘。
例如:32 × 11 = 352。
4. 除法运算:将两个整数按照除法的规则相除。
例如:528 ÷ 4 = 132。
三、小数的四则混合运算1. 加法运算:将两个小数按照加法的规则相加。
例如:3.5 +2.3 = 5.8。
2. 减法运算:将两个小数按照减法的规则相减。
例如:7.6 - 4.2 =3.4。
3. 乘法运算:将两个小数按照乘法的规则相乘。
例如:1.2 × 0.5 = 0.6。
4. 除法运算:将两个小数按照除法的规则相除。
例如:5.6 ÷ 2 = 2.8。
四、分数的四则混合运算1. 加法运算:将两个分数按照加法的规则相加。
例如:1/4 +1/3 = 7/12。
2. 减法运算:将两个分数按照减法的规则相减。
例如:5/8 -3/8 = 1/4。
3. 乘法运算:将两个分数按照乘法的规则相乘。
例如:2/3 × 5/6 = 5/9。
4. 除法运算:将两个分数按照除法的规则相除。
例如:1/2 ÷ 1/4 = 2/1。
五、混合数的四则混合运算混合数是由一个整数和一个分数组成的数。
在进行混合数的四则混合运算时,我们需要先将混合数转化为带分数或假分数,然后再进行运算。
1. 加法运算:将两个混合数按照加法的规则相加。
小学四年级数学四则混合运算知识总结一、整数的加减乘除运算1. 整数的加法:将两个整数的绝对值相加,并根据相加结果的正负确定最终结果的正负。
2. 整数的减法:将减数取相反数,然后再进行整数的加法运算。
3. 整数的乘法:将两个整数的绝对值相乘,并根据原来两个数的正负确定最终结果的正负。
4. 整数的除法:将被除数和除数的绝对值相除,并根据原来两个数的正负确定最终结果的正负。
需要注意的是,除数不能为0,否则没有意义。
二、小数的加减乘除运算1. 小数的加法:将两个小数的小数部分相加,并将整数部分相加后加上小数部分的和。
2. 小数的减法:将减数的小数部分减去被减数的小数部分,并将整数部分相减后减去小数部分的差。
3. 小数的乘法:将两个小数的小数部分相乘,并将整数部分相乘后加上小数部分的积。
4. 小数的除法:将被除数的小数部分除以除数的小数部分,并将整数部分除以除数后加上小数部分的商。
需要注意的是,除数不能为0,否则没有意义。
三、整数和小数的加减乘除运算1. 将整数和小数分别转化为分数,再进行分数的加减乘除运算。
2. 运算结果可以是真分数、带分数或小数。
四、混合运算混合运算指在一个算式中包含有整数、小数、加减乘除等运算。
在进行混合运算时,需要按照运算的先后顺序进行,即先进行括号里的运算,然后进行乘除法运算,最后进行加减法运算。
五、特殊情况的处理1. 遇到有括号的混合运算,需要先计算括号里的运算,并将结果带入到其他运算中。
2. 遇到连续的乘法或除法运算,需要先计算乘法或除法,再计算后面的加法或减法。
3. 遇到含有多个运算符的混合运算,可以根据运算优先级进行计算,优先计算乘法和除法。
六、问题解答的步骤1. 阅读题目,理解题意。
2. 提取出问题中的关键信息,并分析需要进行的运算。
3. 按照运算的先后顺序进行计算。
4. 仔细核对计算过程和结果,确保没有错误。
5. 将计算结果用文字清晰地回答问题。
以上是小学四年级数学四则混合运算的基本知识总结,通过学习和实践运用,可以帮助学生提高对混合运算的理解和掌握,从而更好地解决相关问题。
小学数学:四则混合运算知识总结知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
小学数学:四则混合运算知识点总结知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
四则混合运算知识点
知识点一:四则运算的概念和运算顺序
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,要从左往右依次计算。
3、在没有括号的算式里,如果既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算
1、一个数加上0还得原数;字母表示:a+0 = a
2、一个数减去0还得原数;字母表示:a-0 = a
3、一个数减去它本身,差是0;字母表示:a-a =0
4、一个数和0相乘,仍得0;字母表示:a×0 =0
5、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)
6、0不能做除数,a÷0是错误的表达。
为什么?
