风力发电机并网 原理
- 格式:ppt
- 大小:394.00 KB
- 文档页数:23
永磁同步风⼒发电系统的组成、⼯作原理及控制机理永磁同步风⼒发电系统的系统基本组成、⼯作原理、控制模式论述1.系统的基本组成:直驱式同步风⼒发电系统主要采⽤如下结构组成:风⼒机(这⾥概括为:叶⽚、轮毂、导航罩)、变桨机构、机舱、塔筒、偏航机构、永磁同步发电机、风速仪、风向标、变流器、风机总控系统等组成。
其中全功率变流器⼜可分为发电机侧整流器、直流环节和电⽹侧逆变器。
就空间位置⽽⾔,变流器和风机总控系统⼀般放在塔筒底部,其余主要部件均位于塔顶。
2.⼯作原理:系统中能量传递和转换路径为:风⼒机把捕获的流动空⽓的动能转换为机械能,直驱系统中的永磁同步发电机把风⼒机传递的机械能转换为频率和电压随风速变化⽽变化的不控电能,变流器把不控的电能转换为频率和电压与电⽹同步的可控电能并馈⼊电⽹,从⽽最终实现直驱系统的发电并⽹控制。
3.控制模式:风⼒发电机组的控制系统是综合性控制系统。
它不仅要监视电⽹、风况和机组运⾏参数,对机组运⾏进⾏控制。
⽽且还要根据风速与风向的变化,对机组进⾏优化控制,以提⾼机组的运⾏效率和发电量。
风⼒发电控制系统的基本⽬标分为三个层次:分别为保证风⼒发电机组安全可靠运⾏,获取最⼤能量,提供良好的电⼒质量。
控制系统主要包括各种传感器、变距系统、运⾏主控制器、功率输出单元、⽆功补偿单元、并⽹控制单元、安全保护单元、通讯接⼝电路、监控单元。
具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、⾃动最⼤功率点跟踪控制、功率因数控制、偏航控制、⾃动解缆、并⽹和解列控制、停机制动控制、安全保护系统、就地监控、远程监控。
⼀、系统运⾏时控制:1、偏航系统控制:偏航系统的控制包括三个⽅⾯:⾃动对风、⾃动解缆和风轮保护。
1)⾃动对风正常运⾏时偏航控制系统⾃动对风,即当机舱偏离风向⼀定⾓度时,控制系统发出向左或向右调向的指令,机舱开始对风,当达到允许的误差范围内时,⾃动对风停⽌。
2)⾃动解缆当机舱向同⼀⽅向累计偏转2~3圈后,若此时风速⼩于风电机组启动风速且⽆功率输出,则停机,控制系统使机舱反⽅向旋转2~3圈解绕;若此时机组有功率输出,则暂不⾃动解绕;若机舱继续向同⼀⽅向偏转累计达3圈时,则控制停机,解绕;若因故障⾃动解绕未成功,在扭缆达4圈时,扭缆机械开关将动作,此时报告扭缆故障,⾃动停机,等待⼈⼯解缆操作。
变速恒频风力发电机空载并网控制随着环境保护和可持续发展的重要性日益凸显,风力发电作为一种清洁、可再生的能源,得到了广泛应用。
在风力发电机组中,变速恒频风力发电机是一种常见的类型。
本文将重点探讨变速恒频风力发电机空载并网控制的原理、优缺点及应用。
变速恒频风力发电机组是一种通过风轮捕捉风能,并将其转换为电能的技术。
与恒速恒频风力发电机相比,变速恒频风力发电机具有更高的风能利用率和更宽的转速范围。
其工作原理是,通过调整风轮转速,以适应风速的变化,从而保持发电机输出频率的稳定。
空载并网控制是指风力发电机在不带负载的情况下与电网连接。
实现空载并网的关键在于控制风轮转速和发电机电流,以确保发电机与电网的同步。
常见的空载并网控制策略包括以下两种:直接并网法:在风速达到额定值后,风轮直接驱动发电机进入同步状态,然后进行并网。
此种方法简单直接,但并网瞬间会产生较大的冲击电流。
软并网法:通过控制风轮和发电机的转速,缓慢地将发电机接入电网,从而避免冲击电流的产生。
这种方法需要更多的控制环节和算法,但其并网效果较直接并网法更为平稳。
优点: a.由于能够适应风速的变化,所以具有较高的风能利用率; b.通过调整转速,可以减轻风轮和发电机的机械应力,提高设备的寿命;c.与恒速恒频风力发电机相比,其启动和停止更为灵活。
