风力发电机并网 原理
- 格式:ppt
- 大小:394.00 KB
- 文档页数:23
永磁同步风⼒发电系统的组成、⼯作原理及控制机理永磁同步风⼒发电系统的系统基本组成、⼯作原理、控制模式论述1.系统的基本组成:直驱式同步风⼒发电系统主要采⽤如下结构组成:风⼒机(这⾥概括为:叶⽚、轮毂、导航罩)、变桨机构、机舱、塔筒、偏航机构、永磁同步发电机、风速仪、风向标、变流器、风机总控系统等组成。
其中全功率变流器⼜可分为发电机侧整流器、直流环节和电⽹侧逆变器。
就空间位置⽽⾔,变流器和风机总控系统⼀般放在塔筒底部,其余主要部件均位于塔顶。
2.⼯作原理:系统中能量传递和转换路径为:风⼒机把捕获的流动空⽓的动能转换为机械能,直驱系统中的永磁同步发电机把风⼒机传递的机械能转换为频率和电压随风速变化⽽变化的不控电能,变流器把不控的电能转换为频率和电压与电⽹同步的可控电能并馈⼊电⽹,从⽽最终实现直驱系统的发电并⽹控制。
3.控制模式:风⼒发电机组的控制系统是综合性控制系统。
它不仅要监视电⽹、风况和机组运⾏参数,对机组运⾏进⾏控制。
⽽且还要根据风速与风向的变化,对机组进⾏优化控制,以提⾼机组的运⾏效率和发电量。
风⼒发电控制系统的基本⽬标分为三个层次:分别为保证风⼒发电机组安全可靠运⾏,获取最⼤能量,提供良好的电⼒质量。
控制系统主要包括各种传感器、变距系统、运⾏主控制器、功率输出单元、⽆功补偿单元、并⽹控制单元、安全保护单元、通讯接⼝电路、监控单元。
具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、⾃动最⼤功率点跟踪控制、功率因数控制、偏航控制、⾃动解缆、并⽹和解列控制、停机制动控制、安全保护系统、就地监控、远程监控。
⼀、系统运⾏时控制:1、偏航系统控制:偏航系统的控制包括三个⽅⾯:⾃动对风、⾃动解缆和风轮保护。
1)⾃动对风正常运⾏时偏航控制系统⾃动对风,即当机舱偏离风向⼀定⾓度时,控制系统发出向左或向右调向的指令,机舱开始对风,当达到允许的误差范围内时,⾃动对风停⽌。
2)⾃动解缆当机舱向同⼀⽅向累计偏转2~3圈后,若此时风速⼩于风电机组启动风速且⽆功率输出,则停机,控制系统使机舱反⽅向旋转2~3圈解绕;若此时机组有功率输出,则暂不⾃动解绕;若机舱继续向同⼀⽅向偏转累计达3圈时,则控制停机,解绕;若因故障⾃动解绕未成功,在扭缆达4圈时,扭缆机械开关将动作,此时报告扭缆故障,⾃动停机,等待⼈⼯解缆操作。
变速恒频风力发电机空载并网控制随着环境保护和可持续发展的重要性日益凸显,风力发电作为一种清洁、可再生的能源,得到了广泛应用。
在风力发电机组中,变速恒频风力发电机是一种常见的类型。
本文将重点探讨变速恒频风力发电机空载并网控制的原理、优缺点及应用。
变速恒频风力发电机组是一种通过风轮捕捉风能,并将其转换为电能的技术。
与恒速恒频风力发电机相比,变速恒频风力发电机具有更高的风能利用率和更宽的转速范围。
其工作原理是,通过调整风轮转速,以适应风速的变化,从而保持发电机输出频率的稳定。
空载并网控制是指风力发电机在不带负载的情况下与电网连接。
实现空载并网的关键在于控制风轮转速和发电机电流,以确保发电机与电网的同步。
常见的空载并网控制策略包括以下两种:直接并网法:在风速达到额定值后,风轮直接驱动发电机进入同步状态,然后进行并网。
此种方法简单直接,但并网瞬间会产生较大的冲击电流。
软并网法:通过控制风轮和发电机的转速,缓慢地将发电机接入电网,从而避免冲击电流的产生。
这种方法需要更多的控制环节和算法,但其并网效果较直接并网法更为平稳。
优点: a.由于能够适应风速的变化,所以具有较高的风能利用率; b.通过调整转速,可以减轻风轮和发电机的机械应力,提高设备的寿命;c.与恒速恒频风力发电机相比,其启动和停止更为灵活。
缺点: a.控制系统的设计较为复杂,需要精确的转速和电流控制; b.并网过程中可能产生较大的冲击电流,对电网造成一定的影响; c.需要采取措施来应对电网的波动,以保证系统的稳定运行。
变速恒频风力发电机空载并网控制在现代风力发电场中得到了广泛应用。
例如,根据某风力发电场的数据,采用变速恒频风力发电机空载并网控制后,该风电场的年发电量增加了30%,同时设备维护成本降低了20%。
这充分证明了变速恒频风力发电机空载并网控制在提高发电效率和降低运行成本方面的优势。
变速恒频风力发电机空载并网控制是风力发电技术中的重要一环。
通过控制风轮转速以适应风速的变化,保持发电机输出频率的稳定,可以实现高效的电能转换。
