当前位置:文档之家› 人教版高中数学选修2-2教学案2.2直接证明与间接证明(学生版)

人教版高中数学选修2-2教学案2.2直接证明与间接证明(学生版)

人教版高中数学选修2-2教学案2.2直接证明与间接证明(学生版)
人教版高中数学选修2-2教学案2.2直接证明与间接证明(学生版)

直接证明与间接证明

__________________________________________________________________________________ __________________________________________________________________________________

(1)了解直接证明的一种基本方法──综合法、分析法;

(2) 了解间接证明的一种基本方法──反证法;

(3)了解综合法、分析法、反证法的思考过程与特点,会用综合法、分析法、反证法证明数学问题. 类型一、直接证明:

一. 综合法

1.定义:_______________________________________________________________

2.思维特点:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出 结论的一种证明方法

3.框图表示:(P 表示已知条件、已有的定义、定理、公理等,Q 表示要证明的结论)

二.分析法

1.定义:_______________________________________________________________________ _______________________________________________________________________________

2. 思维特点:执果索因步步寻求上一步成立的充分条件,它与综合法是对立统一的两种 方法

3.框图表示:(用Q 表示要证明的结论,P n 表示充分条件)

4.分析法的书写格式:

:(;

c 、下结论:由矛盾判定假设不成立,从而肯定命题成立。

(3)应用反证法的情形:

①直接证明困难;

②需分成很多类进行讨论.

③结论为“至少”、“至多”、“有无穷多个” ---类命题;

④结论为 “唯一”类命题;

(4)关键在于归缪矛盾:

a 、与已知条件矛盾;

b 、与公理、定理、定义矛盾;

c 、自相矛盾。 要证:?? 只要证:?? 只需证:?? ??显然成立 上述各步均可逆 所以,结论成立

题型一 综合法:

例1 已知a ,b ,c 是不全相等的正数, 求证:c b a a c c b b a lg lg lg 2

lg 2lg 2lg ++>+++++ 例2 在△ABC 中,三个内角A ,B ,C 的对边分别为a , b ,c ,且A ,B ,C 成等差数列, a , b ,c

成等比数列,求证△ABC 为等边三角形.

练习:

1、在△ABC 中,三个内角A ,B ,C 的对边分别为,,a b c ,且A ,B ,C 成等差数列, ,,a b c 成等比数列,求证△ABC 为等边三角形.

2、已知,,+

∈R b a 求证.a b b a b a b a ≥ 题型二 分析法:

例2若a ,b ,c 是不全相等的正数,求证:lg

2b a ++ lg 2c b ++ lg 2

a c +>lga+lgb+lgc 。 练习:在锐角ABC ?中,求证:1tan tan >?B A 题型三 反证法:

例1、已知a 是整数,2能整除2a ,求证:2能整除a.

例3、求证:2是无理数。

练习:已知,,,(0,1)a b c ∈,求证:(1),(1),(1)a b b c c a ---不能同时大于

14

。 1、已知a ,b ,c 是不全相等的正数,求证:

2、已知a ,b ,c 都是正数,且a ,b ,c 成等比数列,

求证:2222)(c b a c b a +->++

3、若实数1≠x ,求证:.)1()1(32242x x x x ++>++

4、已知a ,b ,c ,d ∈R ,求证:ac +bd ≤))((2222d c b a ++

5、设a 、b 是两个正实数,且a≠b ,求证:a 3+b 3>a 2b+ab 2.

_________________________________________________________________________________ _________________________________________________________________________________

基础巩固

一、选择题

1.设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )

A .锐角三角形

B .直角三角形

C .钝角三角形

D .不确定 2.已知x 、y 为正实数,则( )

A .2lg x +lg y =2lg x +2lg y

B .2lg(x +y )=2lg x ·2lg y

C .2lg x ·lg y =2lg x +2lg y

D .2lg(xy )=2lg x ·2lg y

3.设a 、b ∈R ,且a ≠b ,a +b =2,则必有( )

A .1≤ab ≤a 2+b 22

B .ab <1

C .ab

D .a 2+b 22

<1

中最大的一个是( ) A .a

B .b

C .c

D .不能确定

[点评] 可用特值法:取x =12,则a =1,b =32

,c =2. 5.已知y >x >0,且x +y =1,那么( )

A .x

??2ab a +b ,则A 、B 、C 的大小关系为( )

A .A ≤

B ≤C

B .A ≤

C ≤B C .B ≤C ≤A

D .C ≤B ≤A

二、填空题

7.已知a >0,b >0,m =lg a +b 2,n =lg a +b 2,则m 与n 的大小关系为________. 8.设a =2,b =7-3,c =6-2,则a 、b 、c 的大小关系为________.