缺点: a.控制系统的设计较为复杂,需要精确的转速和电流控制; b.并网过程中可能产生较大的冲击电流,对电网造成一定的影响; c.需要采取措施来应对电网的波动,以保证系统的稳定运行。
变速恒频风力发电机空载并网控制在现代风力发电场中得到了广泛应用。
例如,根据某风力发电场的数据,采用变速恒频风力发电机空载并网控制后,该风电场的年发电量增加了30%,同时设备维护成本降低了20%。
这充分证明了变速恒频风力发电机空载并网控制在提高发电效率和降低运行成本方面的优势。
变速恒频风力发电机空载并网控制是风力发电技术中的重要一环。
通过控制风轮转速以适应风速的变化,保持发电机输出频率的稳定,可以实现高效的电能转换。
风力发电机组的并网当平均风速高于3m/s时,风轮开头渐渐起动;风速连续上升,当v4m/s时,机组可自起动直到某一设定转速,此时发电机将按掌握程序被自动地联入电网。
一般总是小发电机先并网;当风速连续上升到7~8m/s,发电机将被切换到大发电机运行。
假如平均风速处于8~20m/s,则直接从大发电机并网。
发电机的并网过程,是通过三相主电路上的三组晶闸管完成的。
当发电机过渡到稳定的发电状态后,与晶闸管电路平行的旁路接触器合上,机组完成并网过程,进入稳定运行状态。
为了避开产生火花,旁路接触器的开与关,都是在晶闸管关断前进行的。
(一)大小发电机的软并网程序1)发电机转速已达到预置的切人点,该点的设定应低于发电机同步转速。
2)连接在发电机与电网之间的开关元件晶闸管被触发导通(这时旁路接触器处于断开状态),导通角随发电机转速与同步转速的接近而增大,随着导通角的增大,发电机转速的加速度减小。
3)当发电机达到同步转速时,晶闸管导通角完全打开,转速超过同步转速进入发电状态。
4)进入发电状态后,晶闸管导通角连续完全导通,但这时绝大部分的电流是通过旁路接触器输送给电网的,由于它比晶闸管电路的电阻小得多。
并网过程中,电流一般被限制在大发电机额定电流以下,如超出额定电流时间持续 3.0s,可以断定晶闸管故障,需要平安停机。
由于并网过程是在转速达到同步转速四周进行的,这时转差不大,冲击电流较小,主要是励磁涌流的存在,持续30~40ms。
因此无需依据电流反馈调整导通角。
晶闸管根据0°、15°、30°、45°、60°、75°、90°、180°导通角依次变化,可保证起动电流在额定电流以下。
晶闸管导通角由0°大到180°完全导通,时间一般不超过6s,否则被认为故障。
晶闸管完全导通1s后,旁路接触器吸合,发出吸合命令1s内应收到旁路反馈信号,否则旁路投入失败,正常停机。
风力发电原理及运行方式
风力发电原理是利用风力转动风轮轴,通过高速旋转的风轮轴带动发电机旋转,将机械能转化为电能。
风力发电通常采用风力发电机来产生电力。
风力发电机的运行方式可以分为以下两种:
单机运行方式
单机运行方式是将单个风力发电机独立运行,直接向电网供电。
这种方式适用于小规模的风力发电系统,如用于家庭或小型企业的电力供应。
并网运行方式
并网运行方式是将多个风力发电机并联连接到电网上,共同向电网供电。
这种方式适用于大规模的风力发电系统,如用于发电容量较大的风电场。
在并网运行方式下,风力发电机的输出功率需要与电网的需求相匹配,以确保电网的稳定运行。
总之,风力发电是一种清洁、可再生的能源,其应用范围广泛。
风力发电的原理是将风能转换为机械能,再通过发电机将机械能转化为电能。
风力发电的运行方式可以根据实际需求选择单机运行或并网运行。
2风力发电机组并网运行方式分析2.1风力发电系统的基本结构和工作原理风力发电系统从形式上有离网型、并网型。
离网型的单机容量小(约为0.1~5 kW,一般不超过10 kW),主要采用直流发电系统并配合蓄电池储能装置独立运行;并网型的单机容量大(可达MW级),且由多台风电机组构成风力发电机群(风电场)集中向电网输送电能。
另外,中型风力发电机组(几十kW到几百kW)可并网运行,也可与其它能源发电方式相结合(如风电一水电互补、风电一柴油机组发电联合)形成微电网。