如0÷5=5,因为一个数只有和0相乘,结果才是0,所以0除以一个不是0的数,商都是0;5÷0=,找不到商,因为0与任何数相乘的积都是0,不可能是5这样的非0数。
知识点三:乘除法的关系
1、因数x因数=积(求两个数的积用乘法)
48 ÷12 = 4
4 x 12 = 48 (积)÷(一个因数)=(另一个因数)
(因数)x(因数)=(积)48 ÷ 4 = 12
(积)÷(一个因数)=(另一个因数)
已知两个因数的积和其中一个因数,用除法计算;一个因数=积÷另一个因数
2、被除数÷除数=商(求两个数的商用除法)
48 ÷12 = 4
48 ÷ 4 = 12 (被除数)÷(商)=(除数)
(被除数)÷(除数)=(商)12 x 4 = 48
(商)x(除数)=(被除数)
除数=被除数÷商,被除数=商x除数
3、除法和乘法是互为逆运算的,运用除法可以验算乘法计算,运用乘法可以验算除法计算。
知识点四:运算定律
1、加法交换律:在两个数的加法运算中,例50+98+50
交换两个加数的位置,和不变。
字母表示:=50+50+98
a+b=b+a =100+98
=198
2、加法结合律:三个数相加,先把前两个例488+40+60
数相加,再加另一个加数;或者先把后两个=488+(40+60)
数相加,再加另一个加数;或者先把其中任=488+100
意两个数相加,再加另一个加数,和不变。
=588
字母表示:a+b+c=(a+b)+c=a+(b+c)
3、乘法交换律:两个数相乘的乘法运算中,例0.25×56×4
交换两个乘数的位置,积不变。
字母表示:=0.25×4×56
a×b=b×a =1×56
=56
4、乘法结合律:三个数相乘,先把前两例99×0.125×8
个数相乘,或先把后两个数相乘,积不变。
=99×(0.125×8)
字母表示:(a×b)×c=a×(b×c) =99×1
=99
5、乘法分配律:两个数相加(或相减)再1、分解式2、合并式
乘另一个数,等于把这个数分别同两个加25×(40+4) 135×12.3—135×2.3 数(减数)相乘,再把两个积相加(相=25×40+25×4 =135×(12.3—2.3) 减),得数不变。
字母表示:=1000+100 =135×10
①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;=1100 =1350
②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)
6、连减定律:
①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;
②在三个数的加减法运算中,交换后两个数的位置,得数不变。
字母表示:a—b—c=a—c—b;a—b+c=a+c—b
7、连除定律:
①一个数连续除以两个数, 等于这个数除以后两个数的积,得数不变。
字母表示:a÷b÷c=a÷(b×c);a÷(b×c)=a÷b÷c;
②在三个数的乘除法运算中,交换后两个数的位置,得数不变。
字母表示:
a÷b÷c=a÷c÷b;a÷b×c=a×c÷b
知识点四:简便计算例题
一、常见乘法计算:
1、整数:25×4=100 125×8=1000
2、小数:0.25×4=1 0.125×8=1
二、加法交换律与结合律的简算例题:三、乘法交换律与结合律的简算例题:65+28.6+35+71.4 25×0.125×4×8
=(65+35)+(28.6+71.4) =(25×4)×(0.125×8)
=100+100 =100×1
=200 =100
四、特殊例题
99×25.6+25.6 45×102 99×26 5.3×8+35.3×6—4×35.3 =99×25.6+25.6×1 =45×(100+2) =(100—1)×26 =35.3×(8+6—4)
=25.6×(99+1) =45×100+45×2 =100×26—1×26 =35.3×10
=25.6×100 =4500+90 =2600—26 =353
=2560 =4590 =2574
九、连减简便运算例子:
①528—6.5—3.5 ②528—89—128 ③52.8—(40+12.8)
=528—(6.5+3.5) =528—128—89 =52.8—12.8—150
=528—10 =400—89 =40—40
=518 =311 =0
十、连除简便运算例子:十一、其它简便运算例子:
3200÷25÷4 ①256—58+44 ②250÷8×4
=3200÷(25×4) =256+44—58 =250×4÷8 =3200÷100 =300—58 =1000÷8 =32 =242 =125。