9.如果a a +b b >a b +b a ,则实数a 、b 应满足的条件是________.

三、解答题

10.已知n ∈N *,且n ≥2,求证:1n

>n -n -1. 能力提升

一、选择题

11.设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f ′(x )>f (x )成立,则( )

A .3f (ln2)>2f (ln3)

B .3f (ln2)<2f (ln3)

C .3f (ln2)=2f (ln3)

D .3f (ln2)与2f (ln3)的大小不确定

12.要使3a -3b <3a -b 成立,a 、b 应满足的条件是( )

A .ab <0且a >b

B .ab >0且a >b

C .ab <0且a

D .ab >0且a >b 或ab <0且a

13.若两个正实数x 、y 满足1x +4y =1,且不等式x +y 4

B .(-∞,-1)∪(4,+∞)

C .(-4,1)

D .(-∞,0)∪(3,+∞)

14.在f (m ,n )中,m 、n 、f (m ,n )∈N *,且对任意m 、n 都有:

(1)f (1,1)=1,(2)f (m ,n +1)=f (m ,n )+2,(3)f (m +1,1)=2f (m ,1);给出下列三个结论: ①f (1,5)=9;②f (5,1)=16;③f (5,6)=26;

其中正确的结论个数是( )个.

A .3

B .2

C .1

D .0

二、填空题

15.若sin α+sin β+sin γ=0,cos α+cos β+cos γ=0,

则cos(α-β)=________.

三、解答题

16.已知a 、b 、c 表示△ABC 的三边长,m >0,

求证:a a +m +b b +m >c c +m

. 17.求证:sin (2α+β)sin α-2cos(α+β)=sin βsin α

. 备用例题1:已知+∈∈R c b a R z y x ,,,,, 求证:

)(2222zx yz xy z c

b a y b a

c x a c b ++≥+++++ 备用例题2: 已知1tan 2tan 1=+-αα,求证:cos α-sin α=3(cos α+sin α). 一、选择题

1.否定结论“至多有两个解”的说法中,正确的是( )

A .有一个解

B .有两个解

C .至少有三个解

D .至少有两个解

2.否定“自然数a 、b 、c 中恰有一个偶数”时的正确反设为( )

A .a 、b 、c 都是奇数

B .a 、b 、c 或都是奇数或至少有两个偶数

C .a 、b 、c 都是偶数

D .a 、b 、c 中至少有两个偶数

3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是( )

A .假设三内角都不大于60°

B .假设三内角都大于60°

C .假设三内角至多有一个大于60°

D .假设三内角至多有两个大于60°

4.用反证法证明命题:“若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理根,那么a ,b ,c 中至少有一个是偶数”时,下列假设正确的是( )

A .假设a ,b ,c 都是偶数

B .假设a 、b ,c 都不是偶数

C .假设a ,b ,c 至多有一个偶数

D .假设a ,b ,c 至多有两个偶数

5.命题“△ABC 中,若∠A >∠B ,则a >b ”的结论的否定应该是( )

A .a

B .a ≤b

C .a =b

D .a ≥b

6.已知a ,b 是异面直线,直线c 平行于直线a ,那么c 与b 的位置关系为( )

A .一定是异面直线

B .一定是相交直线

C .不可能是平行直线

D .不可能是相交直线

7.设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c

中( ) A .都不大于-2

B .都不小于-2

C .至少有一个不大于-2

D .至少有一个不小于-2

8.若P是两条异面直线l、m外的任意一点,则()

A.过点P有且仅有一条直线与l、m都平行

B.过点P有且仅有一条直线与l、m都垂直

C.过点P有且仅有一条直线与l、m都相交

D.过点P有且仅有一条直线与l、m都异面

9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是()

A.甲

B.乙

C.丙

D.丁

10.已知x1>0,x1≠1且x n+1=x n(x2n+3)

3x2n+1

(n=1,2…),试证“数列{x n}或者对任意正整数n都满足

x nx n+1”,当此题用反证法否定结论时,应为() A.对任意的正整数n,都有x n=x n+1

B.存在正整数n,使x n=x n+1

C.存在正整数n,使x n≥x n+1且x n≤x n-1

D.存在正整数n,使(x n-x n-1)(x n-x n+1)≥0

二、填空题

11.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.12.用反证法证明命题“a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”,那么反设的内容是________________.

