高一数学二面角知识点
- 格式:docx
- 大小:37.21 KB
- 文档页数:3
1.2.4二面角学习目标核心素养1.掌握二面角的概念,二面角的平面角的定义,会找一些简单图形中的二面角的平面角.(重点)2.掌握求二面角的方法、步骤.(重点、难点) 1.通过学习二面角的概念及二面角的平面角,培养数学抽象素养.2.借助求二面角的方法和步骤的学习,提升逻辑推理、数学运算素养.我们知道,地球绕太阳公转的轨道平面称为“黄道面”,黄道面与地球赤道面交角(二面角的平面角)约为23°26′,它与天球相交的大圆为“黄道”,黄道及其附近的南北宽8°以内的区域为黄道带,黄道带内有十二个星座,称为“黄道十二宫”,从春分(节气)点起,每30°便是一宫,并冠以星座名,如白羊座、金牛座、双子座等等,这便是星座的由来,今天我们研究的问题便是二面角的平面角问题.1.二面角的概念(1)半平面:平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面.(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面.棱为l,两个面分别为α,β的二面角的面,记作α-l-β,若A∈α,B∈β,则二面角也可以记作A-l-B,二面角的范围为[0,π].(3)二面角的平面角:在二面角α-l-β的棱上任取一点O,以O为垂足,分别在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α-l -β的平面角.提醒:二面角的大小等于它的平面角大小,平面角是直角的二面角称为直二面角.[提示] (1)定义法由二面角的平面角的定义可知平面角的顶点可根据具体题目选择棱上一个特殊点,求解用到的是解三角形的有关知识.(2)垂面法作(找)一个与棱垂直的平面,与两面的交线就构成了平面角.(3)三垂线定理(或逆定理)作平面角,这种方法最为重要,其作法与三垂线定理(或逆定理)的应用步骤一致.2.用空间向量求二面角的大小如果n 1,n 2分别是平面α1,α2的一个法向量,设α1与α2所成角的大小为θ.则θ=〈n 1,n 2〉或θ=π-〈n 1,n 2〉,sin θ=sin 〈n 1,n 2〉.1.思考辨析(正确的打“√”,错误的打“×”) (1)二面角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(2)若二面角α-l -β的两个半平面的法向量分别为n 1,n 2,则二面角的平面角与两法向量夹角〈n 1,n 2〉一定相等.( ) (3)二面角的大小通过平面角的大小来度量. ( )[答案] (1)× (2)× (3)√ [提示] (1)× 不是.是[0,π]. (2)× 不一定.可能相等,也可能互补. (3)√2.(教材P 52练习B ②改编)在正方体ABCD -A 1B 1C 1D 1中,二面角A 1-BC -A 的余弦值为( )A .12B .23C .22D .33 C [易知∠A 1BA 为二面角A 1 -BC -A 的平面角, cos ∠A 1BA =AB A 1B =22.]3.已知二面角α-l -β,其中平面α的一个法向量m =(1,0,-1),平面β的一个法向量n =(0,-1,1),则二面角α-l -β的大小可能为________.60°或120° [cos 〈m ,n 〉=m ·n |m |·|n |=-12·2=-12, ∴〈m ,n 〉=120°,∴二面角α-l -β的大小为60°或120°.]4.在正方体ABCD -A 1B 1C 1D 1中,二面角A 1-BD -C 1的余弦值是________. 13[如图,建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),B (1,1,0),A 1(1,0,1),DA 1→=(1,0,1),DB →=(1,1,0). 设n =(x ,y ,z )是平面A 1BD 的一个法向量, 则⎩⎨⎧n ·DA 1→=0,n ·DB →=0,即⎩⎪⎨⎪⎧x +z =0,x +y =0,令x =1,则y =-1,z =-1,∴n =(1,-1,-1). 同理,求得平面BC 1D 的一个法向量m =(1,-1,1),则cos 〈m ,n 〉=m·n |m||n|=13, 所以二面角A 1-BD -C 1的余弦值为13.]用定义法求二面角【例1】C 在底面圆周上,若△P AB 是边长为2的正三角形,且CO ⊥AB ,求二面角P -AC -B 的正弦值.