风力发电机组的并网当平均风速高于3m/s时,风轮开头渐渐起动;风速连续上升,当v4m/s时,机组可自起动直到某一设定转速,此时发电机将按掌握程序被自动地联入电网。
一般总是小发电机先并网;当风速连续上升到7~8m/s,发电机将被切换到大发电机运行。
假如平均风速处于8~20m/s,则直接从大发电机并网。
发电机的并网过程,是通过三相主电路上的三组晶闸管完成的。
当发电机过渡到稳定的发电状态后,与晶闸管电路平行的旁路接触器合上,机组完成并网过程,进入稳定运行状态。
为了避开产生火花,旁路接触器的开与关,都是在晶闸管关断前进行的。
(一)大小发电机的软并网程序1)发电机转速已达到预置的切人点,该点的设定应低于发电机同步转速。
2)连接在发电机与电网之间的开关元件晶闸管被触发导通(这时旁路接触器处于断开状态),导通角随发电机转速与同步转速的接近而增大,随着导通角的增大,发电机转速的加速度减小。
3)当发电机达到同步转速时,晶闸管导通角完全打开,转速超过同步转速进入发电状态。
4)进入发电状态后,晶闸管导通角连续完全导通,但这时绝大部分的电流是通过旁路接触器输送给电网的,由于它比晶闸管电路的电阻小得多。
并网过程中,电流一般被限制在大发电机额定电流以下,如超出额定电流时间持续 3.0s,可以断定晶闸管故障,需要平安停机。
由于并网过程是在转速达到同步转速四周进行的,这时转差不大,冲击电流较小,主要是励磁涌流的存在,持续30~40ms。
因此无需依据电流反馈调整导通角。
晶闸管根据0°、15°、30°、45°、60°、75°、90°、180°导通角依次变化,可保证起动电流在额定电流以下。
晶闸管导通角由0°大到180°完全导通,时间一般不超过6s,否则被认为故障。
晶闸管完全导通1s后,旁路接触器吸合,发出吸合命令1s内应收到旁路反馈信号,否则旁路投入失败,正常停机。
风力发电原理及运行方式
风力发电原理是利用风力转动风轮轴,通过高速旋转的风轮轴带动发电机旋转,将机械能转化为电能。
风力发电通常采用风力发电机来产生电力。
风力发电机的运行方式可以分为以下两种:
单机运行方式
单机运行方式是将单个风力发电机独立运行,直接向电网供电。
这种方式适用于小规模的风力发电系统,如用于家庭或小型企业的电力供应。
并网运行方式
并网运行方式是将多个风力发电机并联连接到电网上,共同向电网供电。
这种方式适用于大规模的风力发电系统,如用于发电容量较大的风电场。
在并网运行方式下,风力发电机的输出功率需要与电网的需求相匹配,以确保电网的稳定运行。
总之,风力发电是一种清洁、可再生的能源,其应用范围广泛。
风力发电的原理是将风能转换为机械能,再通过发电机将机械能转化为电能。
风力发电的运行方式可以根据实际需求选择单机运行或并网运行。
2风力发电机组并网运行方式分析2.1风力发电系统的基本结构和工作原理风力发电系统从形式上有离网型、并网型。
离网型的单机容量小(约为0.1~5 kW,一般不超过10 kW),主要采用直流发电系统并配合蓄电池储能装置独立运行;并网型的单机容量大(可达MW级),且由多台风电机组构成风力发电机群(风电场)集中向电网输送电能。
另外,中型风力发电机组(几十kW到几百kW)可并网运行,也可与其它能源发电方式相结合(如风电一水电互补、风电一柴油机组发电联合)形成微电网。
并网型风力发电的频率应保持恒等于电网频率,按其发电机运行方式可分为恒速恒频风力发电系统和变速恒频风力发电系统两大类。
2.1.1恒速恒频风力发电系统恒速恒频风力发电系统中主要采用三相同步发电机(运行于由电机极对数和频率所决定的同步转速)、鼠笼式异步发电机(SCIG)。
且在定桨距并网型风电机组中,一般采用SCIG,通过定桨距失速控制的风轮使其在略高于同步转速的转速(一般在(1~1.05)n)之间稳定发电运行。
如图2.1所示采用SCIG的恒速恒频风力发电系统结构示意图,由于SCIG在向电网输出有功功率的同时,需从电网吸收滞后的无功功率以建立转速为n的旋转磁场,这加重了电网无功功率的负担、导致电网功率因数下降,为此在SCIG机组与电网之间设置合适容量的并联电容器组以补偿无功。
在整个运行风速范围内(3 m/s < <25 m/s),气流的速度是不断变化的,为了提高中低风速运行时的效率,定桨距风力1发电机普遍采用三相(笼型)异步双速发电机,分别设计成4极和6极,其典型代表是NEGMICON 750 kW机组。
风图2.1采用SCIG的恒速恒频风力发电系统恒速恒频风力发电系统具有电机结构简单、成本低、可靠性高等优点,其主要缺点为:运行范围窄;不能充分利用风能(其风能利用系数不可能保持在最大值);风速跃升时会导致主轴、齿轮箱和发电机等部件承受很大的机械应力。