并网型风力发电的频率应保持恒等于电网频率,按其发电机运行方式可分为恒速恒频风力发电系统和变速恒频风力发电系统两大类。
2.1.1恒速恒频风力发电系统恒速恒频风力发电系统中主要采用三相同步发电机(运行于由电机极对数和频率所决定的同步转速)、鼠笼式异步发电机(SCIG)。
且在定桨距并网型风电机组中,一般采用SCIG,通过定桨距失速控制的风轮使其在略高于同步转速的转速(一般在(1~1.05)n)之间稳定发电运行。
如图2.1所示采用SCIG的恒速恒频风力发电系统结构示意图,由于SCIG在向电网输出有功功率的同时,需从电网吸收滞后的无功功率以建立转速为n的旋转磁场,这加重了电网无功功率的负担、导致电网功率因数下降,为此在SCIG机组与电网之间设置合适容量的并联电容器组以补偿无功。
在整个运行风速范围内(3 m/s < <25 m/s),气流的速度是不断变化的,为了提高中低风速运行时的效率,定桨距风力1发电机普遍采用三相(笼型)异步双速发电机,分别设计成4极和6极,其典型代表是NEGMICON 750 kW机组。
风图2.1采用SCIG的恒速恒频风力发电系统恒速恒频风力发电系统具有电机结构简单、成本低、可靠性高等优点,其主要缺点为:运行范围窄;不能充分利用风能(其风能利用系数不可能保持在最大值);风速跃升时会导致主轴、齿轮箱和发电机等部件承受很大的机械应力。
直驱式永磁同步风力发电机组并网与保护一、并网条件和方式1.并网条件永磁同步风力发电机组并联到电网时,为了防止过大的电流冲击和转矩冲击,风力发电机各相端电压的瞬时值要与电网端对应相电压的瞬时值完全一致,满足的条件:①波形相同;②幅值相同;③频率相同;④相序相同;⑤相位相同。
并网时因风力发电机旋转方向不变,只要使发电机的各相绕组输出端与电网各相互相对应,条件④就可以满足;而条件①可由发电机设计、制造和安装保证;因此并网时主要完成其他3个条件的检测和控制,其中频率相同必须满足。
2.并网方式(1)自动准同步并网。
满足上述理想并联条件的并网方式称为准同步并网,在这种并网方式下,并网瞬间不会产生冲击电流,电网电压不会下降,也不会对定子绕组和其他机械部件造成冲击。
永磁同步风力发电机组的起动与并网过程如下:当发电机在风力机带动下的转速接近同步转速时,励磁调节器给发电机输入励磁电流,通过调节励磁电流使发电机输出的端电压与电网电压相近。
在风力发电机的转速几乎达到同步转速、发电机的端电压与电网电压的幅值大致相同,并且断路器两端的电位差为零或很小时,控制断路器合闸并网。
永磁同步风力发电机并网后通过自整步作用牵入同步,使发电机电压频率与电网一致。
以上的检测与控制过程一般通过微机实现。
(2)自同步并网。
自动准同步并网的优点是合闸时没有明显的电流冲击,缺点是控制与操作复杂、费时。
当电网出现故障而要求迅速将备用发电机投入时,由于电网电压和频率出现不稳定,自动准同步法很难操作,往往采用自同步法实现并网运行。
自同步并网的方法是,同步发电机的转子励磁绕组先通过限流电阻短接,发电机中无励磁磁场,用原动机将发电机转子拖到同步转速附近(差值小于5%)时,将发电机并入电网,再立刻给发电机励磁,在定子、转子之间的电磁力作用下,发电机自动牵入同步。
由于发电机并网时转子绕组中无励磁电流,因而发电机定子绕组中没有感应电动势,不需要对发电机的电压和相角进行调节和校准,控制简单,并且从根本上排除不同步合闸的可能性。
永磁直驱风力发电机组并网发电原理风力发电是以永磁直驱风力发电机组为基础,利用风力驱动风力发电机组发电,并将其发出的电能接入电网的技术。
利用当前的技术,让永磁直驱风力发电机组达到发电要求是可行的。
首先,永磁直驱风力发电机组中的永磁发电机的特性是风力直接由风扇驱动,没有外部润滑油,也不需要外部调速设备,能够直接转换风力能量到机械和电能,从而使发电量有更多的可控性。
