高频功率放大器实验报告
- 格式:docx
- 大小:2.02 MB
- 文档页数:7
高频功率放大器实训报告《高频电子线路》实训报告题目:高频谐振功率放大器的性能研究设计过程:1.高频功率放大器简介高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。
低频功率放大器的工作频率低,但相对频带宽度却很宽。
例如,自20至20000Hz,高低频率之比达1000倍。
因此它们都是采用无调谐负载,如电阻、变压器等。
高频功率放大器的工作频率高(由几百Hz一直到几百、几千甚至几万MHz),但相对频带很窄。
例如,调幅广播电台(535-1605kHz的频段范围)的频带宽度为10kHz,如中心频率取为1000kHz,则相对频宽只相当于中心频率的百分之一。
中心频率越高,则相对频宽越小。
因此,高频功率放大器一般都采用选频网络作为负载回路。
由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。
2.高频功率放大器的分类高频功率放大器按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。
高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。
谐振功率放大器的特点:①放大管是高频大功率晶体管,能承受高电压和大电流。
②输出端负载回路为调谐回路,既能完成调谐选频功能,又能实现放大器输出端负载的匹配。
③基极偏置电路为晶体管发射结提供负偏压,使电路工作在丙类状态。
④输入余弦波时,经过放大,集电极输出电压是余弦脉冲波形。
3.功率放大器的三种工作状态高频功率放大器的效率是一个突出的问题,其效率的高低与放大器的工作状态有直接的关系。
实验二高频功率放大器一、实验目的1、了解丙类功率放大器的基本工作原理,掌握丙类放大器的调谐特性以及负载变化时的动态特性。
2、了解高频功率放大器丙类工作的物理过程以及当激励信号变化和电源电压Vcc皿皿皿皿皿响。
3、比较甲类功率放大器与丙类功率放大器的特点、功率、效率。
二、实验内容1、观察高频功率放大器丙类工作状态的现象,并分析其特点。
2、测试饼类功放的调谐特性。
3、测试丙类功放的负载特性。
4、观察电源电压变化对丙放工作状态的影响及激励信号变化、负载变化对工作状态的影响。
三、实验基本原理功率放大器一般分为甲类、乙类、甲乙类和丙类等工作方式,功率放大器通常作为发射机末级功放,以获得较大的输出功率和较高的效率,并将大功率的输出信号馈送到天线幅射出去。
功率放大器实际是一个能量转换器,即把电源共给的直流能量转化为交流能量,能量转换的能力即为放大器的效率。
为了获得较大的输出功率和效率,其工作状态通常为丙类工作状态。
功率放大器的主要特征是三价钴胺工作在非线性状态。
为了不失真地放大信号,它的负载必须是谐振回路。
集电极负载是一个高Q的LC并联震荡贿赂。
直流供电电路为各级提供适当的工作状态和能源。
由于基极未提供直流偏置电压,其工作状态为丙类工作状态。
集电极电流为余弦脉冲状,但由于在集电极电路内采用的是并联谐振回路使回路谐振于基频,那么它对基频呈现很大的纯电阻阻抗,而对谐波的阻抗很小,可视为短路,因此并联谐振电路由于通过集电极电流所产生的电位降Vc也几乎只含有基频。
这样,集电极电流的失真虽然很大,但由于下周六的这种滤波作用,仍然能得到正弦波形的输出。
本实验单元模块电路如图2-1所示。
该实验电路由两级功率放大器组成。
其中VT1(3DG12入XQ1与C15组成甲类功率放大器,工作在线性放大状态,其中R2、R12、R13为静态偏置电阻。
XQ2与CT2、C6组成的负载回路与VT3(3DG12)组成丙类放功率大器。
甲类功放的输出信号作为丙放的输入信号(由短路块J5连通)。
高频功率放大器实训报告
本文主要介绍了高频功率放大器的实训报告。
首先,我们介绍了高频功率放大器的技术参数,其整流采样技术可确保放大器的输出对象的功率稳定;其抗干扰能力强;其基于分压技术的调整器把状态参数改变为更好的性能状态;其精度和纹波;其可以降低功耗,保持合理的噪声比等。
