2019版理数(苏教版)练习:第三章 第三节 导数在研究函数中的应用与生活中的优化问题举例
- 格式:doc
- 大小:96.00 KB
- 文档页数:7
3.4 导数在实际生活中的应用学习目标:1.掌握利用导数解决简单的实际生活中的优化问题的方法.(重点) 2.通过对实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高.(难点)[自主预习·探新知]1.导数的实际应用导数在实际生活中有着广泛的应用,如用料最省、利润最大、效率最高等问题一般可以归结为函数的最值问题,从而可用导数来解决.2.用导数解决实际生活问题的基本思路[基础自测]1.判断正误:(1)应用导数可以解决所有实际问题中的最值问题.( )(2)应用导数解决实际应用问题,首先应建立函数模型,写出函数关系式.( )(3)应用导数解决实际问题需明确实际背景.( )【解析】(1)×.如果实际问题中所涉及的函数不可导、就不能应用导数求解.(2)√.求解实际问题一般要建立函数模型,然后利用函数的性质解决实际问题.(3)√.要根据实际问题的意义确定自变量的取值.【答案】(1)×(2)√(3)√2.生产某种商品x单位的利润L(x)=500+x-0.001x2,生产________单位这种商品时利润最大,最大利润是________.【解析】L′(x)=1-0.002x,令L′(x)=0,得x=500,∴当x=500时,最大利润为750.【答案】500 750[合作探究·攻重难]r,计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上.设CD=2x,梯形的面积为S.(1)求面积S关于x的函数,并写出其定义域;(2)求面积S的最大值.【导学号:95902246】[思路探究] (1)建立适当的坐标系,按照椭圆方程和对称性求面积S 关于x 的函数式;(2)根据S 的函数的等价函数求最大值.【自主解答】 (1)依题意,以AB 的中点O 为原点建立直角坐标系如图所示,则点C的坐标为(x ,y ).∵点C 在椭圆上,∴点C 满足方程x 2r 2+y 24r2=1(y ≥0),则y =2r 2-x 2(0< x <r ),∴S =12(2x +2r )·2r 2-x 2=2(x +r )r 2-x 2(0< x <r ).(2)记S =4(x +r )2(r 2-x 2)(0<x <r ) 则S ′=8(x +r )2(r -2x )令S ′=0,解得x =12r 或x =-r (舍去).当x 变化时, S ′,S 的变化情况如下表:∴x =12r 时,S [规律方法]1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,利用导数的方法来求解.2.选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,以利于解决问题. [跟踪训练]1.在一个半径为1的半球材料中截取两个高度均为h 的圆柱,其轴截面如图341所示.设两个圆柱体积之和为V =f (h ).图341(1)求f (h )的表达式,并写出h 的取值范围. (2)求两个圆柱体积之和V 的最大值.【解】 (1)自下而上两个圆柱的底面半径分别为:r 1=1-h 2, r 2=1-h2.它们的高均为h ,所以体积之和V =f (h )=πr 21h +πr 22h =π[]()1-h 2+()1-4h 2h =π()2h -5h 3.因为0<2h <1,所以h 的取值范围是⎝ ⎛⎭⎪⎫0,12.(2)由f (h )=π(2h -5h 3),得f ′(h )=π(2-15h 2), 令f ′(h )=0,因为h ∈⎝ ⎛⎭⎪⎫0,12,得h =3015. 所以当h ∈⎝ ⎛⎭⎪⎫0,3015时,f ′(h )>0;当h ∈⎝ ⎛⎭⎪⎫3015,12时,f ′(h )<0. 所以f (h )在⎝⎛⎭⎪⎫0,3015上为增函数,在⎝ ⎛⎭⎪⎫3015,12上为减函数, 所以当h =3015时,f (h )取得极大值也是最大值, f (h )的最大值为f ⎝⎛⎭⎪⎫3015=430π45. 答:两个圆柱体积之和V 的最大值为430π45.如图342A 处,乙厂与甲厂在海岸的同侧,乙厂位于离海岸40 km 的B 处,乙厂到海岸的垂足D 与A 相距50 km.两厂要在此岸边合建一个供水站C ,从供水站到甲厂和乙厂铺设的水管费用分别为每千米3a 元和5a 元,则供水站C 建在何处才能使水管费用最省?【导学号:95902247】图342[思路探究] 先列出自变量,通过三角知识列出水管费用的函数,然后求导,根据单调性求出最小值.【自主解答】 设C 点距D 点x km ,则BD =40 km ,AC =(50-x )km , ∴BC =BD 2+CD 2=402+x 2(km).又设总的水管费用为y 元,依题意, 得y =3a (50-x ) +5a x 2+402(0≤x ≤50),则y ′=-3a +5axx 2+402,令y ′=0,解得x =30.当x ∈[0,30)时,y ′<0,当x ∈(30,50]时,y ′>0,∴当x =30时函数取得最小值,此时AC =50-x =20(km),即供水站建在A ,D 之间距甲厂20 km 处,可使水管费用最省.[规律方法]1.像本例节能减耗问题,背景新颖,信息较多,应准确把握信息,正确理清关系,才能恰当建立函数模型.2.实际生活中用料最省、费用最低、损耗最小、最节省时间等都需要利用导数求解相应函数的最小值,此时根据f ′(x )=0求出极值点(注意根据实际意义舍弃不合适的极值点)后,函数满足左减右增,此时惟一的极小值就是所求函数的最小值.[跟踪训练]2.某工厂需要建一个面积为512 m 2的矩形堆料场,一边可以利用原有的墙壁,则要使砌墙所用的材料最省,则堆料场的长为________,宽为________.【解析】 如图所示,设场地一边长为x m ,则另一边长为512xm ,因此新墙总长度L =2x +512x (x >0),L ′=2-512x 2.令L ′=2-512x2=0,得x =16或x=-16.∵x >0,∵x =16.∵L 在(0,+∞)上只有一个极值点,∴它必是最小值点.∵x =16,∴512x=32.故当堆料场的宽为16 m ,长为32 m 时,可使砌墙所用的材料最省.【答案】 16 m 32 m[探究问题]1.在有关利润最大问题中,经常涉及“成本、单价、销售量”等词语,你能解释它们的含义吗?【提示】 成本是指企业进行生产经营所耗费的货币计量,一般包括固定成本(如建设厂房、购买机器等一次性投入)和可变成本(如生产过程中购买原料、燃料和工人工资等费用),单价是指单位商品的价格,销售量是指所销售商品的数量.2.什么是销售额(销售收入)?什么是利润?【提示】 销售额=单价×销售量,利润=销售额-成本.3.根据我们以前所掌握的解决实际应用问题的思路,你认为解决利润最大问题的基本思路是什么?【提示】 在解决利润最大问题时,其基本思路如图所示.某科研小组研究发现:一棵水蜜桃树的产量w (单位:百千克)与肥料费用x (单位:百元)满足如下关系:w =4-3x +1,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)2x 百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为L (x )(单位:百元).(1)求利润函数L (x )的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少? [思路探究] (1)利润=收入-总成本.其中,收入=产量×售价,总成本=肥料费用+其他成本;(2)利用求导、列表、定最值.【自主解答】 (1)当肥料费用为x 百元时,收入为16⎝ ⎛⎭⎪⎫4-3x +1百元,总成本为(x +2x )百元.所以L (x )=16⎝⎛⎭⎪⎫4-3x +1-(x +2x )=64-48x +1-3x (百元),其中x ∈[0,5]. (2)L ′(x )=48x +2-3,x ∈[0,5].令L ′(x )=0,得x =3. 列表如下:max 答:当投入的肥料费用为300元时,该水蜜桃树获得的利润最大,最大利润是 4 300元.[规律方法] 解决最优化问题的一般步骤:根据各个量之间的关系列出数学模型;对函数求导,并求出导函数的零点,确定函数极值; 比较区间端点处函数值和极值之间的大小,得到最优解. [跟踪训练]3.某食品厂进行蘑菇的深加工,每公斤蘑菇的成本为20元,并且每公斤蘑菇的加工费为t 元(t 为常数,且2≤t ≤5),设该食品厂每公斤蘑菇的出厂价为x 元(25≤x ≤40),根据市场调查,日销售量q 与e x成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(1)求该工厂的每日利润y 元与每公斤蘑菇的出厂价x 元的函数关系式;(2)若t =5,当每公斤蘑菇的出厂价为多少元时,该工厂的每日利润最大?并求最大值.【导学号:95902248】【解】 (1)设日销量q =k e x ,则ke 30=100,∴k =100e 30, ∴日销量q =100e30e x ,∴y =100e 30x -20-tex(25≤x ≤40).(2)当t =5时,y =100e30x -ex,∴y ′=100e30-x ex.