其次,由于永磁直驱风力发电机组的发电特性,它具有较大的输出电力,出力范围宽,发电稳定,调节性强,维护成本低,维修简单的特点,可以满足大规模风力发电系统的发电要求。
永磁直驱风力发电机组的工作原理永磁直驱风力发电机组是由永磁发电机、叶片、叶轮、结构框架以及其他相关电控设备组成的新型高效发电装置,其工作原理如下:当风向和风速稳定时,风力发电机组中的叶片会受到风力驱动而转动,从而驱动永磁发电机的转子运行。
随着转子的转动,永磁发电机的定子上的线圈会感受到变化的磁场,并产生变化的电场,形成交流电能,将其发出的电能接入电网。
永磁直驱风力发电机组的优势永磁直驱风力发电机组具有多种优势:首先,永磁直驱风力发电机组的发电量大,发电出力范围广,最大发电量可以达到200兆瓦;其次,永磁直驱风力发电机组具有较强的发电稳定性,其发电量可以在一定幅度内控制;再次,永磁直驱风力发电机组无需外部调速设备,能够直接转换风力能量到机械和电能,具有较强的调节性;最后,永磁直驱风力发电机组使用简单,维护成本低,工程实施周期短,可以有效提高风能发电的用户参与度。
总结永磁直驱风力发电机组是一种新型的高效发电装置,它具有较大的输出电力,出力范围宽,发电稳定,调节性强,维护成本低,维修简单等优势,可以高效转换风力能量,满足大规模风力发电系统的发电要求。
因此,永磁直驱风力发电机组并网发电技术的发展将对促进风能发电的发展具有重要的作用。
异步风力发电机组软并网控制目前,全国大部分大中型风力发电机组很多都采取异步发电机。
相比于同步发电机,异步发电机不仅有着简单的控制装备,对于在并网时也没有任何严格的频率以及相角的要求,易于稳定并网,不易产生振荡和失步。
但是异步发电机采取直接并网时,冲击电流会高达电机额定电流的5至7倍,会严重损坏电网、发电机以及叶轮等设备,甚至可能对其他联网机组的正常运行造成影响,引起电力系统的瘫痪。
所以,采用合适的并网方式降低并网冲击电流显得非常重要。
迄今为止,世界上主要有直接并网法、降压并网法、准同期并网法以及可控硅软并网等几种异步风力发电机并网方式。
其中,直接并网方法操作简单,但对电网伤害较大,会引起电力系统电压瞬时降低,一般只在异步发电机容量在百千瓦级以下时使用。
降压并网方法需增置大功率电阻或电抗组件,投资随容量的增大而增大,经济性较差。
准同期并网方法需增置高精度的调速器和整步、同期设备,经济性较差,且并网消耗时间过长。
而可控硅软并网方法很大程度的降低了机组并网时的损耗,因为该方法会得到一个不会出现冲击电流的平稳并网过程,提高风电机组的使用时长和可靠性,是目前应用较为广泛的风电并网方式之一。
1 异步风力发电机软并网原理在风力发电机直接并网时靠近同步速时,异步发电机可能会经历一点瞬态过渡过程,过程中会产生瞬态冲击电流,与其值大小有关系的参数包括:发电机参数、并网转速、发电机磁通饱和水平以及并网瞬间电压相位角等。
直接并网时所也会产生一个过渡过程电流,电流值为:电机并入电网的时候,定子绕组中所产生的稳态交流分量i0sin (?棕t+ ?琢)开始产生,产生的电磁力使动转子开始旋转。
当电机在靠近同步转速并网的时候,i0 约等于电机空载时的电流。
并入电网的瞬间,定子绕组磁链会保持原来的零状态,依据磁链守恒原理,因为转子的短路绕组中所产生了衰减的直流分量,导致产生了磁场将切割定子绕组,并且产生了衰减的暂态交流分量。
暂态交流分量ia 与电抗成反比,与电压成正比。
风力发电并网逆变器设计原理风力发电并网逆变器设计原理风力发电并网逆变器是一种用于将风力发电机的直流电能转换为交流电能并接入电网的设备。
它可以实现风力发电的高效利用,将风力发电机产生的直流电能转化为电网所需要的交流电能。
接下来,我们将逐步介绍风力发电并网逆变器的设计原理。
第一步:直流输入风力发电机产生的电能是直流电能,因此首先需要将直流电能输入到并网逆变器中。
这一步骤通常包括电流检测、电压检测等操作,以确保输入电能的质量和稳定性。