13.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:

①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立;

②所以一个三角形中不能有两个直角;

③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.

正确顺序的序号排列为____________.

14.用反证法证明质数有无限多个的过程如下:

假设______________.设全体质数为p1、p2、…、p n,令p=p1p2…p n+1.

显然,p不含因数p1、p2、…、p n.故p要么是质数,要么含有______________的质因数.这表

明,除质数p 1、p 2、…、p n 之外,还有质数,因此原假设不成立.于是,质数有无限多个.

三、解答题

15.已知:a +b +c >0,ab +bc +ca >0,abc >0.

求证:a >0,b >0,c >0.

16.已知a ,b ,c ∈(0,1).求证:(1-a )b ,(1-b )c ,(1-c )a 不能同时大于14

. 17.已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R .

(1)若a +b ≥0,求证:f (a )+f (b )≥f (-a )+f (-b );

(2)判断(1)中命题的逆命题是否成立,并证明你的结论.

18.已知数列{b n }的通项公式为b n =14???

?23n -1.求证:数列{b n }中的任意三项不可能成等差数列.

高中数学选修4-4全套教案

高中数学选修4-4全套教案 第一讲坐标系 一平面直角坐标系 课题:1、平面直角坐标系 教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会直角坐标系的作用 教学难点:能够建立适当的直角坐标系,解决数学问题 授课类型:新授课 教学模式:启发、诱导发现教学. 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位 置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景 图案,需要缺点不同的画布所在的位置。 问题1:如何刻画一个几何图形的位置? 问题2:如何创建坐标系? 二、学生活动 学生回顾 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定 三、讲解新课: 1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足: 任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

高中数学专题讲义-直接证明与间接证明

题型一:综合法 【例1】若 11 0a b <<,则下列结论不正确的是 ( ) A.22a b < B.2ab b < C.2b a a b +> D.a b a b -=- 【例2】如果数列{}n a 是等差数列,则( )。 (A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a = 【例3】在△ABC 中若2sin b a B =,则A 等于( ) (A)003060或 (B)004560或 (C)0060120或 (D)0030150或 【例4】下列四个命题:①若1 02 a << ,则()()cos 1cos 1a a +<-;②若01a <<,则11a -1a >+>2a ;③若x 、y ∈R ,满足2y x =,则()2log 22x y +的最小值是7 8;④ 若a 、b ∈R ,则221a b ab a b +++>+。其中正确的是( )。 (A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④ 【例5】下面的四个不等式:①ca bc ab c b a ++≥++222;②()4 1 1≤ -a a ;③2≥+a b b a ;④()()()2 2222bd ac d c b a +≥+?+.其中不成立的有 (A )1个 (B )2个 (C )3个 (D )4个 【例6】已知,a b R ∈且,0a b ≠,则在① ab b a ≥+222;②2≥+b a a b ; 典例分析 板块二.直接证明与 间接证明

③2 )2 (b a ab +≤;④2)2(222b a b a +≤+这四个式子中,恒成立的个数是 ( ) A 1个 B 2个 C 3个 D 4个 【例7】已知c b a ,,均大于1,且4log log =?c b c a ,则下列各式中,一定正确的是 ( ) A b ac ≥ B c ab ≥ C a bc ≥ D c ab ≤ 【例8】已知不等式1()()9,a x y x y ++≥对任意正实数x ,y 恒成立,则正实数a 的最小值是 ( ) A .2 B .4 C .6 D .8 【例9】α、β为锐角()sin a αβ=+,sin sin b αβ=+,则a 、b 之间关系为 ( ) A .a b > B .b a > C .a b = D .不确定 【例10】设M 是ABC ?内一点,且AB AC ?=u u u r u u u r 30BAC ∠=?,定义()(,,)f M m n p =, 其中m 、n 、p 分别是MBC ?,MCA ?,MAB ?的面积,若1 ()(,,)2 f P x y =,则14x y + 的最小值是 ( ) A .8 B .9 C .16 D .18 【例11】若函数32)1(2++-=mx x m y 是偶函数,则)4 3(-f ,)1(2+-a a f (a ∈R ) 的大小关系是)4 3(-f )1(2+-a a f . 【例12】设≥++=++>>>c b a c b a c b a 111 ,1,0,0,0则若 【例13】函数()y f x =在(0,2)上是增函数,函数()2y f x =+是偶函数,则 ()1f ,()2.5f ,()3.5f 的大小关系是 . 【例14】已知 5,2==b a ρρ,向量b a ρρ与的 夹角为0 120,则a b a ρρρ.)2(-=