由y ′>0,得25≤x <26,由y ′<0,得26<x ≤40, ∴y 在[25,26)上单调递增,在(26,40]上单调递减,∴当x =26时,y max =100e 4.故当每公斤蘑菇的出厂价为26元时,该工厂的每日利润最大,最大值为100e 4元.[构建·体系][当 堂 达 标·固 双 基]1.一个圆锥形漏斗的母线长为20,高为h ,则体积V 的表达式为________.【解析】 设圆锥的高为h ,则圆锥的底面半径为r =400-h 2,则V =13π(400-h 2)h .【答案】 13π(400-h 2)h2.某产品的销售收入y 1(万元)是产品x (千台)的函数,y 1=17x 2;生产总成本y 2(万元)也是x 的函数,y 2=2x 3-x 2(x >0),为使利润最大,应生产________千台.【导学号:95902249】【解析】 构造利润函数y =y 1-y 2=18x 2-2x 3(x >0),y ′=36x -6x 2,由y ′=0是x =6(x =0舍去),x =6是函数y 在(0,+∞)上唯一的极大值点,也是最大值点.即生产6千台时,利润最大.【答案】 63.某箱子的容积与底面边长x 的关系为V (x )=x 2⎝ ⎛⎭⎪⎫60-x 2(0<x <60),则当箱子的容积最大时,箱子底面边长为________.【解析】 V ′(x )=2x ·⎝⎛⎭⎪⎫60-x 2+x 2·⎝ ⎛⎭⎪⎫-12=-32x 2+60x =-32x (x -40).令V ′(x )=0,得x =40或x =0(舍).不难确定x =40时,V (x )有最大值. 即当底面边长为40时,箱子容积最大. 【答案】 404.做一个无盖的圆柱形水桶,若要使其容积是27π,且用料最省,则圆柱的底面半径为________.【解析】 设圆柱的底面半径为R ,母线长为L ,则V =πR 2L =27π,∴L =27R2.要使用料最省,只需使圆柱形表面积最小,∴S 表=πR 2+2πRL =πR 2+2π·27R,∴S ′表=2πR -54πR2.令S ′=0,解得R =3.∵R ∈(0,3)时,S 表单调递减,R ∈(3,+∞)时,S 表单调递增,∴当R =3时,S 表最小. 【答案】 35.某厂生产某种产品x 件的总成本c (x )=1200+275x 3(万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为多少件时,总利润最大?并求出最大总利润.【解】 由题意,可设p 2=kx,其中k 为比例系数.因为当x =100时,p =50,所以k =250 000,所以p 2=250 000x,p =500x,x >0.设总利润为y 万元,则y =500x·x -1200-275x 3=500x -275 x 3-1 200.求导数得,y ′=250x -225x 2.令y ′=0得x =25.故当x <25时,y ′>0;当x >25时,y ′<0.因此当x =25时,函数y 取得极大值,也是最大值,即最大利润为2 6503万元.【答案】 25。
2019-2020学年苏教版数学精品资料高中数学第3章《导数及其应用》导数在实际生活中的应用导学案苏教版选修1-1学习目标1.通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用.2.在解决具体问题的过程中,体会导数方法在研究函数性质中的一般性和有效性.课前预学:问题1:一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.只要利用导数求出函数y=f(x)的所有,再求出端点的函数值,进行比较,就可以得出函数的最大值和最小值.问题2:生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为问题.导数是求函数最大(小)值的有力工具,可以运用导数解决一些生活中的优化问题.问题3:利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各个量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);(2)求函数的,解方程f'(x)=0;(3)比较函数在区间端点和点的函数值的大小,最大(小)者为最大(小)值.问题4:解决生活中的优化问题应当注意的问题确定函数关系式中自变量的区间,一定要考虑实际问题的意义,不符合实际问题的值应舍去.课堂探究:一.利润最大问题某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=错误!未找到引用源。
+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售量价格x的值,使商场每日销售该商品所获得的利润最大.三.成本最低问题:如图,某工厂拟建一座平面图为矩形,且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米.如果池四周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元,无盖.(1)写出总造价y(元)与污水处理池的长x(米)的函数关系式,并指出其定义域;(2)污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.。
2019-2020学年苏教版数学精品资料3.3 导数在研究函数中的应用(苏教版选修1-1)建议用时实际用时满分实际得分45分钟100分一、填空题(每小题5分,共50分)1.函数32x xy 的单调增区间为,单调减区间为 .2.在[,]a b 上,()0f x 恒成立是函数()y f x 单调递增的条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).3.函数93)(23xaxxx f ,已知)(x f 在3x 时取得极值,则a = .4.函数322()f x xaxbxa 在1x 时有极值10,那么a=,b= .5.函数1)6()(23xa axxx f 有极大值和极小值,则a 的取值范围是 .6.函数5123223xx xy在上的最大值、最小值分别是.7.函数的极值点个数为.8.若函数f(x)=a -3x 在(-1,1)上单调递减,则实数a 的取值范围是 .9.已知f(x)=+1在R 上是减函数,则实数a 的取值范围为 .10.已知函数f(x)=,其导函数y =的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的是 .①当x =32时函数取得极小值;②f(x)有两个极值点;③当x =2时函数取得极小值;④当x =1时函数取得极大值.二、解答题(每小题10分,共50分)11.设1x 和2x是函数32()61f x axbxx 的两个极值点.(1)求a ,b 的值;(2)求()f x 的单调区间.12.已知函数323()(1)132a f x xxa x ,其中a 为实数.(1)已知函数()f x 在1x 处取得极值,求a 的值;(2)已知不等式2()1f x xxa >对任意(0,)a 都成立,求实数x 的取值范围.13.已知函数32()(1)(2)f x xa xa a xb (a ,b ∈R ).若函数()f x 的图象过原点,且在原点处的切线斜率是3,求,a b 的值;14.已知函数(1)讨论函数f(x)的单调性;(2)求函数f(x)在上的最大值.15.已知函数()ln f x ax x ()aR .(1)若2a,求曲线()y f x 在1x 处切线的斜率;(2)求()f x 的单调区间;(3)设2()22g x xx,若对任意1(0,)x ,均存在20,1x ,使得12()()f x g x ,求a 的取值范围.3.3 导数在研究函数中的应用答题纸(苏教版选修1-1)得分:一、填空题1. 2. 3. 4. 5.6. 7. 8. 9. 10.二、解答题11.12.13.1415.3.3 导数在研究函数中的应用参考答案(苏教版选修1-1)一、填空题1.2(0,)3解析:因为,令得当变化时,的变化情况如下表:x () 0 () - 0 + 0 - y 0所以函数的单调减区间为单调增区间为2.必要不充分解析:若函数()y f x 在[,]a b 上为常数函数,满足()0f x 恒成立,但函数()y f x 不是增函数;若函数()yf x 在[,]a b 上单调递增,则()0f x 恒成立.故()0f x 恒成立是函数()yf x 单调递增的必要不充分条件.3.5 解析:因为函数93)(23x axxx f ,所以f ′(x)=+2ax+3.又)(x f 在3x 时取得极值,所以3×-6a+3=0,解得a=5.4.4-11解析:'2'()32.(1)f x x ax b f 由已知得,22334311.9a b aa b b aa b ,,,联立得或当3a 时,1x 不是极值点.当时满足题意.5.63a a 或解析:由函数1)6()(23x a axxx f 得f ′(x)=+2ax+a+6,因为函数1)6()(23xa axxx f 有极大值和极小值,所以+2ax+a+6=0有两个不相等的实数根,所以4-12(a+6)>0,解得63a a 或.6.5,-15解析:由函数5123223xxxy得f ′(x)=-6x-12,令-6x-12=0,解得x=-1或x=2,所以y=f (x )在上为减函数,在上为增函数,所以函数5123223x xxy在上的最小值为f (2)=-15.