此外,重点介绍了高频功率放大器工程实训的实验步骤:首先,进行各种电路元器件的检查,确认安装类型、位置、参数及特性等;接着,进行线路接线,排列出电路图,然后进行合格测试,最后进行调试和调整,调整输出的压放等,当功率放大器的性能完全符合要求时,实训就完成了。
最后,在实训过程中我们学习到高频功率放大器的原理、结构以及其基本调配技术,加深了对高频功率放大器的理解和认识,增加了对其调试和维护的实践能力,也有助于更好地应用此技术。
经过这次实训,不仅使我们掌握了高频功率放大器的知识,而且更加深入了解了高精度的功率放大器的实际应用,对高频功率放大器的调试和维护也有了更深的了解和实践能力,从而有了更好的应用能力。
实验一高频丙类功率放大器在高频范围内为获得足够大的高频输出功率, 必须采用高频放大器, 高频功率放大器主要用于发射机的未级和中间级, 它将振荡产生的信号加以放大, 获得足够高频功率后, 再送到天线上辐射出去。
另外,它也用于电子仪器作未级功率放大器。
高频功率放大器要求效率高, 输出功率大。
丙类放大器它是紧紧围绕如何提高它的效率而进行的。
高频功率放大器的工作频率范围一般为几百 kHz —几十MHz 。
一般都采用 LC 谐振网络作负载, 且一般都是工作于丙类状态, 如果要进一步提高效率, 也可工作于丁类或戊类状态。
一、实验目的及要求(一实验目的1. 进一步了解高频丙类功率放大器的工作原理和调试技术。
2. 熟悉负载变化对放大器工作状态的影响及各指标的测试方法。
3. 掌握输入激励电压, 集电极电压, 基极偏置电压变化对放大器工作状态的影响。
(二实验要求1. 认真阅读本实验教材及有关教材内容。
2. 熟悉本实验步骤,并画出所测数据表格。
3. 熟悉本次实验所需仪器使用方法。
(三实验报告要求1. 写出本次实验原理及原理图。
2. 认真整理记录的测试数据及绘出相应曲线图。
3. 对测试结果与理论值进行比较分析,找出产生误差的原因,提出减少实验误差的方法。
4. 详细记录在调谐和测试过程中发生的故障和问题,并进行故障分析,说明排除过程和方法。
5. 本次实验收获,体会以及改进意见。
二、实验仪器及实验板1.双踪示波器 (CA8020 一台2.高频信号发生器(XFG-7 一台3.晶体管直流稳压电源一台4.数字万用表一块5.超高频毫伏表(DA22 一台6.直流毫安表一块7.高频丙类功率放大器实验板一块三、实验原理及公式推导高频谐振放大器的主要作用是使电路输出功率大, 效率高; 主要特点是用谐振回路来实现阻抗变换,并且为了提高效率常工作在丙类状态。
高频功率放大器一般有两种:窄带高频功率放大器和宽带高频功率放大器。
前者由于频带比较窄, 故常用选频网络作为负载回路, 所以又称为谐振功率放大器。
深圳大学实验报告课程名称:高频电路实验项目名称:高频功率放大器实验电路学院:专业:指导教师:报告人:学号:班级:实验时间:2019年4月22日星期一实验报告提交时间:2019年5月6日星期一教务部制、激励电压、电源电压及负载变化对丙类功放工作状态的影响对放大器工作状态的影响E对放大器工作状态的影响(2)集电极电源电压CL R 分别为0.336K Ω、1.007KΩ、4.000KΩ、功放调谐特性测试 f(MHz) 5.3 5.5 5.7 5.9 6.1 6.3 6.5 6.7 6.9 7.1 7.3 Vc(Vpp) 1.84 1.70 1.681.541.521.481.401.321.281.241.12可观察到,随着bm U 的增大, cm U 也增大,当bm U 增大到一定程度,c U 波形出现凹陷,依然增大。
时放大器工作在欠压状态,C E 等于2C E 时放大器工作在临界状态,时放大器工作在过压状态,当C E 由大变小时放大器的工作状态由欠压进入过压,弦脉冲波形变为中间凹陷的脉冲波。
)负载电阻L R 变化对放大器工作状态的影响增加,动态负载线的斜率逐渐减小,cm U 逐渐增大,放大器工作状态由欠压到临界,幅值比欠压时略小,当C R 继续增大,cm U 进一步增大,放大器进入过压状态,此时动态负载线与饱和线相交,此后电流c i 随cm U 沿饱和线下降,电流波形顶端下凹。
可知,随着输入频率的增大,输出电压值随之减小指导教师批阅意见:注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。