高中数学课本中的定理公式结论的证明

数学课本中的定理、公式、结论的证明 数学必修一 第一章 集合(无) 第二章 函数(无) 第三章 指数函数和对数函数 1.对数的运算性质: 如果 a > 0 , a 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a a a M M N N =; (3)log log ()n a a M n M n R =∈. 根据指数幂的运算性质证明对数的运算性质 证明:(性质1)设log a M p =,log a N q =,由对数的定义可得 p M a =,q N a =, ∴p q p q MN a a a +=?=, ∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 证明:(性质2)设log a M p =,log a N q =, 由对数的定义可得 p M a =,q N a =, ∴ q p q p a a a N M -==, ∴q p N M a -=log , 即证得log log -log a a a M M N N =. 证明(性质3)设log a M p =,由对数的定义可得 p M a =, ∴n np M a =, ∴log n a M np =, 即证得log log n a a M n M =.

第四章函数应用(无) 数学必修二 第一章立体几何初步 直线与平面、平面与平面平行、垂直的判定定理与性质定理的证明. 1、直线与平面平行的判定定理 若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 2、平面与平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

高一数学必修2期末试题及答案解析

高一数学必修2期末试题及答案解析 参考公式: 圆台的表面积公式: (分别为圆台的上、下底面半径,为母线长) 柱体、椎体、台体的体积公式: 为底面积,为柱体高) 为底面积,为椎体高) 分别为上、下底面面积,为台体高) 一、选择题 1. 下列几何体中是棱柱的有 A 、1个 B 、2个 C 、3个 D 、4个 2. 如图所示,正方体的棱长为1,点A 是其一棱的中点,则点A 在空间直角坐标系中的坐标是 A 、 B 、 C 、 D 、 3. 如图所示,长方体中,°,则与所成的角是 A 、60° B 、90° ()22''S r r r l rl π=+++'r r 、l =(V Sh S 柱体h 1 =(3V Sh S 椎体 h () 1 ='3 V S S h +台体(',S S h 11,,122?? ???11,1,2? ? ?? ?11,1,22?? ??? 11,,12?? ??? 1111ABCD A B C D -130BAB ∠=1C D 1B B

C 、30° D 、45° 4. 下列直线中,与直线的相交的是 A 、 B 、 C 、 D 、 5. 在空间四边形的各边上的依次取点,若所在直线相交于点,则 A 、点必在直线上 B 、点必在直线上 C 、点必在平面外 D 、点必在平面内 6. 已知直线,给出以下四个命题: ①若平面平面,则直线平面; ②若直线平面,则平面平面; ③若直线不平行于平面,则平面不平行于平面。 其中正确的命题是 A 、② B 、③ C 、①② D 、①③ 7. 已知直线与直线垂直,则实数的值等于 A 、 B 、 C 、 D 、 8. 如图所示,已知平面,则图中互相垂直的 平面有 A 、3对 B 、2对 C 、1对 D 、0对 9. 已知是圆的弦的中点,则弦 所在的直线的方程是 A 、 B 、 C 、 3 D 、 10x y +-=226x y +=0x y +=3y x =--1y x =-ABCD AB BC CD DA 、、、E F G H 、、、EH FG 、P P AC P BD P DBC P ABC a α?//αβ//a β//a β//αβa βαβ()110a a x y -+-=210x ay ++=a 1 2 3 210,230,2 AB ⊥,BCD BC CD ⊥()2,1P -()2 2125x y -+=AB AB 30x y --=10x y +-=230x y +-=250x y --=