又f (0)=5,f (3)=-4,所以函数5123223x x x y在上的最大值为5.7.0 解析:因为恒成立,所以f(x)无极值.8.a ≤1 解析:f ′(x)=3a -3,由题意知f ′(x)≤0在(-1,1)上恒成立.若a ≤0,显然有f ′(x)<0;若a >0,由f ′(x)≤0,得-≤x ≤,于是≥1,∴0<a ≤1.综上知a ≤1. 9.(] 解析:因为f(x)在上是减函数,所以恒成立,即故所求实数a 的取值范围是.10.①解析:从图象上可以看到:当x ∈(,1)时,;当x ∈(1,2)时,;当x ∈(2,+∞)时,,所以f(x)有两个极值点,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.二、解答题11.解:(1)2()326f x axbx ,由已知可得(1)3260f a b ,2(2)322260f a b .解得91,.2a b(2)由(1)知22'()3963(32)3(1)(2).f x xx xx x x当(,1)(2,)x ∪时,()0f x ;当(1,2)x 时,()0f x . 因此()f x 的单调增区间是(,1),(2,),()f x 的单调减区间是(1,2).12.解:(1)2()3(1)f x axx a .由于函数()f x 在1x 处取得极值,所以有(1)0f ,即3101a a a . (2)由题设知223(1)1ax x a xxa 对任意(0,)a 都成立,即22(2)20a xx x对任意(0,)a 都成立.于是2222xx ax对任意(0,)a 都成立,即22202xx x.20x .从而实数x 的取值范围为20x.13.解:由题意得)2()1(23)(2aa xa x x f .又解得14.解:(1)当(2)当时,函数上单调递增,最大值为当时,若,即若,即上单调递增,在上单调递减,最大值为若,即.15.解:(1)由已知1()2(0)f x x x ,(1)213f .故曲线()y f x 在1x 处切线的斜率为3.(2)11'()(0)ax f x a x x x .①当0a 时,由于0x ,故10ax ,'()0f x ,所以函数()f x 的单调递增区间为.②当0a 时,由'()0f x ,得1x a .在区间1(0,)a 内,()0f x ;在区间1(,)a 内,()0f x ,所以函数()f x 的单调递增区间为1(0,-)a ,单调递减区间为1(-,)a .(3)由已知,转化为max max ()()f x g x ,max ()2g x .由(2)知,当0a 时,函数()f x 在(0,)上单调递增,值域为R ,故不符合题意. (或者举出反例:存在33(e )e 32f a ,故不符合题意.)当0a 时,函数()f x 在)1,0(a 上单调递增,在),1(a 上单调递减,故()f x 的极大值即为最大值,11()1ln()1ln()f a a a ,所以21ln()a ,解得31e a .。
江苏专用2019版高考数学一轮复习第三章导数及其应用3.2利用导数研究函数的单调性课时作业理基础巩固题组(建议用时:40分钟)一、填空题1.函数f (x )=x -ln x 的单调递减区间为________.解析 函数的定义域是(0,+∞),且f ′(x )=1-1x =x -1x,令f ′(x )<0,解得0<x <1,所以单调递减区间是(0,1). 答案 (0,1)2.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述:①f (b )>f (c )>f (d ); ②f (b )>f (a )>f (e ); ③f (c )>f (b )>f (a ); ④f (c )>f (e )>f (d ).其中正确的是________(填序号).解析 依题意得,当x ∈(-∞,c )时,f ′(x )>0,因此,函数f (x )在(-∞,c )上是增函数,由a <b <c ,所以f (c )>f (b )>f (a ). 答案 ③3.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为________.解析 ∵f ′(x )=6x 2-6mx +6, 当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x恒成立.令g (x )=x +1x ,g ′(x )=1-1x2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52.答案 ⎝ ⎛⎦⎥⎤-∞,524.已知函数f (x )=(-x 2+2x )e x(x ∈R ,e 为自然对数的底数),则函数f (x )的单调递增区间为________.解析 因为f (x )=(-x 2+2x )e x,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x. 令f ′(x )>0,即(-x 2+2)e x>0,因为e x>0,所以-x 2+2>0,解得-2<x <2, 所以函数f (x )的单调递增区间为(-2,2). 答案 (-2,2)5.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.解析 由题意知f ′(x )=-x +4-3x=-x -x -x,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3. 答案 (0,1)∪(2,3)6.若函数f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎫12,+∞上是增函数,则实数a 的取值范围是________.解析 ∵f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎫12,+∞上是增函数,∴f ′(x )=2x +a -1x 2>0在⎝ ⎛⎭⎪⎫12,+∞上恒成立,即a >1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上恒成立. ∵函数y =x -2与函数y =-2x 在⎝ ⎛⎭⎪⎫12,+∞上为减函数,∴a ≥4-2×12=3.答案 [3,+∞)7.(2017·南京、盐城模拟)已知f (x )=2ln x +x 2-5x +c 在区间(m ,m +1)上为递减函数,则m 的取值范围为________.解析 由f (x )=2ln x +x 2-5x +c ,得f ′(x )=2x+2x -5,又函数f (x )在区间(m ,m +1)上为递减函数, ∴f ′(x )≤0在(m ,m +1)上恒成立,∴⎩⎪⎨⎪⎧2m +2m -5≤0,2m +1+m +-5≤0,解得12≤m ≤1.答案 ⎣⎢⎡⎦⎥⎤12,1 8.(2017·南通、扬州、泰州调研)设f (x )是R 上的奇函数,且f (-1)=0,当x >0时,(x2+1)·f ′(x )-2x ·f (x )<0,则不等式f (x )>0的解集为________. 解析 因为当x >0时,(x 2+1)·f ′(x )-2x ·f (x )<0恒成立,所以⎣⎢⎡⎦⎥⎤f x x 2+1′<0恒成立,所以函数g (x )=f xx 2+1在(0,+∞)上单调递减.又因为f (x )是定义在R 上的奇函数,且f (-1)=0,所以f (1)=0,g (1)=0,所以在(0,1)上恒有f (x )>0,在(1,+∞)上恒有f (x )<0.由图象易知在(-∞,-1)上恒有f (x )>0,在(-1,0)上恒有f (x )<0,即不等式f (x )>0的解集为(-∞,-1)∪(0,1).答案 (-∞,-1)∪(0,1) 二、解答题9.已知函数f (x )=ln x +kex(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值;(2)求f (x )的单调区间.解 (1)由题意得f ′(x )=1x-ln x -k e x, 又f ′(1)=1-ke =0,故k =1.(2)由(1)知,f ′(x )=1x-ln x -1ex. 设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞).10.(2017·泰州模拟)已知函数f (x )满足f (x )=x 3+f ′⎝ ⎛⎭⎪⎫23x 2-x +c (其中f ′⎝ ⎛⎭⎪⎫23为f (x )在点x =23处的导数,c 为常数).(1)求函数f (x )的单调区间;(2)设函数g (x )=[f (x )-x 3]e x,若函数g (x )在[-3,2]上单调递增,求实数c 的取值范围.解 (1)f ′(x )=3x 2+2f ′⎝ ⎛⎭⎪⎫23x -1,令x =23,得f ′⎝ ⎛⎭⎪⎫23=-1,∴f (x )=x 3-x 2-x +c ,∴f ′(x )=3x 2-2x -1=3⎝ ⎛⎭⎪⎫x +13(x -1),由f ′(x )>0,得x <-13或x >1;由f ′(x )<0,得-13<x <1.