高频功率放大器设计(总结)在高频放大里面一般说增益指的是功率增益,功率放大中甲类、乙类、甲乙类的效率都不是很高,而丙类放大的效率也适合高频功率放大。
在高频功率传输过程中,主要需要考虑的是阻抗匹配,如若阻抗匹配成功,那么丙类的效率就可以体现出来。
为什么需要阻抗匹配?因为高频的频率高,而波长短,如果在负载端不能将传输过来的能量全部吸收那么,将在有反射或是驻波的产生,不利于能量的传输。
阻抗失配的现象:①在输出端测得电压高于电源电压几百伏,原因是负载过大。
②在输入端测得波形不失真,而在负载端测得波形失真,原因是负载过小,匹配网络中心频率不对③在输入端测得波形不失真,而在负载端测得波形不失真但较小,原因是负载过小,匹配网络在中心频率是的负增益较大。
在设计书上的使用是变压器实现阻抗匹配,经过网络资源查询和分析,发现多是使用滤波网络实现阻抗匹配,因为手工绕制的变压器想要获得稳定的选频和阻抗匹配很难实现,而采用滤波网络实现稳定的选频和阻抗匹配较容易,并且容易控制,只要在测得匹配阻抗和负载阻抗之间的频率响应的中心频率为实验所需的中心频率,即可实现阻抗匹配。
现用一种简单的方法设计实现阻抗匹配如下图(假设需要将集电极内阻600欧姆,负载电阻75欧姆,采用T型匹配网路)此时的频率响应如下图:看图像可知,此时在电路是在5.2M实现了阻抗匹配调整参数是其中心频率在6M实现阻抗匹配,如图:此时匹配如图:那么整个电路的设计已近实现,总图如下:阻抗匹配成功后,测得效率可以达到88%,输出峰峰值11.5V注:(集电极扼流线圈的大小是基极偏置扼流线圈一百倍左右)分析集电极扼流线圈的作用:集电极扼流线圈愈小输出功率愈小,但是集电极扼流线圈大到一定程度输出功率不会增加,在一定程度上,增加扼流线圈的大小是保持直流电源输出电流一定的情况下增加输出电压从而提高了输出功率和效率,实验得到,一般集电极扼流线圈是基极偏置扼流线圈一百倍左右。
扼流线圈顾名思义扼流,经分析:当基极正想导通之后,集电极上面有余弦脉冲,额扼流线圈遏制电流流向直流电流,使其通向滤波网络还原波形并选频,用示波器测得的波形应该是类似方波的波形,如果扼流线圈的电感较小,那么将不能维持电流的的脉冲,三极管发热严重,但是当扼流线圈过大时,其内阻也将增大,功耗压降增大,效率降低,并且过大时对需要通过的高频基波分量有着负DB增益。
深圳大学实验报告
课程名称:高频电路
实验项目名称:高频谐振功率放大器
学院:信息工程学院
专业:
指导教师:
报告人:学号:班级:实验时间:
实验报告提交时间:
图3-1 丙类功率放大器原理电路
2.高频谐振功率放大器电路
高频谐振功率放大器电路如图3-2所示,其第3级部分与图3-1相同。
置放大器,C2、C6用以调谐,A、B点用作为这两级的输出测试点。
大器,当K4断开时可在C、D间串入万用表(直流电流档),以监测
近似作为集电极电流i C波形的测试点(R10=10Ω,C9=100pF,因而
的旁路)。
K1~K3用以改变集电极负载电阻。
功率放大器设计实验报告功率放大器设计实验报告引言:功率放大器是电子工程中常见的电路之一,它的作用是将输入信号的功率放大到更高的水平。
在本次实验中,我们将设计并测试一个功率放大器电路。
通过实验,我们将探索功率放大器的工作原理以及设计过程,并评估电路的性能。
一、实验目的本实验的目的是设计一个功率放大器电路,实现对输入信号的功率放大,并通过测试评估电路的性能。
二、实验器材与原理1. 实验器材:- 功率放大器芯片- 电源- 变阻器- 电容器- 电感器- 电阻器- 示波器- 多用表2. 实验原理:功率放大器的设计基于放大器的工作原理。
在本实验中,我们将使用晶体管作为功率放大器芯片。
晶体管是一种半导体器件,具有放大电流和功率的能力。
我们将通过调整电路中的元件值和布局,使得输入信号经过放大后输出功率增加,同时保持信号的准确性。
三、实验步骤1. 准备工作:- 将实验器材准备齐全,并确保连接正确。
- 将示波器和多用表接入电路,以便测量电压和电流。
2. 电路设计:- 根据实验要求和所需功率放大倍数,选择合适的晶体管芯片。
- 根据晶体管芯片的参数,计算所需的电阻、电容和电感值。
- 根据设计计算结果,选择合适的电阻、电容和电感器。