高中数学选修2-2推理与证明 直接证明与间接证明

2.2.1综合法和分析法 [学习目标] 1.了解直接证明的两种基本方法:分析法与综合法.2.了解分析法和综合法的思维过程和特点.3.会用分析法、综合法证明实际问题. 知识点一综合法 1.定义 一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. 2.基本模式 综合法的证明过程如下: 已知条件?…?…?结论 即用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论,则综合法用框图可表示为: P?Q1→Q1?Q2→Q2?Q3→…→Q n?Q 3.综合法的证明格式 因为…,所以…,所以…,…,所以…成立. 思考综合法的推理过程是合情推理还是演绎推理? 答案演绎推理. 知识点二分析法 1.分析法 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法. 2.基本模式

用Q 表示要证明的结论,P 表示条件,则分析法可用框图表示为: Q ?P 1→P 1?P 2→P 2?P 3→…→得到一个明显成立的条件 3.分析法的证明格式 要证…,只需证…,只需证…,…,因为…成立,所以…成立. 思考 分析法与综合法有哪些异同点? 答案 相同点:两者都是直接利用原命题的条件(或结论),逐步推得命题成立的证明方法——直接证明法.不同点:证法1,由因导果,使用综合法;证法2,执果索因,使用分析法. 题型一 综合法的应用 例1 已知a ,b 是正数,且a +b =1,求证:1a +1 b ≥4. 证明 方法一 ∵a ,b 是正数,且a +b =1, ∴a +b ≥2ab ,∴ab ≤12,∴1a +1b =a +b ab =1 ab ≥4. 方法二 ∵a ,b 是正数,∴a +b ≥2ab >0, 1a +1 b ≥2 1 ab >0, ∴(a +b )???? 1a +1b ≥4. 又a +b =1,∴1a +1b ≥4. 方法三 1a +1b =a +b a +a +b b =1+b a +a b +1≥2+2 b a ·a b =4.当且仅当a =b 时,取“=”号. 反思与感悟 利用综合法证明问题的步骤: (1)分析条件选择方向:仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题方法. (2)转化条件组织过程:把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化,组织过程时要有严密的逻辑,简洁的语言,清晰的思路. (3)适当调整回顾反思:解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结优化解法. 跟踪训练1 已知a ,b ,c ∈R ,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2. 证明 ∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2), 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2. 又∵a ,b ,c 互不相等. ∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

(完整)高一数学必修一、必修二期末考试试卷

高一数学必修一、必修二期末考试试卷 一、 选择题:(本大题共8小题,每小题3分) 1.已知不同直线m 、n 和不同平面α、β,给出下列命题: ①////m m αββα? ???? ②//////m n n m ββ? ??? ③ ,m m n n αβ?? ???? 异面 ④ //m m αββα⊥? ?⊥?? 其中错误的命题有( )个 A .0 B .1 C .2 D .3 2.直线l 过点(3,0)A 和点(0,2)B ,则直线l 的方程是( ) A .2360x y +-= B .3260x y +-= C .2310x y +-= D .3210x y +-= 3.两条平行线1:4320l x y -+=与2:4310l x y --=之间的距离是( ) A .3 B .35 C .1 5 D .1 4.直线l 的方程为0Ax By C ++=,当0A >,0B <,0C >时,直线l 必经过( ) A .第一、二、三象限 B .第二、三、四象限 C .第一、三、四象限 D .第一、二、四象限 5.221:46120O x y x y +--+=e 与222:86160O x y x y +--+=e 的位置关系是( ) A .相交 B .外离 C .内含 D .内切 6.长方体的长、宽、高分别为5、4、3,则它的外接球表面积为( ) A .252π B .50π C .1252π D .50 3 π 7.点(7,4)P -关于直线:6510l x y --=的对称点Q 的坐标是( ) A .(5,6) B .(2,3) C .(5,6)- D .(2,3)- 8.已知22:42150C x y x y +---=e 上有四个不同的点到直线:(7)6l y k x =-+的距离等于5,则k 的取值范围是( ) A .(,2)-∞ B .(2,)-+∞ C .1 (,2)2 D .1 (,)(2,)2 -∞+∞U 二、填空题(本大题共7小题,每小题3分) 9.如图的空间直角坐标系中,正方体棱长为2, ||3||PQ PR =, 则点R 的空间直角坐标为 . 10.过点(5,2)且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是 . 11.过三点(2,0),(6,0),(0,6)--的圆的方程是 . 12.棱长为a 的正方体中,把相邻面的中心连结起来,以这些线段为棱的八面体的体积为 . 13.221:2880O x y x y +++-=e 与222:4420O x y x y +---=e 的公共弦长为 .