[解] 如图,取AC 的中点D ,连接OD ,PD ,∵PO ⊥底面,∴PO ⊥AC , ∵OA =OC ,D 为AC 的中点, ∴OD ⊥AC , 又PO ∩OD =O ,∴AC ⊥平面POD ,则AC ⊥PD , ∴∠PDO 为二面角P -AC -B 的平面角. ∵△P AB 是边长为2的正三角形,CO ⊥AB ,∴PO=3,OA =OC =1,OD=22, 则PD =(3)2+⎝ ⎛⎭⎪⎫222=142.∴sin ∠PDO =PO PD =3142=427,∴二面角P -AC -B 的正弦值为427.用定义求二面角的步骤(1)作(找)出二面角的平面角(作二面角时多用三垂线定理). (2)证明所作平面角即为所求二面角的平面角. (3)解三角形求角.[跟进训练]1.已知矩形ABCD 的两边AB =3,AD =4,P A ⊥平面ABCD ,且P A =45,则二面角A -BD -P 的正切值为________.13 [过A 作AO ⊥BD ,交BD 于O ,连接PO ,∵矩形ABCD 的两边AB =3,AD =4, P A ⊥平面ABCD ,且P A =45,∴BD =32+42=5,PO⊥BD ,∴∠POA是二面角A-BD-P的平面角,∵12×BD×AO=12×AB×AD,∴AO=AB×ADBD=125,∴tan∠POA=P AAO=45125=13.∴二面角A-BD-P的正切值为13.]用向量法求二面角[[提示](1)角的顶点在二面角的棱上;(2)角的两边分别在表示二面角的两个半平面内;(3)角的两边分别和二面角的棱垂直.[提示]条件平面α,β的法向量分别为u,v,α,β所构成的二面角的大小为θ,〈u,v〉=φ图形关系θ=φθ=π-φ计算cos θ=cos φcos θ=-cos φ1111=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O 1O ⊥底面ABCD ;(2)若∠CBA =60°,求二面角C 1-OB 1-D 的余弦值.[思路探究] (1)充分利用图形中的垂直关系,用传统的方法(综合法)可证. (2)利用垂直关系建立空间直角坐标系,用法向量求二面角的余弦值. [解] (1)证明:因为四边形ACC 1A 1和四边形BDD 1B 1均为矩形,所以CC 1⊥AC ,DD 1⊥BD ,又CC 1∥DD 1∥OO 1,所以OO 1⊥AC ,OO 1⊥BD ,因为AC ∩BD =O ,所以O 1O ⊥底面ABCD .(2)因为四棱柱的所有棱长都相等,所以四边形ABCD 为菱形,AC ⊥BD ,又O 1O ⊥底面ABCD ,所以OB ,OC ,OO 1两两垂直.如图,以O 为原点,OB ,OC ,OO 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系.设棱长为2,因为∠CBA =60°,所以OB =3,OC =1, 所以O (0,0,0),B 1(3,0,2),C 1(0,1,2), 平面BDD 1B 1的一个法向量为n =(0,1,0), 设平面OC 1B 1的法向量为m =(x ,y ,z ),则由m ⊥OB 1→,m ⊥OC 1→,所以3x +2z =0,y +2z =0,取z =-3,则x =2,y =23, 所以m =(2,23,-3),所以cos 〈m ,n 〉=m·n |m||n|=2319=25719.由图形可知二面角C 1-OB 1-D 的大小为锐角, 所以二面角C 1-OB 1-D 的余弦值为25719.1.(变问法)本例(2)条件不变,求二面角B -A 1C -D 的余弦值. [解] 如图建立空间直角坐标系.设棱长为2,则A 1(0,-1,2),B (3,0,0),C (0,1,0),D (-3,0,0). 所以BC →=(-3,1,0),A 1C →=(0,2,-2),CD →=(-3,-1,0). 设平面A 1BC 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧ n 1·A 1C →=0,n 1·BC →=0,即⎩⎨⎧2y 1-2z 1=0,-3x 1+y 1=0,取x 1=3,则y 1=z 1=3, 故n 1=(3,3,3).设平面A 1CD 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2·A 1C →=0,n 2·CD →=0,即⎩⎨⎧2y 2-2z 2=0,-3x 2-y 2=0,取x 2=3,则y 2=z 2=-3,故n 2=(3,-3,-3).