齿轮有限元分析
- 格式:doc
- 大小:2.78 MB
- 文档页数:51
针齿中心圆半径r p根据经验公式:式中,前面系数取则,取。
④齿宽=150mm,前面系数取0.11偏心距,短幅系数,针齿半径rp=6.97mm,取r rp=7mm因,则最小曲率半径:计算得到,则,顶切。
⑧针径系数,计算得到K针齿销跨度L=3.5b c,计算得到齿面接触强度校核最大载荷,计算得到齿面接触强度计算。
根据赫兹公式,齿面接触应力按下式计算:1)当量弹性模量E e:摆线轮的弹性模量E1和针齿的弹性模量的弹性模量,故。
2)当量曲率半径ρei,得:令,,则:,且,故:3)任意瞬间针齿与摆线轮接触点的法向压力综上可得:令,Y1随K1、K2、z c以及接触的位置θbi不同而变化,当K1、K2、z c一定时,必有某个=θk使Y1达到最大值Y1max:则:根据插值法取Y1max=1.95。
代入数图3箱体图4装配体内部结构图1行星轮图2摆线轮4齿轮副有限元分析针对风电变桨减速器结构,对代表性的齿轮副进行了有限元模型的建立和分析,其中包括一对外啮合齿轮副、摆线轮与针齿接触副。
4.1外啮合齿轮副建立外啮合齿轮副的实体模型,并导入ANSYS中,应用Swept Meshing(扫掠法)进行网格划分,网格模型共计25140个单元,29010个节点,外啮合齿轮副有限元模型如图5所示。
图5外啮合齿轮副网格图外啮合齿轮副计算模型边界条件为:主动轮z1施加扭矩载荷,径向和轴向施加零位移约束,可绕中心线转动;动轮z2的切向、径向和轴向均施加零位移约束,边界条件如图6所示。
图6外啮合齿轮副边界条件4.2摆线轮与针齿接触副将建立的实体模型导入ANSYS Workbench中,建立摆线轮与针齿接触副有限元模型,应用Hex Dominat行网格划分,共计116254个单元,455334个节点,网格模型如图7所示。
图7摆线针齿网格图摆线轮与针齿接触副有限元模型分析边界条件为:齿外圈切向、径向和轴向均施加零位移约束;分布的轴承孔面径向和轴向施加零位移约束,所示。
第1篇一、实验背景齿轮作为机械传动系统中的重要组成部分,其性能直接影响着整个系统的效率和寿命。
为了提高齿轮设计的准确性和可靠性,本研究采用有限元分析(FEA)和刚柔耦合动力学仿真(Rigid-Flexibility Coupling)方法,对齿轮进行仿真耦合实验,以评估齿轮在实际工作条件下的力学行为和性能。
二、实验目的1. 建立齿轮的有限元模型,并进行网格划分。
2. 通过有限元分析,计算齿轮在静态载荷作用下的应力分布和变形情况。
3. 利用刚柔耦合动力学仿真,模拟齿轮在实际工作条件下的动态响应。
4. 分析齿轮的疲劳寿命和强度性能,为齿轮设计和优化提供理论依据。
三、实验方法1. 有限元模型建立与网格划分首先,根据齿轮的实际尺寸和材料属性,建立齿轮的几何模型。
然后,采用四面体网格对齿轮进行网格划分,确保网格质量满足仿真要求。
2. 静态载荷下的有限元分析在有限元分析中,将齿轮置于静态载荷作用下,通过求解非线性方程组,得到齿轮的应力分布和变形情况。
主要关注齿轮的齿面接触应力、齿根应力、齿面磨损和齿面疲劳寿命。
3. 刚柔耦合动力学仿真为了模拟齿轮在实际工作条件下的动态响应,采用刚柔耦合动力学仿真方法。
将齿轮视为柔性体,同时考虑齿轮与轴承、轴等部件的相互作用。
通过施加转速和扭矩等激励,模拟齿轮在旋转过程中的动态响应。
4. 疲劳寿命和强度性能分析在仿真过程中,对齿轮的疲劳寿命和强度性能进行分析。
通过计算齿面接触应力、齿根应力等参数,评估齿轮的疲劳寿命和强度性能。
四、实验结果与分析1. 静态载荷下的应力分布和变形通过有限元分析,得到齿轮在静态载荷作用下的应力分布和变形情况。
结果表明,齿轮的齿面接触应力主要集中在齿根附近,齿根应力较大。
同时,齿轮的变形主要集中在齿面和齿根处。
2. 刚柔耦合动力学仿真结果通过刚柔耦合动力学仿真,模拟齿轮在实际工作条件下的动态响应。
结果表明,齿轮的齿面接触应力、齿根应力等参数在旋转过程中发生变化,但总体上满足设计要求。
齿轮弯曲应力的有限元分析朱彤1摘要:本文对有限元的概念和分析方法做了介绍,利用有限元分析软件ANSYS 对UG建模的齿轮进行了分析,得出了齿轮在不同载荷下,弯曲应力的变化情况,对齿轮的设计提供了理论依据。
关键词:ANSYS;有限元;齿轮1.有限元的基本概念有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
用有限元法不仅能提高计算精度,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元求解问题的基本步骤通常为:第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。
第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。
求解域的离散化是有限元法的核心技术之一。
第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。
第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。
1作者简介:朱彤(1969-)男,苏州职业大学教师。
研究方向:计算机辅助设计与制造。
为保证问题求解的收敛性,单元形状应以规则为好,内角避免出现钝角,避免出现畸形,因为畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。
第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。
总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。
一、问题描述。
图4-4所示为一直齿圆柱齿轮,图4-5为其1/2纵截面的结构示意图,试对该齿轮进行模态分析。
齿轮材料参数:弹性模量E=220GPa;泊松比=0.3;密度=7800kg/m3图4-4 直齿圆柱齿轮结构示意图图4-5 齿轮1/2纵截面结构示意图二、单元类型的选择与设定(说明理由),材料属性指定。
该问题属于模态分析问题。
在分析过程中先建立其中一个轮齿的几何模型,再循环生成整体齿轮,选择SOLID90单元进行模态分析求解。
齿轮的模态分析需要创建三维实体模型,选择单元类型的时候一般选择实体模型Structural Solid来创建齿轮,单元类型选择对复杂形状具有较好的适应性的20节点的Brick 20node 95。
材料属性题目已指定:弹性模量E=220GPa,泊松比=0.3,密度=7800kg/m3。
1.定义工作文件名和工作标题。
1)选择Utility Menu︱File︱Change Jobname命令,出现Change Jobname对话框,在[/FILNAM]Enter new jobname输入栏中输入工作文件名EXERCISE1,单击OK按钮关闭该对话框。
2)选择Utility Menu︱File︱Change Title命令,出现Change Title对话框,在输入栏中输入MODAL ANALYSIS OF A GEAR,单击OK按钮关闭该对话框。
2.定义单元类型1)选择Main Menu︱Preprocessor︱Element Type︱Add/Edit/Delete命令,出现Element Types对话框,单击Add按钮,出现Library of Element Types对话框。
2)在Library of Element Types列表框中分别选择Structural Solid、Brick 20node 95,在Element type reference number输入栏中输入1,如图4-6所示,单击OK 按钮关闭该对话框。
基于ANSYS的齿轮传动有限元分析和优化摘要ANSYS是随着电子计算机的发展而迅速发展起来的一种在计算数学,计算力学和计算工程科学领域最有效的通用有限元分析软件。
它是融结构,热,流体,电磁,声学于一体的大型通用有限元商用分析软件。
利用ANSYS有限元分析,可以对各种机械零件,构件进行应力,应变,变形,疲劳分析,并对某些复杂系统进行仿真,实现虚拟的设计,从而大大节省人力,财力和物力。
由于其方便性、实用性和有效性,ANSYS软件在各个领域,特别是机械工程当中得到了广泛的应用。
齿轮是机械中常用的一种零件,其在工作的过程中会产生应力,应变和变形,为保证其正常工作需要对齿轮的轮齿和整体受力进行分析,保证其刚度和强度的要求。
本论文采用ANSYS软件对齿轮进行静力学分析和优化实现对齿轮的虚拟设计。
齿轮是最重要的零件之一。
它具有功率范围大,传动效率高,传动比正确,使用寿命长等特点,但从零件失效的情况来看,齿轮也是最容易出故障的零件之一。
据统计,在各种机械故障中,齿轮失效就占故障总数的60%以上。
其中轮齿的折断又是齿轮失效的主要原因之一。
齿轮啮合过程作为一种接触行为, 因涉及接触状态的改变而成为一个复杂的非线性问题。
传统的齿轮理论分析是建立在弹性力学基础上的, 对于齿轮的接触强度计算均以两平行圆柱体对压的赫兹公式为基础,在计算过程中存在许多假设,不能准确反映齿轮啮合过程中的应力以及应变分布与变化。
相对于理论分析,有限元法则具有直观、准确、快速方便等优点。
齿廓曲面是渐开线曲面,所以建模的难点和关键在于如何确定精确的渐开线。
通过PDL命令流直接在ANSYS中创建标准直齿圆柱齿轮,学习应用ANSYS软件进行零件的几何建模和网格划分,并进行静力加载和求解,对求解的结果进行查看,分析和优化。