高一数学直接证明与间接证明练习题

推理与证明综合测试题 一、选择题 1.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A.充分条件 B.必要条件 C.充要条件 D.等价条件 答案:A 2.结论为:n n x y +能被x y +整除,令1234n =, ,,验证结论是否正确,得到此结论成立的条件可以为( ) A.n *∈N B.n *∈N 且3n ≥ C.n 为正奇数 D.n 为正偶数 答案:C 3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 答案:C 4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述

性质,在等比数列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+ D.4578b b b b +>+ 答案:B 5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥, (2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( ) A.(1)与(2)的假设都错误 B.(1)与(2)假设都正确 C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确 答案:D 6.观察式子:213122+ <,221151233++<,2221117 12344 +++<,,则可归纳 出式子为( ) A.22211 111(2)2321n n n ++++<-≥ B.22 211111(2)2321 n n n + +++ <+≥

高中数学相关定理及证明

高中数学相关定理、公式及结论证明 汉阴中学正弦定理证明 内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则.sin sin sin C c B b A a == 证明: 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = . 从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。 由此,得 =∠sin sin a b A ABC ,同理可得 =∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . (3)在ABC Rt ?中,,sin ,sin c b B c a A == ∴ c B b A a ==sin sin , .1sin ,90=?=C C Θ.sin sin sin C c B b A a ==∴ 由(1)(2)(3)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 2.外接圆证明正弦定理 在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=R c B C 2sin sin ='=. ∴R C c 2sin =. 同理,可得R B b R A a 2sin ,2sin ==.∴R C c B b A a 2sin sin sin ===. 3.向量法证明正弦定理 a b D A B C A B C D b a

高一数学必修二期末测试题及答案

(A) (B ) (C) (D) 图1 高一数学必修二 一、选择题(8小题,每小题4分,共32分) 1.如图1所示,空心圆柱体的主视图是( ) 2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( ) (A)1条 (B )2条 (C)3条 (D)4条 3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( ) (A) 3 2 (B ) 3 5 (C) 32 (D)3 22 图2

4.下列命题中错误.. 的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,l =βα ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β 5.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B(4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( ) (A)531 (B) 532 (C) 5 33 (D) 5 34 二、填空题(6小题,每小题4分,共24分) 6.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法: ①水的部分始终呈棱柱状; ②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .

人教版高中数学选修2-1优秀全套教案

高中数学人教版选修2-1全套教案 第一章常用逻辑用语 日期: 1.1.1命题 (一)教学目标 1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式; 2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力; 3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。 (二)教学重点与难点 重点:命题的概念、命题的构成 难点:分清命题的条件、结论和判断命题的真假 教具准备:与教材内容相关的资料。 教学设想:通过学生的参与,激发学生学习数学的兴趣。 教学时间 (三)教学过程 学生探究过程: 1.复习回顾 初中已学过命题的知识,请同学们回顾:什么叫做命题? 2.思考、分析 下列语句的表述形式有什么特点?你能判断他们的真假吗? (1)若直线a∥b,则直线a与直线b没有公共点. (2)2+4=7. (3)垂直于同一条直线的两个平面平行. (4)若x2=1,则x=1. (5)两个全等三角形的面积相等. (6)3能被2整除. 3.讨论、判断 学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。 教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。 4.抽象、归纳 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句. 在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

高中数学证明公式

高中数学证明公式数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式

人教版数学必修2期末模拟试题及答案

期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题 1.点(1,-1)到直线x -y +1=0的距离是( ). A . 2 1 B . 2 3 C . 2 2 D . 2 2 3 2.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ). A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 3.下列直线中与直线2x +y +1=0垂直的一条是( ). A .2x ―y ―1=0 B .x -2y +1=0 C .x +2y +1=0 D .x + 2 1 y -1=0 4.已知圆的方程为x 2+y 2-2x +6y +8=0,那么通过圆心的一条直线方程是( ). A .2x -y -1=0 B .2x +y +1=0 C .2x -y +1=0 D .2x +y -1=0 5.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为( ). A .三棱台、三棱柱、圆锥、圆台 B .三棱台、三棱锥、圆锥、圆台 C .三棱柱、四棱锥、圆锥、圆台 D .三棱柱、三棱台、圆锥、圆台 6.直线3x +4y -5=0与圆2x 2+2y 2―4x ―2y +1=0的位置关系是( ). A .相离 B .相切 C .相交但直线不过圆心 D .相交且直线过圆心 7.过点P (a ,5)作圆(x +2)2+(y -1)2=4的切线,切线长为32,则a 等于( ). A .-1 B .-2 C .-3 D .0 (4) (3) (1) (2)