所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-1521=-57.由图形可知二面角B -A 1C -D 的大小为钝角,所以二面角B -A 1C -D 的余弦值为-57.2.(变条件、变问法)本例四棱柱中,∠CBA =60°改为∠CBA =90°,设E ,F 分别是棱BC ,CD 的中点,求平面AB 1E 与平面AD 1F 所成锐二面角的余弦值.[解] 以A 为坐标原点建立空间直角坐标系,如图所示,设此棱柱的棱长为1,则A (0,0,0),B 1(1,0,1),E ⎝ ⎛⎭⎪⎫1,12,0,D 1(0,1,1),F ⎝ ⎛⎭⎪⎫12,1,0,AE →=⎝ ⎛⎭⎪⎫1,12,0,AB 1→=(1,0,1),AF →=⎝ ⎛⎭⎪⎫12,1,0,AD 1→=(0,1,1).设平面AB 1E 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎨⎧n 1·AB 1→=0,n 1·AE →=0,即⎩⎨⎧x 1+z 1=0,x 1+12y 1=0,令y 1=2,则x 1=-1,z 1=1, 所以n 1=(-1,2,1).设平面AD 1F 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎨⎧n 2·AD 1→=0,n 2·AF →=0,即⎩⎨⎧y 2+z 2=0,12x 2+y 2=0.令x 2=2,则y 2=-1,z 2=1.所以n 2=(2,-1,1).所以平面AB 1E 与平面AD 1F 所成锐二面角的余弦值为|n 1·n 2||n 1||n 2|=|(-1,2,1)·(2,-1,1)|(-1)2+22+12·22+(-1)2+12=|(-1)×2+2×(-1)+1×1|6×6=12.利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图.用坐标法的解题步骤如下:(1)建系:依据几何条件建立适当的空间直角坐标系. (2)求法向量:在建立的坐标系下求两个面的法向量n 1,n 2. (3)计算:求n 1与n 2所成锐角θ,cos θ=|n 1·n 2||n 1|·|n 2|.(4)定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ. 提醒:确定平面的法向量是关键.空间中的翻折与探索性问题【例CD =2AB =2BC =4,过A 点作AE ⊥CD ,垂足为E ,现将△ADE 沿AE 折叠,使得DE ⊥EC .取AD 的中点F ,连接BF ,CF ,EF ,如图乙.甲 乙(1)求证:BC ⊥平面DEC ; (2)求二面角C -BF -E 的余弦值.[思路探究] (1)根据线面垂直的判定定理即可证明BC ⊥平面DEC ; (2)建立空间坐标系,利用向量法即可求二面角C -BF -E 的余弦值. [解] (1)证明:如图,∵DE ⊥EC ,DE ⊥AE ,AE ∩EC =E , ∴DE ⊥平面ABCE ,又∵BC ⊂平面ABCE ,∴DE ⊥BC ,又∵BC ⊥EC ,DE ∩EC =E ,∴BC ⊥平面DEC .(2)如图,以点E 为坐标原点,分别以EA ,EC ,ED 为x ,y ,z 轴建立空间坐标系E -xyz ,∴E (0,0,0),C (0,2,0),B (2,2,0), D (0,0,2),A (2,0,0),F (1,0,1),设平面EFB 的法向量n 1=(x 1,y 1,z 1), 由EF →=(1,0,1),EB →=(2,2,0), 所以⎩⎨⎧x 1+z 1=0,2x 1+2y 1=0,∴取x 1=1,得平面EFB 的一个法向量n 1=(1,-1,-1), 设平面BCF 的一个法向量为n 2=(x 2,y 2,z 2), 由CF →=(1,-2,1),CB →=(2,0,0), 所以⎩⎨⎧x 2=0,x 2-2y 2+z 2=0,∴取y2=1,得平面BCF的一个法向量n2=(0,1,2),设二面角C-BF-E的大小为α,则cos α=|n1·n2||n1|·|n2|=|-1-2|5·3=155.1.与空间角有关的翻折问题的解法要找准翻折前后的图形中的不变量及变化的量,再结合向量知识求解相关问题.2.关于空间角的探索问题的处理思路利用空间向量解决空间角中的探索问题,通常不需要复杂的几何作图、论证、推理,只需先假设结论成立,设出空间的坐标,通过向量的坐标运算进行推断,把是否存在问题转化为点的坐标是否有解的问题来处理.