关键词:ANSYS;有限元;齿轮;CAEGear Transmission Of Finite Element Analysis AndOptimizationAbstractANSYS is along with the rapid development of electronic computers and developed a computational mathematics, computational mechanics and engineering science, the most effective general finite element analysis software. It is hot, the fluid, structure, electromagnetic, acoustics integration in the universal finite element analysis software for commercial. Using the ANSYS finite element analysis, all kinds of machine parts, can carry out stress, strain and structural deformation, fatigue analysis of some complex system, and the simulation, the design and realization of virtual human, to save money and material. Due to its convenience, practicability and validity, ANSYS software, especially in the field of mechanical engineering has been widely used.Gear is commonly used in machinery, a part of the work in process of stress, strain and can produce deformation, so as to ensure the normal working of gear teeth and to overall analysis, ensure the stiffness and strength. This thesis of ANSYS software of gear static analysis and optimization of virtual design of gear.Gear is one of the most important parts. It has big power range, high transmission efficiency and transmission ratio correctly, long using life, etc, but from the failure parts, gear is the most vulnerable parts of the fault. According to statistics, in all kinds of mechanical failure, gear failure is accounted for 60% of the total failure. One of the broken tooth gear is one of the main reasons.Gear meshing process as a contact, because involves contact state changes a complex nonlinear problems. The traditional theory of gear analysis was based on the basis of elastic mechanics, the contact strength for gear with two parallel computation formula of the cylinder pressure, based in Hertz calculation process in many assumptions, was not accurate in reflecting gear meshing process of stress and strain distribution and change. Relative to the theoretical analysis, finite element method, the principle is convenient and fast accurate, etc. Involute tooth profile surface is curved, so the difficulties and modeling key lies in how to determine the precise involute. Through PDL coupler, single mode WDMS directly in order to create ANSYS flow standard spur gears, study on parts of ANSYS software, and the meshing geometric modeling and static load and the solving of solving the check, analysis and optimization.Key words: ANSYS; Finite element; Gear; CAE目录1 绪论.................................................................................................................................... - 1 -1.1有限元概述................................................................................................................................. - 1 -1.2选题背景..................................................................................................................................... - 3 -1.3 本文主要工作............................................................................................................................ - 3 -2 ANSYS准备工作................................................................................................................. - 4 -2.1 ANSYS安装与启动..................................................................................................................... - 4 -2.1.1 许可证服务器安装........................................................................................................ - 4 -2.1.2 主程序安装.................................................................................................................... - 5 -2.1.3 启动许可证服务器........................................................................................................ - 7 -2.1.4 ANSYS启动与配置......................................................................................................... - 8 -2.2 设置工作目录.......................................................................................................................... - 10 -2.3 指定作业名与分析标题.......................................................................................................... - 10 -2.3.1 指定作业名.................................................................................................................. - 10 -2.3.2 指定分析标题...............................................................................................................