高中数学【北师大选修1-1】教案全集

第一章常用逻辑用语1.1 命题 教学过程: 一、复习准备: 阅读下列语句,你能判断它们的真假吗? (1)矩形的对角线相等; >; (2)312 >吗? (3)312 (4)8是24的约数; (5)两条直线相交,有且只有一个交点; (6)他是个高个子. 二、讲授新课: 1. 教学命题的概念: ①命题:可以判断真假的陈述句叫做命题(proposition). 也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件. 上述6个语句中,(1)(2)(4)(5)(6)是命题. ②真命题:判断为真的语句叫做真命题(true proposition); 假命题:判断为假的语句叫做假命题(false proposition). 上述5个命题中,(2)是假命题,其它4个都是真命题. ③例1:判断下列语句中哪些是命题?是真命题还是假命题? (1)空集是任何集合的子集; (2)若整数a是素数,则a是奇数; (3)2小于或等于2; (4)对数函数是增函数吗? x<; (5)215 (6)平面内不相交的两条直线一定平行; (7)明天下雨. (学生自练→个别回答→教师点评) ④探究:学生自我举出一些命题,并判断它们的真假. 2. 将一个命题改写成“若p,则q”的形式: ①例1中的(2)就是一个“若p,则q”的命题形式,我们把其中的p叫做命题的条件,q 叫做命题的结论. ②试将例1中的命题(6)改写成“若p,则q”的形式. ③例2:将下列命题改写成“若p,则q”的形式. (1)两条直线相交有且只有一个交点; (2)对顶角相等; (3)全等的两个三角形面积也相等. (学生自练→个别回答→教师点评) 3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若p,则q”的形式. 巩固练习: 教材 P4 1、2、3 4. (师生共析→学生说出答案→教师点评) ②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假: (1)同位角相等,两直线平行; (2)正弦函数是周期函数;

高中数学四大推理方法巧解证明题.doc

高中数学四大推理方法巧解证明题- 高中数学是数学各种基础知识的总结和归纳,同时也是以前所学到的数学知识的深化和检验。针对高中数学的这一特性,可以通过四大推理方法来进行证明题的解答,不但可以掌握数学知识脉络,也可以把所学到的知识上升到思维层面,使自己可以综合运用数学知识,达到学以致用的目的。 一、合情推理法 在高中数学证明题的解答过程中使用合情推理,有着比较重要的作用以及影响。比较常用的合情推理法就是类比推理法,这是一种从特殊转向特殊的推理方法,两种类似对象间的推理,一个对象有着某个性质,而另一个对象同时也有类似性质。进行类比时,对已知对象性质推理的过程进行充分的考虑,之后类比推导出类比对象性质。高中数学知识的结构很复杂,难度也比其他学科大,而通过合情推理法,并结合多种的思维方法,使学生可以进行思考和分析,也培养了学生对于数学学习的兴趣,提高了学生数学的学习能力。所以,合情推理法是一种很好的解答高中数学证明题的方法。 二、演绎推理法 对于演绎推理法来说,这是一种从一般转向特殊的推理方法,高中数学证明题的证明过程大都是通过演绎推理来证明的,保证演绎推理的前提以及形式正确,就能保证结论是正确的,同时要注意推理的过程具有正确性以及完备性。 三、间接和直接证明法 (一)直接证明法 直接证明法比较常见的就是综合法以及分析法。其中,综