3. 电路搭建:- 将所选的电阻、电容和电感器按照电路图连接起来。
- 将晶体管芯片正确安装在电路板上。
- 确保电路连接正确,没有短路或接触不良的情况。
4. 电路测试:- 打开电源,调整电源电压到合适的值。
- 输入信号,观察输出信号的波形和功率变化。
- 使用示波器和多用表测量电路中的电压和电流值。
- 根据测量结果,评估电路的性能和功率放大效果。
四、实验结果与分析通过实验,我们获得了功率放大器电路的测试结果。
根据测量数据,我们可以评估电路的性能和功率放大效果。
通过对输入信号和输出信号的比较,我们可以确定功率放大器的放大倍数和频率响应。
五、实验总结本次实验我们成功设计并测试了一个功率放大器电路。
通过实验,我们深入了解了功率放大器的工作原理和设计过程。
通信电路实习报告姓名学号同组者指导老师熊文杰2011年11月28日至2011年12月8实习时间日内容提纲目录(一):设计原理 (4)(二):设计电路图 (4)(三):设计流程 (4)(四):焊接电路板 (8)(五):实验出现问题及解决 (11)(六):实习总结 (12)前言:在信息高速发展的21世纪,通信无疑是走在时代前沿的,未来的竞争更多的是信息的竞争。
而我们作为21世纪的接班人,新时代大学生,不但要提升我们的理论认知水平,更应加强我们的动手动脑实践能力。
而实习为我们提供了一个理论联系实际的平台,因此我们要好好把握这短暂而宝贵的实习机会,多多提问发现问题及时解决问题。
一、实习目的1.熟悉Protel99SE软件,会用它设计电子原理图和进行PCB设计。
2.认识各种电器元件的实际模型,熟悉各种实验仪器设备及焊接电路板的基本工具。
3.强化理论联系实际的能力,能将电路原理图转换为现实中的电路板并焊接定性。
4.通过实习加深对本专业学习研究的内容的进一步了解与认识。
二、实习地点长沙理工大学计通学院理科楼205、406实验室三、实习单位和部门长沙理工大学计通学院四、实习内容高频功率放大器设计与制作高频功率放大器设计与制作(一)设计原理1.本设计是一款AB类功高频率放大器,作为参考电路是具有一定代表性电路。
2.同学们可以设计不同的电路来完成实习制作。
3.本电路特点,工作带宽1~50MHz,12V低电压供电。
4.L1在FT37-43磁环上,用ф0.3双线绕5圈而成,绕制方法是先把双线拧在一起,然后在磁环上均匀绕5圈而成,取同相点和另一绕组的异相点接在一起做中间点。
L2在FT50-61的磁环上用ф0.6线绕15圈制成。
5.无极性电容一律采用陶瓷电容,电解电容一律采用旦质电容。
6.1S1588用来做温度补偿,在制作时一定要把二极管紧贴在三极管散热翼上。
(二)设计电路图如图所示。
电路图分析(三)设计流程:(1)启动Protel99SE进入设计窗(2)点击File文件/新建/弹出的对话框点击OK(3)点击Documents/File新建/双击Schematic Documents/单击Sheet1.Sch 进入设计窗口/放大/选择元器件/连线/设置参数需要使用:电阻1个,滑动变阻器1个,0.01uF电容8个,,电感1个,0.01uF极性电容2个,10uF极性电容1个,稳压管1个。
《高频功率放大器》课程设计报告专业:通信工程年级:10级学号:名:指导教师:日期:2012年12月24日功率放大器一、设计目的1、了解功率放大器的状态、功能及特点2、学习如何设计高频功率放大器3、进一步掌握波形参数的测试方法二基本要求(1)衰减器指标:衰减量40±2dB,特性阻抗50Ω,频带与放大器相适应。
(2)放大器指标:a)谐振频率:f0=15MHz;允许偏差±100kHz;b)增益:不小于60dB;c)−3dB带宽:2Δf0.7=300kHz;带内波动不大于2dB;d)输入电阻:R in=50Ω;e)失真:负载电阻为200Ω,输出电压1V时,波形无明显失真。
(3)放大器使用3.6V稳压电源供电(电源自备)。
最大不允许超360mW,尽可能减小功耗。
三、设计原理为了弥补在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。
为了获得足够大的高频输出功率,必须采用高频功率放大器。
