风力发电机并网
- 格式:ppt
- 大小:537.50 KB
- 文档页数:29
变速恒频风力发电机空载并网控制随着环境保护和可持续发展的重要性日益凸显,风力发电作为一种清洁、可再生的能源,得到了广泛应用。
在风力发电机组中,变速恒频风力发电机是一种常见的类型。
本文将重点探讨变速恒频风力发电机空载并网控制的原理、优缺点及应用。
变速恒频风力发电机组是一种通过风轮捕捉风能,并将其转换为电能的技术。
与恒速恒频风力发电机相比,变速恒频风力发电机具有更高的风能利用率和更宽的转速范围。
其工作原理是,通过调整风轮转速,以适应风速的变化,从而保持发电机输出频率的稳定。
空载并网控制是指风力发电机在不带负载的情况下与电网连接。
实现空载并网的关键在于控制风轮转速和发电机电流,以确保发电机与电网的同步。
常见的空载并网控制策略包括以下两种:直接并网法:在风速达到额定值后,风轮直接驱动发电机进入同步状态,然后进行并网。
此种方法简单直接,但并网瞬间会产生较大的冲击电流。
软并网法:通过控制风轮和发电机的转速,缓慢地将发电机接入电网,从而避免冲击电流的产生。
这种方法需要更多的控制环节和算法,但其并网效果较直接并网法更为平稳。
优点: a.由于能够适应风速的变化,所以具有较高的风能利用率; b.通过调整转速,可以减轻风轮和发电机的机械应力,提高设备的寿命;c.与恒速恒频风力发电机相比,其启动和停止更为灵活。
缺点: a.控制系统的设计较为复杂,需要精确的转速和电流控制; b.并网过程中可能产生较大的冲击电流,对电网造成一定的影响; c.需要采取措施来应对电网的波动,以保证系统的稳定运行。
变速恒频风力发电机空载并网控制在现代风力发电场中得到了广泛应用。
例如,根据某风力发电场的数据,采用变速恒频风力发电机空载并网控制后,该风电场的年发电量增加了30%,同时设备维护成本降低了20%。
这充分证明了变速恒频风力发电机空载并网控制在提高发电效率和降低运行成本方面的优势。
变速恒频风力发电机空载并网控制是风力发电技术中的重要一环。
通过控制风轮转速以适应风速的变化,保持发电机输出频率的稳定,可以实现高效的电能转换。
风力发电机并网控制三种方式
链接:/tech/6262.html
风力发电机并网控制三种方式
风力发电机的并网控制直接影响到风力发电机能否向输电网输送电能以及机组是否受到并网时冲击电流的影响。
并网控制装置有软并网,降压运行和整流逆变三种方式。
软并网装置:
异步发电机直接并网时,其冲击电流达到额定电流的6~8倍时,为了减少直接并网时产生的冲击电流及接触器
的投切频率,在风速持续低于启动风速一段时间后,风力发电才与电网解列,在此期间风力发电机处于电动机运行状态,从电网吸收有功功率。
降压运行装置:
软并网装置只在风力发电机启动时运行,而降压运行装置始终运行,控制方法也比较复杂。
该装置在风速低
于风力发电机的启动风速时将风力发电机与电网切断,避免了风力发电机的电动机运行状态。
整流逆变装置:
整流逆便是一种较好的并网方式,它可以对无功功率进行控制,有利于电力系统的安全稳定运行,缺点是造
价高。
随着风电场规模的不断扩大和大功率电力电子设备价格的降低,将来这种并网装置可能会得到广泛的应用。
风电场接入电力系统的方案主要由风电场的最终装机容量和风电场在电网所处的位置来确定。
原文地址:/tech/6262.html
页面 1 / 1。
海上风电场并网的影响及对策海上风电出力随机性强,间歇性明显,机组本身的运行特性和风资源的不确定性,使得风电机组不具备常规火电机组的功率调节能力。
因此,海上风电场并网会对电网的运行产生一定的影响,本章将从研究风电机组的电气特性出发,详细阐述风电出力的特点,进而指出风电场并网对电网的影响,最后给出相应的解决措施。
3.1 海上风电场并网的影响针对风速的随机性、间歇性导致海上风电功率的不确定性大,以及风电机组本身的运行特性使风电场输出功率具有波动性强的特点,需要从系统电压、频率以及系统的稳定性等方面研究海上风电场出力的特点和海上风电场并网对电网的影响,以提出相应的对策和解决措施。