故f (x )的单调增区间是⎝ ⎛⎭⎪⎫-∞,-13和(1,+∞);单调减区间是⎝ ⎛⎭⎪⎫-13,1. (2)∵g (x )=(-x 2-x +c )·e x, ∴g ′(x )=(-2x -1)e x +(-x 2-x +c )e x=(-x 2-3x +c -1)e x.当函数g (x )在区间[-3,2]上单调递增时,等价于h (x )=-x 2-3x +c -1≥0在[-3,2]上恒成立,只要h (2)≥0,解得c ≥11. 故c 的取值范围是[11,+∞).能力提升题组 (建议用时:20分钟)11.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则a ,b ,c 的大小关系为________.解析 依题意得,当x <1时,f ′(x )>0, 则f (x )在(-∞,1)上为增函数; 又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12, 即有f (3)<f (0)<f ⎝ ⎛⎭⎪⎫12,c <a <b .答案 c <a <b12.(2016·全国Ⅰ卷改编)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.解析 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x-1)+a cos x =-43cos 2 x +a cos x +53.由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1],则-43t 2+at +53≥0,在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5, 则⎩⎪⎨⎪⎧g =-3a -1≤0,g-=3a -1≤0,解之得-13≤a ≤13.答案 ⎣⎢⎡⎦⎥⎤-13,1313.(2017·石家庄质检)设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________.解析 令g (x )=f x x ,则g ′(x )=xfx -f xx 2>0,x ∈(0,+∞),所以函数g (x )在(0,+∞)上单调递增. 又g (-x )=f -x -x =-f x -x =f xx=g (x ),则g (x )是偶函数,g (-2)=0=g (2).则f (x )=xg (x )>0⇔⎩⎪⎨⎪⎧x >0,gx或⎩⎪⎨⎪⎧x <0,gx ,解得x >2或-2<x <0,故不等式f (x )>0的解集为(-2,0)∪(2,+∞). 答案 (-2,0)∪(2,+∞)14.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式; (2)若φ(x )=m x -x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解 (1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2.又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.(2)∵φ(x )=m x -x +1-f (x )=m x -x +1-ln x 在[1,+∞)上是减函数,∴φ′(x )=-x 2+m -x -1x x +2≤0在[1,+∞)上恒成立,∴x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x,x ∈[1,+∞),∵x +1x∈[2,+∞),∴2m -2≤2,m ≤2.故实数m 的取值范围是(-∞,2].。
3.4导数在实际生活中的应用1.导数在实际生活中有着广泛的应用.如用料最省、利润最大、效率最高等问题一般可以归结为函数的最值问题,从而可以用导数来解决.2.利用导数解决优化问题的流程:解决生活中的优化问题的思路:(1)审题:阅读理解文字表达的题意、分清条件和结论.(2)建模:利用数学知识建立相应的数学模型.(3)解模:把数学问题转化为函数求解.(4)检验.[对应学生用书P56][例1] 用长为90 cm,宽为48 cm的长方形铁皮做一个无盖的容器,先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图所示),问该容器的高为多少时,容器的容积最大?最大容积是多少?[思路点拨] 设出所截正方形的边长为x,则该容器的底面边长和高均可用x表示,得到容积关于x的函数,用导数法求解.[精解详析] 设容器的高为x cm,容器的体积为V(x) cm3.则V(x)=x(90-2x)(48-2x)=4x3-276x2+4 320x(0<x<24).V′(x)=12x2-552x+4 320=12(x2-46x+360)=12(x-10)(x-36)(0<x<24).令V ′(x )=0,得x 1=10,x 2=36(舍去). 当0<x <10时,V ′(x )>0,V (x )是增函数; 当10<x <24时,V ′(x )<0,V (x )是减函数.因此,在定义域(0,24)内函数V (x )只有当x =10时取得最大值,其最大值为V (10)=10×(90-20)×(48-20)=19 600(cm 3).即当容器的高为10 cm 时,容器的容积最大,最大容积是19 600 cm 3.[一点通] 解决面积、容积的最值问题,要正确引入变量,将面积、容积表示为变量的函数,结合实际问题的定义域,利用导数求解函数的最值.如果在区间内只有一个极值点,那么根据实际意义,该极值点也是最值点.1.要做一个圆锥形的漏斗,其母线长为20 cm ,要使其体积最大,则高为________cm. 解析:设该漏斗的高为x cm , 则底面半径为202-x 2cm ,其体积为V =13πx (202-x 2)=13π(400x -x 3)(0<x <20),则V ′=13π(400-3x 2).令V ′=0,解得x 1=2033,x 2=-2033(舍去).当0<x <2033时,V ′>0;当2033<x <20时,V ′<0, 所以当x =2033时,V 取得最大值.答案:20332.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?解:设广告的高和宽分别为x cm ,y cm ,则每栏的高和宽分别为x -20,y -252,其中x >20,y >25.两栏面积之和为2(x -20)·y -252=18 000,由此得y =18 000x -20+25.广告的面积S =xy =x (18 000x -20+25)=18 000xx -20+25x ,∴S ′=x --x ]x -2+25=-36 0000x -2+25.令S ′>0,得x >140, 令S ′<0,得20<x <140.∴函数在(140,+∞)上单调递增,在(20,140)上单调递减, ∴S (x )的最小值为S (140).当x =140时,y =175.即当x =140,y =175时,S 取得最小值24 500,故当广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小.[例2] 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小?[思路点拨] 解答本题可先根据题目条件写出函数关系式,再利用导数方法求最值. [精解详析] (1)设需新建n 个桥墩, 则(n +1)x =m ,即n =mx-1.所以y =f (x )=256n +(n +1)(2+x )x=256⎝⎛⎭⎪⎫mx-1+m x(2+x )x =256mx+m x +2m -256.(2)由(1)知,f ′(x )=-256m x 2+12mx -12=m 2x 2(x 32-512). 令f ′(x )=0,得x 32=512,所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数. 所以f (x )在x =64处取得最小值.此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.[一点通] 用料最省问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际问题做答.3.做一个无盖的圆柱形水桶,若要使体积是27π,且用料最省,则圆柱的底面半径为________. 解析:设圆柱的底面半径为r ,高为h ,则V =27π=πr 2h ,∴h =27r2,若用料最省,则表面积最小,设表面积为S ,则S =πr 2+2πr ·h =πr 2+2π27r=πr 2+54πr,S ′=2πr -54πr2=2πr 3-r 2,令S ′=0,得r =3.∵当0<r <3时,S ′<0,S (r )为减函数,r >3时,S ′>0,S (r )为增函数.∴当r =3时,S 取最小值,即用料最省. 答案:34.某工厂要围建一个面积为512 m 2的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,若使砌壁所用的材料最省,堆料场的长和宽应分别为(单位:m)________.解析:要使材料最省,则要求新砌的墙壁的总长最短. 