合法就是利用已知的条件以及数学定理和公理等,进行推理论证,之后推导出结论成立。综合法也被称作为顺推证法或者由因导果法。而分析法是从结论出发,对结论充分成立的条件进行逐步的寻求,把结论归纳总结成明显成立的一个条件。 (二)间接证明法 间接证明法比较常用的就是反证法,其证明步骤为首先反设,之后归谬,最后存真。首先假设结论不成立,就是把结论反面假设为真,之后的归谬就是在己知条件和反设背景下推理,得出同假设命题相矛盾的结论,最后的存真就是由归谬得出的结果进行反设命题不真的断定,来说明原先结论是成立的。 四、归纳推理法 同上述的推理方法相比较来说,归纳推理法注重对高中数学知识总体的规划,总结和归纳所学到知识。我们都知道,高中数学的知识点比较多,每个知识点之间都有着一定的关系,一道证明题中,可能存在几个知识点,如果同学们不能归纳知识的话,短时间内就不能看出题目中知识点之间的联系,就会严重影响题目的解答。 在高中数学的证明题目中,虽然有限的研究对象比较常见,但是,更为常见的是研究对象众多,一些特定的情况下研究对象可能是无穷的,同学们很难找到突破口。如果同学们把研究对象根据形成的情况进行分类,之后根据分类在进行证明,假如每种情况都可以得到证明,那么所得到的结论就必然是正确的,这种分类证明、归纳方法,可以使同学们找到突破口,从而使证明题得到解答。 结束语: 在数学证明题的实际解答过程中,要根据题目的具体情景

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

人教版高中数学必修5期末测试题

期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题:本大题共14小题,每小题4分,共56分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.在等差数列3,7,11…中,第5项为( ). A .15 B .18 C .19 D .23 2.数列{}n a 中,如果n a =3n (n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列 D .首项为1的等比数列 3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ). A .4 B .5 C .6 D .7 4.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°, 则c 的值等于( ). A .5 B .13 C .13 D .37 5.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 6.△ABC 中,如果A a tan =B b tan =C c tan ,那么△ABC 是( ). A .直角三角形 B .等边三角形 C .等腰直角三角形 D .钝角三角形 7.如果a >b >0,t >0,设M =b a ,N =t b t a ++,那么( ). A .M >N B .M <N C .M =N D .M 与N 的大小关系随t 的变化而变化 8.如果{a n }为递增数列,则{a n }的通项公式可以为( ). A .a n =-2n +3 B .a n =-n 2-3n +1 C .a n = n 21 D .a n =1+log 2n

高中数学人教版选修1-2全套教案

高中数学人教版选修1-2全套教案 第一章统计案例 第一课时 1.1回归分析的基本思想及其初步应用(一) 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析. 教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备: 1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关? 2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报. 二、讲授新课: 1. 教学例题: ① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 体重. (分析思路→教师演示→学生整理)

第一步:作散点图第二步:求回归方程第三步:代值计算 ②提问:身高为172cm的女大学生的体重一定是60.316kg吗? 不一定,但一般可以认为她的体重在60.316kg左右. ③解释线性回归模型与一次函数的不同 事实上,观察上述散点图,我们可以发现女大学生的体重y和身高x之间的关系并不能用一次=+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体函数y bx a 重的关系). 在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e(即残差变量或随机 =++,其中残差变量e中包含体重变量)引入到线性函数模型中,得到线性回归模型y bx a e 不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式. 2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义. 3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.

高中数学必修2期末测试试卷

x y O x y O x y O x y O 高中数学必修2模块测试试卷 一、选择题 1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( ) A.3 B.-2 C. 2 D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( ) A .072=+-y x B .012=-+y x C .250x y --= D .052=-+y x 3. 下列说法不正确的.... 是( ) A. 空间中,一组对边平行且相等的四边形是一定是平行四边形; B .同一平面的两条垂线一定共面; C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内; D. 过一条直线有且只有一个平面与已知平面垂直. 4.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 5. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ) A . B . C . D . 6. 已知a 、b 是两条异面直线,c ∥a ,那么c 与b 的位置关系( ) A.一定是异面 B.一定是相交 C.不可能平行 D.不可能相交 7. 设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是 ( ) (A )①和② (B )②和③ (C )③和④ (D )①和④ 8. 圆22 (1)1x y -+= 与直线y x = 的位置关系是( ) A .相交 B. 相切 C.相离 D.直线过圆心 9. 两圆相交于点A (1,3)、B (m ,-1),两圆的圆心均在直线x -y +c=0上,则m+c 的值为( )

相关主题
文本预览
相关文档 最新文档