[跟进训练]2.如图1,在等腰梯形ABCD中,AD∥CB,AD=2CB=4,∠ABC=120°,E为AD的中点,现分别沿BE,EC将△ABE和△ECD折起,使得平面ABE⊥平面BCE,平面ECD⊥平面BCE,连接AD,如图2.(2)求平面AED与平面BCE所成锐二面角的余弦值.图1图2[解](1)点G的轨迹是直线MN.理由如下:如图,分别取BC和CE的中点N和M,连接DM,MN,ND,则MN ∥BE ,又MN ⊄平面BEA ,BE ⊂平面BEA , ∴MN ∥平面BEA ,依题意有△ABE ,△BCE ,△ECD 均为边长为2的正三角形, ∴MD ⊥CE ,又平面ECD ⊥平面BCE ,则MD ∥平面BEA , ∴平面NMD ∥平面BEA ,∴点G 的轨迹是直线MN .(2)如图,以点M 为坐标原点,MB 为x 轴,MC 为y 轴,MD 为z 轴,建立空间直角坐标系,则E (0,-1,0),D (0,0,3),A ⎝ ⎛⎭⎪⎫32,-12,3,∴EA →=⎝ ⎛⎭⎪⎫32,12,3,ED →=(0,1,3),设平面AED 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·ED →=y +3z =0,n ·EA →=32x +12y +3z =0,取x =3,得n =(3,3,-3),取平面BCE 的一个法向量m =(0,0,1), 则cos 〈n ,m 〉=n ·m |n |·|m |=-55,∴平面AED 与平面BCE 所成锐二面角的余弦值为55.1.学会利用空间向量求二面角与定义法求二面角的方法.2.利用向量法求二面角的基本思想是把空间角转化为求两个向量之间的关系.首先要找出并利用空间直角坐标系或基向量(有明显的线面垂直关系时尽量建系)表示出向量,然后运用向量的运算即可,其次要理清要求角与两个向量夹角之间的关系.A .π3B .2π3C .π3或2π3D .π6或π3 C [当二面角A -BD -C 为锐角时,它等于〈n 1,n 2〉=π3.当二面角A -BD -C 为钝角时,它应对等于π-〈n 1,n 2〉=π-π3=2π3.] 2.已知△ABC 和△BCD 均为边长为a 的等边三角形,且AD =32a ,则二面角A -BC -D 的大小为( )A .30°B .45°C .60°D .90° C [如图取BC 的中点为E ,连接AE ,DE ,由题意得AE ⊥BC ,DE ⊥BC , 且AE =DE =32a ,又AD =32a ,∴∠AED =60°,即二面角A -BC -D 的大小为60°.]3.如图所示,在正四棱锥P -ABCD 中,若△P AC 的面积与正四棱锥的侧面面积之和的比为6∶8,则侧面与底面所成的二面角为( )A .π12 B .π4 C .π6D .π3D [设正四棱锥的底面边长为a ,侧面与底面所成的二面角为θ,高为h ,斜高为h ′,则12×2ah 4×12ah ′=68,∴h h ′=32,∴sin θ=32,即θ=π3.] 4.在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为________.23 [建系如图,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),E ⎝ ⎛⎭⎪⎫1,1,12,∴DA 1→=(1,0,1),DE →=⎝ ⎛⎭⎪⎫1,1,12.令x =1,得y =-12,z =-1.∴n =⎝ ⎛⎭⎪⎫1,-12,-1,又平面ABCD 的一个法向量为DD 1→=(0,0,1).则cos〈n ,DD 1→〉=|n ·DD 1→||n ||DD 1→|=23.]5.三棱锥P -ABC ,P A =PB =PC =73,AB =10,BC =8,CA =6,求二面角P -AC -B 的大小.[解] 如图在三棱锥P -ABC 中,P A =PB =PC =73,AB =10,BC =8,CA =6,∴AC 2+BC 2=AB 2,∴△ABC 是以AB 为斜边的直角三角形, ∴P 在底△ABC 的射影D 是△ABC 的外心, 即斜边AB 的中点D 是P 在底△ABC 的射影, 作DE ⊥AC ,交AC 于点E ,连接PE , 则∠PED 是所求的二面角的平面角,由题意得DE =4,PE =8,cos ∠PED =DE PE =12, ∴∠PED =60°,∴二面角P -AC -B 的大小为60°.。