设场地宽为x 米,则长为512xm ,因此新墙总长L =2x +512x (x >0),则L ′=2-512x2.令L ′=0,得x =16或x =-16(舍去). 此时长为51216=32(m),可使L 最短.答案:32,16[例3] 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:kg)与销售价格x (单位:元/kg)满足关系式y =ax -3+10(x -6)2.其中3<x <6,a 为常数.已知销售价格为5元/kg 时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/kg ,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大. [思路点拨] (1)根据“销售价格为5元/kg 时,每日可售出该商品11 kg”可知销售函数图像过点(5,11)将其代入可求得a 的值;(2)利润为y =(每件产品的售价-每件产品的成本)×销量,表示出函数解析式后,可借助导数求最值. [精解详析] (1)因为x =5时,y =11, 所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2. 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+x -2=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答:当销售价格为4元/kg 时,商场每日销售该商品所获得的利润最大. [一点通](1)利润(收益)=销售额-成本,在有关利润(收益)的问题中,注意应用此公式列出函数关系式,然后利用导数的知识并结合实际问题求出相应最值.(2)在实际问题中,若某函数在所给区间上只有一个极值,则该极值即为相应的最值.这是实际问题中求最值的常用方法.5.已知某生产厂家的年利润y (单元:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为________万件.解析:因为y ′=-x 2+81,所以当x >9时,y ′<0;当x ∈(0,9)时,y ′>0,所以函数y =-13x 3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增,所以x =9是函数的极大值点,又因为函数在(0,+∞)上只有一个极大值点,所以函数在x =9处取得最大值.答案:96.已知某工厂生产x 件产品的成本为c =25 000+200x +140x 2(元).问:(1)要使平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品? 解:(1)设平均成本为y 元,则y =25 000+200x +140x2x =25 000x +200+x40(x >0),y ′=-25 000x 2+140, 令y ′=0,得x =1 000或x =-1 000(舍去). 当0<x <1 000时,y ′<0; 当x >1 000时,y ′>0,故当x =1 000时,y 取极小值,而只有一个点使y ′=0,故函数在该点处取得最小值,因此要使平均成本最低,应生产1 000件产品.(2)利润函数为S (x )=500x -⎝⎛⎭⎪⎫25 000+200x +x 240=300x -25 000-x 240,S ′(x )=300-x 20,令S ′(x )=0,得x =6 000,当0<x <6 000时,S ′(x )>0,当x >6 000时,S ′(x )<0, 故当x =6 000时,S (x )取极大值, 而只有一个点使S ′(x )=0, 故函数在该点取得最大值,因此,要使利润最大,应生产6 000件产品.用导数解应用题求最值的方法与步骤:[对应课时跟踪训练(二十二)]1.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为________.解析:设该公司在甲地销x 辆,那么乙地销15-x 辆,利润L (x )=5.06x -0.15x 2+2(15-x ) =-0.15x 2+3.06x +30.由L ′(x )=-0.3x +3.06=0,得x =10.2.且当x <10.2时,L ′(x )>0,x >10.2时,L ′(x )<0, ∴x =10时,L (x )取到最大值,这时最大利润为45.6万元. 答案:45.6万元2.如图,将直径为d 的圆木锯成长方体横梁,横截面为矩形,横梁的强度同它的断面高的平方与宽x 的积成正比(强度系数为k ,k >0).要将直径为d 的圆木锯成强度最大的横梁,断面的宽x 应为________.解析:设断面高为h ,则h 2=d 2-x 2.设横梁的强度函数为f (x ),则f (x )=kxh 2=kx (d 2-x 2),0<x <d .令f ′(x )=k (d 2-3x 2)=0,解得x =±33d (舍去负值).当0<x <33d 时,f ′(x )>0,f (x )单调递增;当33d <x <d 时,f ′(x )<0,f (x )单调递减.所以函数f (x )在定义域(0,d )内只有一个极大值点x =33d .所以x =33d 时,f (x )有最大值. 答案:33d 3.将长为l 的铁丝剪成2段,各围成长与宽之比为2∶1及3∶2的矩形,则两矩形面积之和的最小值为________. 解析:如图所示,设边长之比为2∶1的矩形周长为x ,则边长之比为3∶2的矩形周长为l -x ,两矩形面积之和为S =2x 6·x 6+l -x10·l -x10=x 218+350(l -x )2,0<x <l .由S ′=x 9+325(x -l )=0,得x =2752l .当x 变化时,S ′,S 的变化情况如下表:由上表可知,当x =2752l 时,S 的最小值为3104l 2.答案:3l21044.如图,已知一罐圆柱形红牛饮料的容积为250 mL ,则它的底面半径等于________时(用含有π的式子表示),可使所用的材料最省.解析:设圆柱的高为h ,表面积为S ,容积为V ,底面半径为r ,则表面积S =2πrh +2πr 2,而V =250=πr 2h ,得h =250πr 2,则S =2πr ·250πr 2+2πr 2=500r+2πr 2,S ′=-500r 2+4πr ,令S ′=0得r =53π2π,因为S 只有一个极值,所以当r =53π2π时,S 取得最小值,即此时所用的材料最省.答案:53π2π5.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站________km 处.解析:依题意可设每月土地占用费y 1=k 1x,每月库存货物的运费y 2=k 2x ,其中x 是仓库到车站的距离,k 1,k 2是比例系数.于是由2=k 110得k 1=20;由8=10k 2得k 2=45.因此,两项费用之和为y =20x +4x 5(x >0),y ′=-20x 2+45,令y ′=0,得x =5,或x =-5(舍去).当0<x <5时,y ′<0;当x >5时,y ′>0.因此,当x =5时,y 取得极小值,也是最小值.故当仓库建在离车站5千米处时,两项费用之和最小. 答案:56.某品牌电视生产厂家有A ,B 两种型号的电视机参加了家电下乡活动,若厂家对A ,B 两种型号的电视机的投放金额分别为p ,q 万元,农民购买电视机获得的补贴分别为110p ,25ln q 万元,已知A ,B 两种型号的电视机的投放总额为10万元,且A ,B 两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值.(精确到0.1,参考数据:ln 4≈1.4)解:设B 型号电视机的投放金额为x 万元(1≤x ≤9),农民得到的补贴为y 万元, 则A 型号的电视机的投放金额为(10-x )万元, 由题意得y =110(10-x )+25ln x =25ln x -110x +1,1≤x ≤9,∴y ′=25x -110,令y ′=0得x =4,由y ′>0得1≤x <4,由y ′<0得4<x ≤9, 故y 在[1,4)上单调递增,在(4,9]上单调递减,∴当x =4时,y 取得最大值,且y max =25 ln 4-110×4+1≈1.2,这时,10-x =6.故厂家对A ,B 两种型号的电视机的投放金额分别为6万元和4万元时,农民得到的补贴最多,最多补贴约1.2万元.7.请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E 、F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm).(1)若广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值. 解:设包装盒的高为h (cm),底面边长为a (cm).由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值. (2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ).由V ′=0,得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值.此时h a =12.即包装盒的高与底面边长的比值为12.8.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (L)关于行驶速度x (km/h)的函数解析式可以表示为:y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100 km.(1)当汽车以40 km/h 的速度匀速行驶时,从甲地到乙地要耗油多少L? (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少L? 解:(1)当x =40 km/h 时,汽车从甲地到乙地行驶了10040=2.5 h ,要耗油⎝⎛⎭⎪⎫1128 000×403-380×40+8×2.5=17.5(L).∴当汽车以40 km/h 的速度匀速行驶时,从甲地到乙地耗油17.5 L.(2)当速度为x km/h 时,汽车从甲地到乙地行驶了100xh ,设耗油量为h (x )升,依题意得h (x )=⎝⎛⎭⎪⎫1128 000x 3-380x +8·100x=11 280x 2+800x -154(0<x ≤120), 则h ′(x )=x640-800x 2=x 3-803640x 2(0<x ≤120).令h ′(x )=0,得x =80,当x ∈(0,80)时,h ′(x )<0,h (x )是单调递减函数; 当x ∈(80,120)时,h ′(x )>0,h (x )是单调递增函数. ∴当x =80时,h (x )取到极小值,h (80)=11.25. ∵h (x )在(0,120]上只有一个极值, 且h (120)=856>h (80).∴当x =80时函数取得最小值.∴当汽车以80 km/h 的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25 L.[对应学生用书P58]一、导数的概念 1.导数函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),当Δx 无限趋近于0时,比值Δy Δx=fx 0+Δx -f x 0Δx无限趋近于一个常数A ,则称f (x )在点x =x 0处可导,称常数A 为函数f (x )在点x =x 0处的导数,记作f ′(x 0).2.导函数若f (x )对于区间(a ,b )内任一点都可导,则f ′(x )在各点的导数中随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数.记作f ′(x ).二、导数的几何意义1.f ′(x 0)是函数y =f (x )在x 0处切线的斜率,这是导数的几何意义. 2.求切线方程: 常见的类型有两种:一是函数y =f (x )“在点x =x 0处的切线方程”,这种类型中(x 0,f (x 0))是曲线上的点,其切线方程为y -f (x 0)=f ′(x 0)(x -x 0).二是函数y =f (x )“过某点的切线方程”,这种类型中,该点不一定为切点,可先设切点为Q (x 1,y 1),则切线方程为y -y 1=f ′(x 1)(x -x 1),再由切线过点P (x 0,y 0)得y 0-y 1=f ′(x 1)(x 0-x 1),又y 1=f (x 1),由上面两个方程可解得x 1,y 1的值,即求出了过点P (x 0,y 0)的切线方程.三、导数的运算 1.基本初等函数的导数 (1)f (x )=c ,则f ′(x )=0; (2)f (x )=x α,则f ′(x )=α·xα-1;(3)f (x )=a x (a >0且a ≠1),则f ′(x )=a xln a . (4)f (x )=log a x ,则f ′(x )=1x ln a; (5)f (x )=sin x ,则f ′(x )=cos x ; (6)f (x )=cos x ,则f ′(x )=-sin x ;2.导数四则运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)[f xg x ]′=fx g x -f x gxg 2x.四、导数与函数的单调性 利用导数求函数单调区间的步骤: (1)求导数f ′(x );(2)解不等式f ′(x )>0或f ′(x )<0; (3)写出单调增区间或减区间.特别注意写单调区间时,区间之间用“和”或“,”隔开,绝对不能用“∪”连接. 五、导数与函数的极值 利用导数求函数极值的步骤: (1)确定函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检验f ′(x )=0的根的两侧的f ′(x )的符号,若左正右负,则f (x )在此根处取得极大值. 若左负右正,则f (x )在此根处取得极小值,否则此根不是f (x )的极值点. 六、求函数f (x )在闭区间[a ,b ]上的最大值、最小值的方法与步骤 (1)求f (x )在(a ,b )内的极值;(2)将(1)求得的极值与f (a )、f (b )相比较,其中最大的一个值为最大值,最小的一个值为最小值.特别地,①当f (x )在[a ,b ]上单调时,其最小值、最大值在区间端点取得;②当f (x )在(a ,b )内只有一个极值点时,若在这一点处f (x )有极大(或极小)值,则可以判断f (x )在该点处取得最大(或最小)值,这里(a ,b )也可以是(-∞,+∞).七、导数的实际应用利用导数求实际问题的最大(小)值时,应注意的问题:(1)求实际问题的最大(小)值时,一定要从问题的实际意义去考查,不符合实际意义的值应舍去.(2)在实际问题中,由f ′(x )=0常常仅解到一个根,若能判断函数的最大(小)值在x 的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值.⎣⎢⎡⎦⎥⎤对应阶段质量检测三 见8开试卷 (时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.将答案填在题中的横线上) 1.在Δx 无限趋近于0时,f x 0-f x 0+ΔxΔx无限趋近于1,则f ′(x 0)=________.解析:由已知得Δx 无限趋近于0时,f x 0+Δx -f x 0Δx无限趋近于-1,则f ′(x 0)=-1.答案:-12.若函数f (x )=x sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π2=________. 解析:∵f (x )=x sin x +cos x , ∴f ′(x )=(x sin x +cos x )′ =(x sin x )′+(cos x )′ =sin x +x cos x -sin x =x cos x .∴f ′⎝ ⎛⎭⎪⎫π2=π2cos π2=0.答案:03.设f (x )=x ln x ,若f ′(x 0)=2,则x 0=________. 解析:f ′(x )=ln x +x ·1x=ln x +1,由f ′(x 0)=2,得ln x 0+1=2. ∴x 0=e. 答案:e4.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则a =________,b =________. 解析:∵y ′=2x +a ,∴y ′|x =0=a =1.又(0,b )在x -y +1=0上,故0-b +1=0,得b =1. 答案:1 15.已知函数f (x )=-x 3+ax 2-x +18在(-∞,+∞)上是单调函数,则实数a 的取值范围是________. 解析:由题意得f ′(x )=-3x 2+2ax -1≤0在(-∞,+∞)上恒成立,因此Δ=4a 2-12≤0⇒-3≤a ≤3,所以实数a 的取值范围是[-3,3].答案:[-3,3]6.用长14.8 m 的钢条制作一个长方体容器的框架,如果所制的底面的一边比另一边长0.5 m ,那么容器的最大容积为________m 3.解析:设容器底面短边长为x m ,则另一边长为 (x +0.5)m ,高为(3.2-2x )m. 由3.2-2x >0,x >0,得0<x <1.6. 设容器的容积为y m 3,则有y =x (x +0.5)(3.2-2x )(0<x <1.6), 整理得y =-2x 3+2.2x 2+1.6x ,y ′=-6x 2+4.4x +1.6,令y ′=0,解得x 1=1,x 2=-415(舍去).从而,定义域(0,1.6)内只有在x =1处有y ′=0,由题意,若x 过小(接近0)或x 过大(接近1.6)时,y 值很小,因此,当x =1时,y max =1.8,此时高1.2 m ,所以当容器的高为1.2 m 时,容积最大,最大容积为1.8 m 3. 答案:1.87.已知使函数y =x 3+ax 2-43a 的导数为0的x 值也使y 值为0,则常数a 的值为________.解析:∵y ′=3x 2+2ax ,由3x 2+2ax =0,得x =0或x =-2a 3.又当x =0时,y =0,∴-4a 3=0.∴a =0.经验证a =0符合题意.答案:08.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m =________. 