高频功率放大器的工作频率高,但相对带宽窄,因此高频功率放大器常采用选频网络作为负载回路。
由于这一特点,高频功率放大器工作于丙类状态。
丙类功放一般工作在发射机的末级,以获得较大的输出功率。
丙类谐振放大器的原理图如图1-1所示。
图1-1 谐振放大器的基本工作电路四单元电路的分析1、系统组成系统包括3.6V电源、衰减器、多级运放放大模块。
将220V的电压经过自制的电源降成3.6V为系统供电,信号经衰减器衰减掉40dB,以使频带与放大器想适应;再经过高感选频网络得到谐振频率为15MHZ,增益不小于60dB,并保证在-3dB带宽时,2∫0.7=300KHZ的信号;再经过运放得到最终满足要求的信号。
2 衰减器设计电阻网络构成固定衰减器。
优点:电路简单,线性度好,高精密电阻器材易于购买,价格便宜衰减倍数没有太多限制。
基于此可构建Tee型、Pi型或桥接Tee型结构的衰减网络。
由于在题目要求中的特性阻抗为固定的50Ω,而且在后级的放大器中使用匹配的50Ω输入阻抗的放大器,阻抗固定则可以使用无源的π型对称网络电阻衰减网络进行衰减40dB,该网络衰减器具有输入输出特性阻抗一致,且不随衰减等级而变化的特点。
《通信电子线路》实验报告
实验名称:高频功率放大器
一、实验环境
Multisim 14.0
二、实验目的
1、进一步了解Multisim仿真步骤,熟练操作获取波形
2、仿真验证高频功率放大器原理,观察高频功率放大器工作在过压、临界、和欠压状
态的波形
三、实验原理和设计
高频功率放大器工作在三极管截止区,导通角小于90度,属于丙类放大器。
故三极管输出波形为尖顶余弦脉冲序列(临界或欠压)或是凹顶余弦脉冲序列(过压),信号经过选频网络后,能够恢复指定频率的波形信号。
原理图如图2.1所示。
图2.1
输出电流Ic和Vce 关系曲线,如图2.2
图2.2
四、实验步骤
1,按照原理图连接电路。
2,计算电路谐振频率,画出幅频响应和相频响应。
3,选择合适的电源电压值,使三极管发射结反偏,集电结反偏。
4,调节基极偏置电压源、信号源幅度、并联回路电阻值和集电极电源,观察输出电压Vc 、输出电流ic波形,判断电路状态
五、实验结果及分析
1、并联谐振回路的幅频响应和相频响应,如图4.1所示
图4.1
并联谐振回路谐振频率为11.56MHz,与电路参数计算相吻合。
其0.707带宽为15.65MHz
2、输入信号改为f= 11,56MHz,计算频谱如图4.2.1所示
图4.2.1
输出信号频谱如图4.2.2所示
图4.2.2
3、观察时域波形。
调节参数Vbb= 0.7V反偏,Vi = 0.9Vrms,Vcc = 10V,波形如图4.3.1所示
图4.3.1
根据三极管特性,发射极反偏时,电流信号Ib需克服Vbb和Vbz才能导通,所以Ib和Ic应为尖顶余弦脉冲。
但是仿真出波形为完整余弦脉冲,不符合理论。
可能的原因有,三极管导
通电压参数与理论值差异较大,发射结反偏程度低。
三极管模型不符合实际特性,无截止区。
调节Vbm,使Vi = 1.0V,其余参数不变,观察时域波形,如图4.3.2
输出电压Vc产生失真,可能因放大倍数等参数不合适导致。
图4.3.2
波形出现尖顶余弦脉冲,电路为欠压状态,导通角2θ=(202.6-188.6)ns * 11.56Mhz*360°= 58.26°,半导通角θ= 29.13°
信号电压,ic的频谱如图4.3.3所示
图4.3.3
继续增大信号电压至1.2V,波形如图4.3.4
图4.3.4
观察输出波形Ic,类似出现了凹顶余弦脉冲,所以电路处于过压状态,半导通角θ= 28°输入输出信号频谱如图4.3.5.1和4.3.5.2所示
图4.3.5.1
图4.3.5.2
六、小结
本次实验验证高频功率放大器的欠压和过压状态,观察欠压状态的尖顶余弦脉冲序列和过压时的凹顶余弦脉冲序列。
波形出现了畸变,可能的原因有,三极管截止电压参数不合适,电路静态工作点不在截止区。
实验中主要调节输入信号幅值以改变电路工作状态。
当信号幅值较小时,Vbemax较小,电路工作在欠压区;随之输入信号幅值增大,Vbemax增大,电路工作在过压区。
从波形看出,改变输入信号情况下过压状态的输出电流较大,输出功率较大。
本次实验让我学会了对高功放的仿真,更加加深了对于基本原理的了解。