3.1.1 风电出力的特点(1)风电出力随机性强,间歇性明显。
风电出力波动幅度大,波动频率也无规律性,在极端情况下,风电出力可能在0~100%范围内变化。
风电出力有时与电网负荷呈现明显的反调节特性。
风电场一般日有功出力曲线如图3-1所示。
图3-1 风电场一般日有功出力曲线可见,风电功率出力的高峰时段与电力系统日负荷特性的高峰时段(8:00—11:00,18:00—22:00)并不相关,体现了较为明显的反调峰特性。
一些地区全年出现反调峰的天数可占全年天数的1/3~1/2。
反调峰的现象导致风电并入后的等效负荷峰谷差变大,恶化了电力系统负荷变化特性。
(2)风电年利用小时数偏低。
国家能源局发布数据显示,2014年年底全国并网风电装机容量9581万kW,设备平均利用小时1905h。
其中,海上风电约38.9万kW,设备平均利用小时略高,可达到2500h左右。
(3)风电功率调节能力差。
风电机组在采用不弃风方式下,只能提供系统故障状况下的有限功率调节。
风电机组本身的运行特性和风资源的不确定性,使得其不具备常规火电机组的功率调节能力。
3.1.2 对电网的影响风电等可再生能源接入系统主要有以下问题:(1)通常风能资源丰富地区距离负荷中心较远,大规模的风电无法就地消纳,需要通过输电网输送到负荷中心。
风力发电机组的并网当平均风速高于3m/s时,风轮开头渐渐起动;风速连续上升,当v4m/s时,机组可自起动直到某一设定转速,此时发电机将按掌握程序被自动地联入电网。
一般总是小发电机先并网;当风速连续上升到7~8m/s,发电机将被切换到大发电机运行。
假如平均风速处于8~20m/s,则直接从大发电机并网。
发电机的并网过程,是通过三相主电路上的三组晶闸管完成的。
当发电机过渡到稳定的发电状态后,与晶闸管电路平行的旁路接触器合上,机组完成并网过程,进入稳定运行状态。
为了避开产生火花,旁路接触器的开与关,都是在晶闸管关断前进行的。
(一)大小发电机的软并网程序1)发电机转速已达到预置的切人点,该点的设定应低于发电机同步转速。
2)连接在发电机与电网之间的开关元件晶闸管被触发导通(这时旁路接触器处于断开状态),导通角随发电机转速与同步转速的接近而增大,随着导通角的增大,发电机转速的加速度减小。
3)当发电机达到同步转速时,晶闸管导通角完全打开,转速超过同步转速进入发电状态。
4)进入发电状态后,晶闸管导通角连续完全导通,但这时绝大部分的电流是通过旁路接触器输送给电网的,由于它比晶闸管电路的电阻小得多。
并网过程中,电流一般被限制在大发电机额定电流以下,如超出额定电流时间持续 3.0s,可以断定晶闸管故障,需要平安停机。
由于并网过程是在转速达到同步转速四周进行的,这时转差不大,冲击电流较小,主要是励磁涌流的存在,持续30~40ms。
因此无需依据电流反馈调整导通角。
晶闸管根据0°、15°、30°、45°、60°、75°、90°、180°导通角依次变化,可保证起动电流在额定电流以下。
晶闸管导通角由0°大到180°完全导通,时间一般不超过6s,否则被认为故障。
晶闸管完全导通1s后,旁路接触器吸合,发出吸合命令1s内应收到旁路反馈信号,否则旁路投入失败,正常停机。
2风力发电机组并网运行方式分析2.1风力发电系统的基本结构和工作原理风力发电系统从形式上有离网型、并网型。
离网型的单机容量小(约为0.1~5 kW,一般不超过10 kW),主要采用直流发电系统并配合蓄电池储能装置独立运行;并网型的单机容量大(可达MW级),且由多台风电机组构成风力发电机群(风电场)集中向电网输送电能。
另外,中型风力发电机组(几十kW到几百kW)可并网运行,也可与其它能源发电方式相结合(如风电一水电互补、风电一柴油机组发电联合)形成微电网。