解析:f ′(x )=3x 2-12=3(x -2)(x +2),∴f (x )在[-3,-2],[2,3]上单调递增,在[-2,2]上单调递减.f (-3)=17,f (-2)=24,f (2)=-8,f (3)=-1,故M =24,m =-8,则M -m =32.答案:329.已知函数f (x )=x 3-3x 2+3+a 的极大值为5,则实数a =________.解析:∵f ′(x )=3x 2-6x ;由f ′(x )=0得x =0或x =2;由f ′(x )>0得x <0或x >2,则f (x )的单调递增区间为(-∞,0)和(2,+∞);由f ′(x )<0得0<x <2,则f (x )的单调递减区间为(0,2).当x =0时函数取得极大值,∴f (0)=3+a =5,∴a =2.答案:210.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (3)=0.则不等式f (x )g (x )<0的解集是________.解析:设F (x )=f (x )g (x ),则F (x )为奇函数,F (0)=0. ∵x <0时,F ′(x )>0, 且F (-3)=-F (3) =-f (3)g (3)=0, ∴F (x )示意图如图:当x ∈(-∞,-3)或(0,3)时,F (x )<0. 答案:(-∞,-3)∪(0,3)11.函数y =1+ln xx的单调递增区间是________.解析:y ′=xx -ln x x 2=1-ln xx 2.令y ′>0,得1-ln x >0,∴0<x <e. 故增区间为(0,e)答案:(0,e)12.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x (e 为自然对数的底数),则f ′(e)=________.解析:由f (x )=2xf ′(e)+ln x ,得f ′(x )=2f ′(e)+1x ,则f ′(e)=2f ′(e)+1e ⇒f ′(e)=-1e .答案:-1e13.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99=________.解析:由于y ′| x =1=n +1,∴曲线在点(1,1)处的切线为y -1=(n +1)(x -1),令y =0,得x =x n=n n +1,∴a n =lgnn +1,∴原式=lg 12+lg 23+…+lg 99100=lg ⎝ ⎛⎭⎪⎫12×23×…×99100=lg 1100=-2.答案:-214.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.解析:∵f ′(x )=4x -1x =4x 2-1x ,x >0,∴当0<x <12时,f ′(x )<0,f (x )为减函数,当x >12时,f ′(x )>0,f (x )为增函数,依题意得⎩⎪⎨⎪⎧0≤k -1<12,12<k +1,k -1<k +1.∴1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分14分)已知函数f (x )=ax 2-43ax +b ,f (1)=2,f ′(1)=1;(1)求f (x )的解析式;(2)求f (x )在(1,2)处的切线方程. 解:(1)f ′(x )=2ax -43a .由已知得⎩⎪⎨⎪⎧f=2a -43a =1,f=a -43a +b =2.解得⎩⎪⎨⎪⎧a =32,b =52.∴f (x )=32x 2-2x +52.(2)函数f (x )在(1,2)处的切线方程为y -2=x -1,即x -y +1=0.16.(本小题满分14分)设函数f (x )=-13x 3+x 2+(m 2-1)x (x ∈R ),其中m >0.(1)当m =1时,求曲线y =f (x )在点(1,f (1))处的切线斜率; (2)求函数的单调区间与极值. 解:(1)当m =1时,f (x )=-13x 3+x 2,f ′(x )=-x 2+2x ,故f ′(1)=1.所以曲线y =f (x )在点(1,f (1))处的切线斜率为1.(2)f ′(x )=-x 2+2x +m 2-1,令f ′(x )=0,得到x =1-m ,x =1+m ,因为m >0,所以1+m >1-m . 当x 变化时,f (x ),f ′(x )的变化情况如下表:f (x )在(-∞,1-m )和(1+m ,+∞)内为减函数,在(1-m,1+m )内为增函数.函数f (x )在x =1+m 处取得极大值f (1+m ), 且f (1+m )=23m 3+m 2-13,函数f (x )在x =1-m 处取得极小值f (1-m ), 且f (1-m )=-23m 3+m 2-13.17.(本小题满分14分)某造船公司年造船量是20艘,已知造船x 艘的产值函数为R (x )=3 700x +45x 2-10x 3(单位:万元),成本函数为C (x )=460x -5 000(单位:万元).(1)求利润函数P (x );(提示:利润=产值-成本)(2)问年造船量安排多少艘时,可使公司造船的年利润最大? 解:(1)P (x )=R (x )-C (x )=-10x 3+45x 2+3 700x -(460x -5 000) =-10x 3+45x 2+3 240x +5 000 (x ∈N *,且1≤x ≤20). (2)P ′(x )=-30x 2+90x +3 240 =-30(x -12)(x +9),由P ′(x )=0,得x =12,x =-9(舍去). 当0<x <12时,P ′(x )>0,P (x )单调递增;当x >12时,P ′(x )<0,P (x )单调递减. ∴当x =12时,P (x )取得极大值,也为最大值.∴当年造船量安排12艘时,可使公司造船的年利润最大.18.(本小题满分16分)已知x =1是函数f (x )=13ax 3-32x 2+(a +1)x +5的一个极值点.(1)求函数f (x )的解析式;(2)若曲线y =f (x )与直线y =2x +m 有三个交点,求实数m 的取值范围. 解:(1)依题意f ′(x )=ax 2-3x +a +1, 由f ′(1)=0得a =1,∴函数f (x )的解析式为f (x )=13x 3-32x 2+2x +5.(2)曲线y =f (x )与直线y =2x +m 有三个交点, 即13x 3-32x 2+2x +5-2x -m =0有三个实数根, 令g (x )=13x 3-32x 2+2x +5-2x -m =13x 3-32x 2+5-m ,则g (x )有三个零点.由g ′(x )=x 2-3x =0得x =0或x =3.令g ′(x )>0得x <0或x >3;令g ′(x )<0得0<x <3.∴函数g (x )在(-∞,0)上为增函数,在(0,3)上为减函数,在(3,+∞)上为增函数. ∴函数在x =0处取得极大值,在x =3处取得极小值. 要使g (x )有三个零点,只需⎩⎪⎨⎪⎧g ,g,解得12<m <5.∴实数m 的取值范围为⎝ ⎛⎭⎪⎫12,5. 19.(本小题满分16分)已知函数f (x )=(x -k )e x, (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值. 解:(1)f ′(x )=(x -k +1)e x. 令f ′(x )=0,得x =k -1.当x 变化时,f (x )与f ′(x )的变化情况如下:所以,f (x )的单调递减区间是(-∞,k -1);单调递增区间是(k -1,+∞). (2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (0)=-k .当0<k-1<1,即1<k<2时,由(1)知f(x)在[0,k-1)上单调递减,在(k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1.当k-1≥1,即k≥2时,函数f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.20.(本小题满分16分)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a=3,b=-9时,若函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.解:(1)f′(x)=2ax,g′(x)=3x2+b.因为曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,所以f(1)=g(1),且f′(1)=g′(1),即a+1=1+b,且2a=3+b,解得a=3,b=3.(2)记h(x)=f(x)+g(x),当a=3,b=-9时,h(x)=x3+3x2-9x+1,h′(x)=3x2+6x-9.令h′(x)=0,得x1=-3,x2=1.h(x)与h′(x)在(-∞,2]上的变化情况如下:由此可知:当k≤-3时,函数h(x)在区间[k,2]上的最大值为h(-3)=28;当-3<k<2时,函数h(x)在区间[k,2]上的最大值小于28.因此,k的取值范围是(-∞,-3].。
一、填空题
1.函数y=1+3x-x3的极大值,极小值分别为________.