第13课时二面角一、【学习导航】知识网络学习要求1.理解二面角及其平面角的概念2.会在具体图形中作出二面角的平面角,并求出其大小.【课堂互动】自学评价1. 二面角的有关概念(1).半平面:(2).二面角:(3).二面角的平面角:(4).二面角的平面角的表示方法:(5).直二面角:(6).二面角的范围:2.二面角的作法:(1)定义法(2)垂面法(3)三垂线定理【精典范例】例1:下列说法中正确的是(D)A.二面角是两个平面相交所组成的图形B.二面角是指角的两边分别在两个平面内的角C.角的两边分别在二面角的两个面内, 则这个角就是二面角的平面角D.二面角的平面角所在的平面垂直于二面角的棱.例2如图, 在正方体ABCD-A1B1C1D1中:(1)求二面角D1-AB-D的大小;(2)求二面角A1-AB-D的大小见书43例1(1) 45°(2) 90思维点拨要求二面角的平面角,关键是根据图形自身特点找出二面角的平面角,主要方法有:定义法,垂面法,三垂线定理法.步骤为作,证,求.例3在正方体ABCD-A1B1C1D1中,求平面A1BD与平面C1BD的夹角的正弦值.点拨:本题可以根据二面角的平面角的定义作出二面角的平面角.分析:取BD的中点O,连接A1O,C1O,则∠A1O C1为平面A1BD与平面C1BD的二面角的平面角.答:平面A1BD与平面C1BD的夹角的正弦值1 3追踪训练1.从一直线出发的三个半平面,两两所成的二面角均等于θ,则θ=60°2.矩形ABCD中,AB=3,AD=4,PA⊥面ABCD,且A-BD-P的度数为30°3.点A为正三角形BCD所在平面外一点,且A到三角形三个顶点的距离都等于正三角形的边长,求二面角A-BC-D的余弦值.答:13ADD1A1BCB1C1C A第14课时 二面角分层训练1.已知二面角α- l –β为锐角,点MÎα,M到β的距离MN=6,则N 点α的距离是 ( )A. B. 3C.D. 2.过正方形ABCD 的顶点A 作线段PA 垂直于平面ABCD , 如果PA=AB , 那么平面ABP 与平面CDP 所成的锐二面角为 ( )A. 30°B. 45°C. 60°D. 90°3.已知钝二面角α- l –β等于θ, 异面直线a 、b 满足a Ìα, b Ìβ, 且a ⊥l , b ⊥l , 则a , b 所成的角等于 ( )A. θB. π-θC.2-θD. θ或π-θ 4.等边三角形ABC的边长为1,BC边上的高是AD,若沿高AD将它折成直二面角B-AD-C,则A到BC的距离是 .5.在直角三角形ABC中,两直角边AC=b,BC=a,CD ⊥AB 于D ,把三角形ABC 沿CD 折成直二面角A-CD-B ,求cos ∠ACB = .6.如图, 已知AB 是平面α的垂线, AC 是平面α的斜线, CD Ìα, CD ⊥AC, 则面面垂直的有_____________ .7.在四棱锥P-ABCD 中, 若PA ⊥平面ABCD, 且ABCD 是菱形, 求证: 平面PAC ⊥平面PBD.8.已知正方体ABCD-A 1B 1C 1D 1 , 求二面角C 1-BD-C 的正切值.A 11拓展延伸正方体ABCD-A1B1C1D1的棱长为1,P是AD的中点,求二面角A-BD1-P的大小.。
二面角简介在几何学中,二面角是指由两个平面所围成的角度。
它是三维空间中的一种特殊角度,具有重要的几何性质和应用。
本文将介绍二面角的定义、性质和应用领域。
定义二面角是由两个平面围成的角度,可以通过它们的法向量来计算。
假设有平面P1和平面P2,它们的法向量分别为n1和n2。
那么P1和P2所围成的二面角可以通过以下公式计算:cos(theta) = (n1 · n2) / (||n1|| ||n2||)其中,·表示点积,||n1||和||n2||表示向量n1和n2的模。
二面角的取值范围通常是[0, π]。
性质二面角具有以下性质:1.对称性:二面角的大小与平面的排列顺序无关。
换句话说,如果将平面P1和P2互换,则二面角的大小保持不变。
2.范围:二面角的取值范围是[0, π],即它的值始终大于等于0且小于等于π。
3.特殊情况:当两个平面平行时,二面角的值为0,并且P1和P2的法向量的方向可以是相同或相反。
4.余角:二面角的余角等于π减去二面角的值。
5.三角不等式:如果有三个平面P1、P2和P3,那么它们所围成的二面角之和小于等于π。
6.线性性质:如果有两个二面角θ1和θ2,和一个实数k,那么kθ1和θ1+θ2也是合法的二面角。
应用二面角在几何学、物理学和计算机图形学等领域有着广泛的应用。