并网型风力发电的频率应保持恒等于电网频率,按其发电机运行方式可分为恒速恒频风力发电系统和变速恒频风力发电系统两大类。
2.1.1恒速恒频风力发电系统恒速恒频风力发电系统中主要采用三相同步发电机(运行于由电机极对数和频率所决定的同步转速)、鼠笼式异步发电机(SCIG)。
且在定桨距并网型风电机组中,一般采用SCIG,通过定桨距失速控制的风轮使其在略高于同步转速的转速(一般在(1~1.05)n)之间稳定发电运行。
如图2.1所示采用SCIG的恒速恒频风力发电系统结构示意图,由于SCIG在向电网输出有功功率的同时,需从电网吸收滞后的无功功率以建立转速为n的旋转磁场,这加重了电网无功功率的负担、导致电网功率因数下降,为此在SCIG机组与电网之间设置合适容量的并联电容器组以补偿无功。
在整个运行风速范围内(3 m/s < <25 m/s),气流的速度是不断变化的,为了提高中低风速运行时的效率,定桨距风力1发电机普遍采用三相(笼型)异步双速发电机,分别设计成4极和6极,其典型代表是NEGMICON 750 kW机组。
风图2.1采用SCIG的恒速恒频风力发电系统恒速恒频风力发电系统具有电机结构简单、成本低、可靠性高等优点,其主要缺点为:运行范围窄;不能充分利用风能(其风能利用系数不可能保持在最大值);风速跃升时会导致主轴、齿轮箱和发电机等部件承受很大的机械应力。
直驱式永磁同步风力发电机组并网与保护一、并网条件和方式1.并网条件永磁同步风力发电机组并联到电网时,为了防止过大的电流冲击和转矩冲击,风力发电机各相端电压的瞬时值要与电网端对应相电压的瞬时值完全一致,满足的条件:①波形相同;②幅值相同;③频率相同;④相序相同;⑤相位相同。
并网时因风力发电机旋转方向不变,只要使发电机的各相绕组输出端与电网各相互相对应,条件④就可以满足;而条件①可由发电机设计、制造和安装保证;因此并网时主要完成其他3个条件的检测和控制,其中频率相同必须满足。
2.并网方式(1)自动准同步并网。
满足上述理想并联条件的并网方式称为准同步并网,在这种并网方式下,并网瞬间不会产生冲击电流,电网电压不会下降,也不会对定子绕组和其他机械部件造成冲击。
永磁同步风力发电机组的起动与并网过程如下:当发电机在风力机带动下的转速接近同步转速时,励磁调节器给发电机输入励磁电流,通过调节励磁电流使发电机输出的端电压与电网电压相近。
在风力发电机的转速几乎达到同步转速、发电机的端电压与电网电压的幅值大致相同,并且断路器两端的电位差为零或很小时,控制断路器合闸并网。
永磁同步风力发电机并网后通过自整步作用牵入同步,使发电机电压频率与电网一致。
以上的检测与控制过程一般通过微机实现。
(2)自同步并网。
自动准同步并网的优点是合闸时没有明显的电流冲击,缺点是控制与操作复杂、费时。
当电网出现故障而要求迅速将备用发电机投入时,由于电网电压和频率出现不稳定,自动准同步法很难操作,往往采用自同步法实现并网运行。
自同步并网的方法是,同步发电机的转子励磁绕组先通过限流电阻短接,发电机中无励磁磁场,用原动机将发电机转子拖到同步转速附近(差值小于5%)时,将发电机并入电网,再立刻给发电机励磁,在定子、转子之间的电磁力作用下,发电机自动牵入同步。
由于发电机并网时转子绕组中无励磁电流,因而发电机定子绕组中没有感应电动势,不需要对发电机的电压和相角进行调节和校准,控制简单,并且从根本上排除不同步合闸的可能性。
风力发电机并网课程设计一、课程目标知识目标:1. 学生能理解风力发电的基本原理,掌握风力发电机的工作流程。
2. 学生能了解并掌握风力发电机并网的基本概念、原理及方法。
3. 学生能了解我国风力发电产业的发展现状及其在能源结构调整中的作用。
技能目标:1. 学生能够运用所学知识,分析风力发电机并网过程中的技术问题,并提出解决方案。
2. 学生能够设计简单的风力发电机并网系统,进行模拟实验,提高实践操作能力。
3. 学生能够通过查阅资料、分组讨论等方式,培养自主学习、合作探究的能力。