- 11 -2.4 定义图形界面过滤参数...................................................................................................- 11 -2.5 ANSYS单位制................................................................................................................... - 12 -2.6 选取和定义单元.............................................................................................................. - 13 -3 在ANSYS中建立齿轮分析模型...................................................................................... - 15 -3.1 几何模型的建立...................................................................................................................... - 15 -3.1.1 大小齿轮的具体基本参数和尺寸 .............................................................................. - 15 -3.1.2 渐开线的生成原理...................................................................................................... - 16 -3.1.3 创建渐开线曲线.......................................................................................................... - 16 -3.1.4 生成齿根过渡曲线...................................................................................................... - 18 -3.1.5 生成完整齿廓线.......................................................................................................... - 18 -3.1.6 生成完整齿轮的面...................................................................................................... - 19 -3.1.7 生成大齿轮.................................................................................................................. - 20 -3.1.8 生成两齿轮的啮合图.................................................................................................. - 22 -3.2 几何模型的网格划分.............................................................................................................. - 22 -3.2.1 定义单元属性.............................................................................................................. - 23 -3.2.2 定义网格生成控制并生成网格 .................................................................................. - 24 -4 ANSYS静力加载与静力求解........................................................................................... - 27 -4.1创建接触对............................................................................................................................... - 27 -4.2 ANSYS施加边界条件和加载................................................................................................... - 29 -4.3 ANSYS求解............................................................................................................................... - 31 -5 求解结果的分析和优化.................................................................................................. - 32 -5.1 求解结果查看.......................................................................................................................... - 32 -5.2 结果分析及结论...................................................................................................................... - 34 -5.3 对齿轮的优化.......................................................................................................................... - 35 -6 全文总结与展望.............................................................................................................. - 36 -6.1 全文总结.................................................................................................................................. - 36 -6.2 工作展望.................................................................................................................................. - 36 - 参考文献.............................................................................................................................. - 37 -附录...................................................................................................................................... - 38 - 致谢.................................................................................................................................... - 39 -1 绪论1.1有限元概述有限元是随着电子计算机的发展而迅速发展起来的一种现代计算方法。