在几何学中,二面角被用于描述多面体的结构和特征。
例如,二面角可以被用来确定多面体的体积、表面积及其与其他多面体的关系。
在物理学中,二面角用于描述物体的形状、方向和运动。
例如,在流体力学中,二面角可以用来计算液体或气体在界面处的压力分布。
在计算机图形学中,二面角被广泛应用于三维模型的拓扑和渲染。
例如,二面角可以用于计算光线和表面之间的交互,从而实现真实感的渲染效果。
此外,二面角还在分子结构分析、晶体学和微积分等领域发挥着重要作用。
它的广泛应用使得二面角成为数学和科学研究不可或缺的工具。
结论二面角是由两个平面围成的角度,在几何学中具有重要的定义、性质和应用。
高中数学知识点二面角二面角是解析几何中的重要概念,在高中数学课程中也占有一定的比重。
下面将对二面角的定义、性质、应用以及解题方法进行详细介绍。
一、二面角的定义:二面角是指在空间中,由两个不重合射线所确定的两个平面之间的角。
具体而言,设有两条射线OA和OB,这两条射线除了一个公共点O之外没有其他交点,那么我们就可以通过射线OA和射线OB来确定一个二面角。
二、二面角的性质:1.二面角的大小范围是0到π之间,即0<α<π。
2.如果射线OA与射线OB共面,则二面角的大小为0。
3.如果两个射线平行或共线,则二面角的大小为π。
4.二面角的大小与两个面之间的夹角有关,夹角小,二面角大;夹角大,二面角小。
三、二面角的应用:1.几何推理:在解决空间几何题目时,常常需要运用二面角的概念进行证明与推理。
2.几何计算:在三角学和立体几何的计算中,常常需要求解二面角的大小以完成问题的解答。
3.坐标几何:通过给定点的坐标,可以确定射线的方向,进而求解二面角的大小。
四、二面角的解题方法:1.直接法:通过已知条件,利用二面角的定义直接计算得出二面角的大小。
2.投影法:将二面角所在的两个平面进行坐标投影,然后利用向量的内积关系来求解二面角的大小。
3.解析法:利用解析几何的相关知识,将二面角所在的两个平面转化为方程,然后通过求解方程组来求解二面角的大小。
在具体的解题过程中,我们需要根据题目的要求选择合适的解题方法,然后通过运用相应的数学知识和技巧来计算和推导。
总之,二面角是高中数学中的重要知识点之一,理解二面角的定义、性质和应用,掌握求解二面角的解题方法,对于解决相关问题具有重要的意义。
通过深入学习和实践应用,相信同学们对于二面角的理解和运用能力会有所提高。
高中数学知识点:二面角1.二面角定义平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫做二面角的面.表示方法:棱为AB 、面分别为αβ、的二面角记作二面角AB αβ--.有时为了方便,也可在αβ、内(棱以外的半平面部分)分别取点P Q 、,将这个二面角记作二面角P AB Q --.如果棱记作l ,那么这个二面角记作二面角l αβ--或P l Q --.2.二面角的平面角(1) 二面角的平面角的定义:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则这两条射线构成的角叫做二面角的平面角.(2)二面角的平面角θ的范围:0°≤θ≤180°.当两个半平面重合时,θ=0°;当两个半平面相交时,0°<θ<180°;当两个半平面合成一个平面时,θ=180°.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面角.(3) 二面角与平面角的对比角 二面角 图形定义 从半面内一点出发的两条射线(半直线)所组成的图形从空间内二直线出发的两个半平面所组成的图形 表示法由射线、点(顶点)、射线构成,表示为∠AOB 由半平面、线(棱)、半平面构成,表示为二面角a αβ--(4) 二面角的平面角的确定方法 方法1:(定义法)在二面角的棱上找一特殊点,在两个半平面内分别作垂直于棱的射线.如右图,在二面角a αβ--的棱a 上任取一点O ,在平面α内过点O 作OA ⊥a ,在平面β内过点O 作BO ⊥a ,则∠AOB 为二面角a αβ--的平面角.方法2:(垂面法)过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.如下图(左),已知二面角lαβ--,过棱上一点O作一平面γ,使lγ⊥,且OAγβ=。
基本不等式一、知识讲解知识点1:二面角定义:从一条直线出发的两个半平面所组成的图形就叫做二面角。
二面角的大小是用二面角的平面角来衡量的。