第二步:直流-交流转换在直流输入之后,接下来需要将直流电能转换为交流电能。
这一步骤通常通过使用逆变器来实现。
逆变器中包含了一系列的开关元件,通过控制这些开关元件的开关状态,可以将直流电能转换为交流电能。
逆变器中的控制算法通常采用PWM(脉宽调制)技术,以确保输出的交流电能具有较低的谐波含量和高的质量。
第三步:电网连接在直流-交流转换之后,接下来需要将转换后的交流电能接入电网。
在接入电网之前,需要对输出的交流电能进行一系列的检测和调整,以确保交流电能符合电网的要求。
这包括电压检测、频率检测、功率因数控制等操作。
第四步:并网控制在将交流电能接入电网之后,需要对并网逆变器进行一系列的控制操作,以保证其与电网的安全稳定运行。
这包括对逆变器的输出功率进行调节,以确保其与电网的负荷匹配;对逆变器的运行状态进行监测和保护,以防止逆变器因故障而对电网造成损害。
第五步:故障保护并网逆变器在运行过程中可能会遇到各种故障,例如过流、过压、短路等。
为了防止这些故障对电网造成影响,需要在逆变器中设置一系列的保护机制,以及相应的故障检测和处理算法。
当逆变器检测到故障时,会及时采取相应的措施,以确保逆变器和电网的安全运行。
综上所述,风力发电并网逆变器的设计原理包括直流输入、直流-交流转换、电网连接、并网控制和故障保护等步骤。
通过合理设计并实施这些步骤,可以实现风力发电的高效利用,将直流电能转换为电网所需要的交流电能,并确保逆变器与电网的安全稳定运行。
风力发电机工作原理及原理图现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网.如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电.最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机. 最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值.为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等.齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分).同时也使得发电机易于控制,实现稳定的频率和电压输出.偏航系统可以使风轮扫掠面积总是垂直于主风向.要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度.风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距.对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距.在停机时,叶片要顺桨,以便形成阻尼刹车.早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距.就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率.然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机.现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏.理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒.风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时*齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元.风力发电机是将风能转换为机械功的动力机械,又称风车。