情感态度价值观目标:1. 学生能够认识到风力发电对环境保护和可持续发展的重要性,增强环保意识。
2. 学生能够关注新能源领域的发展动态,树立创新意识,培养对新能源技术的兴趣。
3. 学生能够在学习过程中,培养团队协作精神,提高沟通与交流能力。
课程性质:本课程为新能源技术领域的拓展课程,结合物理、工程等学科知识,注重实践性与探究性。
学生特点:初中年级学生,具有一定的物理基础,好奇心强,喜欢动手实践。
教学要求:教师应结合学生特点,采用启发式、讨论式教学方法,引导学生主动参与,注重培养学生的实践能力和创新精神。
在教学过程中,关注学生的情感态度价值观的培养,使学生在掌握知识技能的同时,形成正确的价值观。
通过分解课程目标为具体学习成果,为后续教学设计和评估提供依据。
二、教学内容1. 风力发电基本原理:讲解风力发电的原理、风力发电机的主要组成部分及其作用,涉及能量转换、空气动力学等基础知识。
2. 风力发电机并网概念:介绍并网风力发电系统的定义、分类及其工作原理,包括并网方式、并网过程中的关键技术等。
3. 风力发电机并网系统设计:学习风力发电机并网系统的设计方法,包括风力发电机选型、并网逆变器设计、系统稳定性分析等。
4. 我国风力发电产业现状:分析我国风力发电产业的发展历程、现状及未来发展趋势,了解风力发电在能源结构调整中的作用。
教学大纲:第一课时:风力发电基本原理第二课时:风力发电机并网概念第三课时:风力发电机并网系统设计第四课时:我国风力发电产业现状教材章节:第一章:新能源技术概述第二章:风力发电技术第三章:风力发电机并网技术第四章:新能源产业发展现状与趋势教学内容安排与进度:第一周:风力发电基本原理第二周:风力发电机并网概念第三周:风力发电机并网系统设计第四周:我国风力发电产业现状教学内容确保科学性和系统性,结合课程目标,注重理论与实践相结合,培养学生的实践能力和创新精神。
近年来大规模风力发电场的数量大幅度增加。
由于风场大都位于海面上,或遥远的乡村、山区,如何将风场连接至电网是投资风力发电时一个重要的考虑因素。
如果是海上风场,这个因素更为重要。
除了建设需要考虑的问题外,对电力系统稳定的影响也是需要考虑的重要因素。
随着风电场的容量越来越大,对电力系统的影响也越来越明显,研究风电并网后对系统的影响己成为重要课题。
风电的随机性使风电厂输入系统的有功功率处于不易控制的变化之中,相应地风电场吸收的无功功率也处于变化之中。
在系统重负荷或者临近功率极限运行时,风速的突然变化将成为系统电压失稳的扰动。
风电场所在地区往往远离负荷中心,处于供电网络的末端,而且需要消耗感性无功,系统的电压稳定问题更加突出。
在风电场规划设计时,通常根据电力系统确定一个风电场的最大容量,但是不同厂家、型号的风力发电机组的功率曲线不同,无功电压特性也不同。
目前国内采用的双馈机组可以根据需要调节无功,对系统来说起到了一定的稳压作用。
风电也给发电和运行计划的制定带来很多困难,需要重新评估系统的发电可靠性,分析风电的容量可信度,研究新的无功调度及电压控制策略以保证风电场和整个系统的电压水平及无功平衡,以及对孤立系统的稳定性影响等。
风力发电机的并网风力发电领域要解决的一个很重要的问题是风力发电机组的并网问题。
目前在国内和国外大量采用的是交流异步发电机,其并网方法也根据电机的容量不同和控制方式不同而变化。
异步发电机并入网运行时,是靠滑差率来调整负荷的,其输出的功率与转速近乎成线性关系,因此对机组的调速要求不像同步发电机那么严格和精确,只要检测到转速接近同步转速时就可并网,但异步发电机在并网瞬间会出现较大的冲击电流(约为异步发电机额定电流的4~7倍),并使电网电压瞬时下降。
随着风力发电机组单机容量的不断增大,这种冲击电流对发电机自身部件的安全及对电网的影响也愈加严重。
过大的冲击电流,有可能使发电机与电网连接的主回路中的自动开关断开;而电网电压的较大幅度下降,则可能会使电压保护回路动作,从而导致异步发电机根本不能并网。