解析:由y=1+3x-x3,
得y′=-3x2+3,
令y′=0,即-3x2+3=0.
得x=±1.
∵当x<-1时,y′<0;
当-1<x<1时,y′>0;
当x>1时,y′<0.
∴当x=1时,有y极大值=1+3-1=3;
当x=-1时,有y极小值=1-3+1=-1.
答案:3,-1
2.函数y=x3-3x2+1的单调递减区间为________.
解析:f′(x)=(x3-3x2+1)′=3x2-6x,
∵当f′(x)<0时,f(x)单调递减,
∴3x2-6x<0,即0<x<2.
故单调递减区间为(0,2).
答案:(0,2)
3.已知t为常数,函数f(x)=|x3-3x-t+1|在区间[-2,1]上的最大值为2,则实数t=________.
解析:由题意知-2≤x3-3x-t+1≤2在x∈[-2,1]上恒成立,不等式左右两边分别分离变量,可得x3-3x-1≤t≤x3-3x+3在x∈[-2,1]上恒成立,得1≤t≤1,所以t=1.本题还可以通过数形结合的方法讨论解决.
答案:1
4.函数f (x )=x 3+3ax 2+3[(a +2)x +1]既有极大值又有极小值,则a 的取值范围是________.
解析:∵f (x )=x 3+3ax 2+3[(a +2)x +1], ∴f ′(x )=3x 2+6ax +3(a +2).
令3x 2+6ax +3(a +2)=0,即x 2+2ax +a +2=0. ∵函数f (x )有极大值和极小值,
∴方程x 2+2ax +a +2=0有两个不相等的实根. 即Δ=4a 2-4a -8>0,∴a >2或a <-1. 答案:a >2或a <-1
5.已知函数f (x )=1
2x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是________.
解析:因为函数f (x )=12x 4
-2x 3+3m , 所以f ′(x )=2x 3-6x 2, 令f ′(x )=0,得x =0或x =3, 经检验知x =3是函数的最小值点, 所以函数的最小值为f (3)=3m -27
2, 不等式f (x )+9≥0恒成立, 即f (x )≥-9恒成立,
所以3m -272≥-9,解得m ≥3
2. 答案:m ≥3
2
6.函数y =x +2cos x 在[0,π
2]上取得最大值时x 的值为________.
解析:y ′=(x +2cos x )′=1-2sin x , 令1-2sin x =0,且x ∈[0,π2]时,x =π
6. 当x ∈[0,π
6]时,f ′(x )≥0,f (x )是单调增函数, 当x ∈[π6,π
2]时,f ′(x )≤0,f (x )单调递减. ∴f (x )max =f (π
6). 答案:π6
7.设m ∈R ,若函数y =e x +2mx (x ∈R)有大于零的极值点,则m 的取值范围是________.
解析:因为函数y =e x +2mx (x ∈R)有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图象可得-2m >1,即m <-1
2. 答案:m <-1
2
8.已知函数f (x )=x sin x ,x ∈R ,则f (-4),f (4π3),f (-5π
4)的大小关系为________(用“<”连结).
解析:f ′(x )=sin x +x cos x ,当x ∈[5π4,4π
3]时,sin x <0,cos x <0,∴f ′(x )=sin x +x cos x <0,则函数f (x )在x ∈[5π4,4π3]上为减函数,∴f (4π3)<f (4)<f (5π
4),又函数f (x )为偶函数,∴f (4π3)<f (-4)<f (-5π
4). 答案:f (4π3)<f (-4)<f (-5π
4)
9.f (x )=x (x -c )2在x =2处有极大值,则常数c 的值为________. 解析:f (x )=x 3-2cx 2+c 2x ,f ′(x )=3x 2-4cx +c 2, f ′(2)=0⇒c =2或c =6.若c =2,f ′(x )=3x 2-8x +4,
令f ′(x )>0⇒x <23或x >2,f ′(x )<0⇒2
3<x <2,
故函数在(-∞,23)及(2,+∞)上单调递增,在(2
3,2)上单调递减,∴x =2是极小值点.故c =2不合题意,c =6. 答案:6 二、解答题
10.已知函数f (x )=ax 2+b ln x 在x =1处有极值1
2. (1)求a ,b 的值;
(2)判断函数y =f (x )的单调性并求出单调区间. 解析:(1)因为函数f (x )=ax 2+b ln x , 所以f ′(x )=2ax +b
x .
又函数f (x )在x =1处有极值1
2,
所以⎩⎨⎧
f ′(1)=0,f (1)=1
2.即⎩⎨⎧
2a +b =0,a =12.
解得⎩⎨
⎧
a =12,
b =-1.
(2)由(1)可知f (x )=1
2x 2-ln x ,其定义域是(0,+∞), 且f ′(x )=x -1x =(x +1)(x -1)
x
.
当x 变化时,f ′(x ), f (x )的变化情况如下表:
所以函数y =f (x )的单调递减区间是(0,1),单调递增区间是(1,+∞). 11.已知函数f (x )=x
ln x (x >0,x ≠1). (1)求函数f (x )的极值;
(2)若不等式
>x 对任意实数x 恒成立,求实数a 的取值范围.
解析:(1)函数f (x )=x
ln x 的定义域为(0,1)∪(1,+∞), f ′(x )=ln x -1
ln 2x . 令f ′(x )=0,解得x =e.
当x 变化时,f ′(x ),f (x )的变化情况如下表:
由表得函数f (x )的单调减区间为(0,1)和(1,e),单调增区间为(e ,+∞). 所以存在极小值为f (e)=e ,无极大值. (2)当x ≤0时,对任意a ≠0,不等式恒成立.
当x >0时,在不等式>x 两边同时取自然对数,得
x
a
>ln x .(*) ①当0<x ≤1时,ln x ≤0, 当a >0,不等式恒成立; 如果a <0,ln x <0,a ln x >0, 不等式(*)等价于a <x
ln x ,
由(1)得,此时x
ln x ∈(-∞,0), 不等于(*)不恒成立.
②当x >1时,ln x >0,则a >0,不等式(*)等价于a <x ln x ,由(1)得,此时x
ln x 的最小值为e ,得0<a <e.
综上所述,a 的取值范围是(0,e). 12.设函数f (x )=e x -1-x -ax 2. (1)若a =0,求f (x )的单调区间;
(2)若当x ≥0时,f (x )≥0,求a 的取值范围. 解析:(1)若a =0,f (x )=e x -1-x ,f ′(x )=e x -1. 当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0. 故f (x )的单调递减区间是(-∞,0),单调递增区间是(0,+∞). (2)f ′(x )=e x -1-2ax . 由(1)知e x ≥1+x ,
当且仅当x =0时等号成立, 故f ′(x )≥x -2ax =(1-2a )x ,
从而当1-2a ≥0,即a ≤1
2时,f ′(x )≥0(x ≥0). ∴f (x )在[0,+∞)上单调增加. 而f (0)=0,于是当x ≥0时,f (x )≥0. 由e x >1+x (x ≠0)可得e -x >1-x (x ≠0). 从而当a >1
2时,
f ′(x )<e x -1+2a (e -x -1)=e -x (e x -1)(e x -2a ), 令e -x (e x -1)(e x -2a )<0得1<e x <2a ,
∴0<x<ln 2a.
故当x∈(0,ln 2a)时,f′(x)<0,
∴f(x)在(0,ln 2a)上单调减少.
而f(0)=0,于是当x∈(0,ln 2a)时,f(x)<0.不符合要求.
综上可得a的取值范围为(-∞,1 2].。