而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。
αβ知识点2:二面角求法1、由定义作出二面角的平面角;2、利用三垂线定理(逆定理)作出二面角的平面角;3、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。
4、空间坐标法求二面角的大小5、平移或延长(展)线(面)法6、射影公式S 射影=S 斜面cos θ7、化归为分别垂直于二面角的两个面的两条直线所成的角二、典型例题题型一:利用定义作出二面角的平面角例题1: 如图,已知二面角α -а - β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 解: 设平面PAB ∩α=OA,平面PAB ∩β=OB 。
∵PA ⊥α, а⊂α ∴PA ⊥а 同理PB ⊥а ∴а⊥平面PAB又∵OA ⊂平面PAB ∴а⊥OA同理а⊥OB.∴∠AOB 是二面角α -а -β的平面角. 在四边形PAOB 中, ∠AOB=120°,. ∠PAO=∠POB=90°, 所以∠APB=60°OABO ABlPOBA同步训练:在四棱锥P -ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B -PC -D 的大小32;21cos 2,3636,32,,:π所以角度为又因为,所以因为即为二面角所以,因为,连接,交点为垂直于作在平面解-=∠===⋅=====∠∆≅∆BHD a BD a DH a PC BC PB BE a PC PB a PB PA BED PCD PCB DH H PC BH BPC 题型二:三垂线定理(逆定理)法例题2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.解:在长方体ABCD —A 1B 1C 1D 1中,由三垂线定理可得: ∴ CD =2 CE=1, DE=5同步训练:例在四棱锥P- ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P- BC -A 的大小。
高一数学二面角知识点
二面角是几何学中的重要概念之一,在高一数学课程中也是必
学的知识点之一。
二面角主要涉及到直线和平面的交角问题,在
解题过程中需要灵活运用相关理论和定理。
下面将详细介绍高一
数学中与二面角有关的知识点。
1. 二面角的定义和性质
在平面几何中,二面角是指两个相交平面所张角的角度。
二面
角有正负之分,当两个相交平面逆时针旋转时,角度增加,为正
二面角;顺时针旋转时,角度减小,为负二面角。
2. 二面角的计算方法
计算二面角的方法主要有两种:直接使用给定的公式计算和利
用相关性质进行推导和计算。
(1)直接使用公式计算:当已知两个相交平面的法线向量时,可以使用向量内积的方法计算二面角的角度。
(2)利用相关性质计算:若已知两个相交平面上的夹角和两
个平面与第三个平面的夹角,可以利用平面几何中的一些性质和
定理,如余弦定理、平面内角和定理等进行推导和计算。
3. 二面角与直线之间的关系
在解决与直线有关的问题时,二面角也起到了重要的作用。
通过二面角的概念,可以理解和推导出一些与直线平行、垂直、夹角等性质相关的定理。
(1)直线的斜率与二面角的关系:两个相交直线的斜率之间的关系可以通过二面角推导出来,从而可以得到判断两条直线斜率大小关系的方法。
(2)直线的夹角与二面角的关系:当两条直线相交时,可以通过二面角的概念计算出两条直线的夹角。
4. 二面角的应用举例
在实际问题中,二面角的概念和性质被广泛应用。
以下是一些常见的应用场景:
(1)建筑物的倾斜角度:通过测量建筑物的倾斜面与地平面的二面角,可以得知建筑物的倾斜程度。
(2)车辆的转弯半径计算:通过计算车辆转弯时前后轮之间的二面角,可以求得车辆的转弯半径和转弯角度。
(3)立体图形的表面积计算:计算立体图形的表面积时,需
要考虑到不同面之间的二面角,根据二面角的性质进行计算。
(4)光的折射和反射:在光的折射和反射现象中,二面角的
概念可以解释和计算光线的入射角、反射角和折射角。
综上所述,二面角是高一数学中的重要知识点之一,它与直线、平面等几何对象之间有密切的关系。
理解和掌握二面角的概念、
性质以及计算方法对于进一步学习和解决几何问题具有重要意义。
在实际问题中,我们可以通过二面角的应用,解决与建筑、工程、物理等领域相关的具体问题。
通过深入学习和应用二面角知识,
我们可以提升自己的数学思维和解决问题的能力。