线性自适应滤波算法综述
- 格式:doc
- 大小:35.50 KB
- 文档页数:5
⾃适应滤波器算法综述以及代码实现作者:凌逆战⽂章地址:并不是每个⾃适应滤波器的的代码我都实现了,我需要⼀定的时间,⼀有时间我就会来更新代码,记得关注我,如果有问题记得反馈另外科研严谨,搞科研的建议多看论⽂,因为我是业余的,写这领域的博客主要是因为感兴趣爱好,博客也难免会有错误,所以不要以我为准,可以做个参考,如果能够帮到你,我会很欣慰。
⾃适应回声消除原理 声学回声是指扬声器播出的声⾳在接受者听到的同时,也通过多种路径被麦克风拾取到。
多路径反射的结果产⽣了不同延时的回声,包括直接回声和间接回声。
直接回声是指由扬声器播出的声⾳未经任何反射直接进⼊麦克风。
这种回声的延时最短,它同远端说话者的语⾳能量,扬声器与麦克风之间的距离、⾓度 ,扬声器的播放⾳量,麦克风的拾取灵敏度等因素直接相关;间接回声是指由扬声器播出的声⾳经过不同的路径 (如房屋或房屋内的任何物体 )的⼀次或多次反射后进⼊麦克风所产⽣的回声的集合。
房屋内的任何物体的任何变动都会改变回声的通道。
因此,这种回声的特点是多路径的、时变的。
⾃适应回声消除的基本思想是估计回⾳路径的特征参数,产⽣⼀个模拟的回⾳路径,得出模拟回⾳信号,从接收信号中减去该信号,实现回⾳抵消。
其关键就是得到回声路径的冲击响应$\hat{h}(n)$,由于回⾳路径通常是未知的和时变的,所以⼀般采⽤⾃适应滤波器来模拟回⾳路径。
⾃适应回⾳消除的显著特点是实时跟踪,实时性强。
回声消除原理框图 图中$ y(n)$代表来⾃远端的信号 , $r(n)$是经过回声通道⽽产⽣的回声,$x(n)$是近端的语⾳信号。
D端是近端麦克风,麦克风采集到的房间叠加的回声和近端说话⼈的语⾳。
对回声消除器来说,接收到的远端信号作为⼀个参考信号,回声消除器根据参考信号由⾃适应滤波器产⽣回声的估计值$\hat{r}(n)$,将$\hat{r}(n)$从近端带有回声的语⾳信号减去,就得到近端传送出去的信号。
在理想情况下,经过回声消除器处理后,残留的回声误差$e(n)=r(n)-\hat{r}(n)$将为0,从⽽实现回⾳消除。
自适应滤波第1章绪论 (1)1.1自适应滤波理论发展过程 (1)1. 2自适应滤波发展前景 (2)1. 2. 1小波变换与自适应滤波 (2)1. 2. 2模糊神经网络与自适应滤波 (3)第2章线性自适应滤波理论 (4)2. 1最小均方自适应滤波器 (4)2. 1. 1最速下降算法 (4)2.1.2最小均方算法 (6)2. 2递归最小二乘自适应滤波器 (7)第3章仿真 (12)3.1基于LMS算法的MATLAB仿真 (12)3.2基于RLS算法的MATLAB仿真 (15)组别: 第二小组组员: 黄亚明李存龙杨振第1章绪论从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波。
相应的装置称为滤波器。
实际上, 一个滤波器可以看成是一个系统, 这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、或者希望得到的有用信号, 即期望信号。
滤波器可分为线性滤波器和非线性滤波器两种。
当滤波器的输出为输入的线性函数时, 该滤波器称为线性滤波器, 当滤波器的输出为输入的非线性函数时, 该滤波器就称为非线性滤波器。
自适应滤波器是在不知道输入过程的统计特性时, 或是输入过程的统计特性发生变化时, 能够自动调整自己的参数, 以满足某种最佳准则要求的滤波器。
1. 1自适应滤波理论发展过程自适应技术与最优化理论有着密切的系。
自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。
1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。
并利用Wiener. Hopf方程给出了对连续信号情况的最佳解。
基于这~准则的最佳滤波器称为维纳滤波器。
20世纪60年代初, 卡尔曼(Kalman)突破和发展了经典滤波理论, 在时间域上提出了状态空间方法, 提出了一套便于在计算机上实现的递推滤波算法, 并且适用于非平稳过程的滤波和多变量系统的滤波, 克服了维纳(Wiener)滤波理论的局限性, 并获得了广泛的应用。
第二章自适应滤波器原理2.1 基本原理2.1.1 自适应滤波器的发展在解决线性滤波问题的统计方法中,通常假设已知有用信号及其附加噪声的某些统计参数(例如,均值和自相关函数),而且需要设计含噪数据作为其输入的线性滤波器,使得根据某种统计准则噪声对滤波器的影响最小。
实现该滤波器优化问题的一个有用方法是使误差信号(定义为期望响应与滤波器实际输出之差)的均方值最小化。
对于平稳输入,通常采用所谓维纳滤波器(Wiener filter)的解决方案。
该滤波器在均方误差意义上使最优的。
误差信号均方值相对于滤波器可调参数的曲线通常称为误差性能曲面。
该曲面的极小点即为维纳解。
维纳滤波器不适合于应对信号和/或噪声非平稳问题。
在这种情况下,必须假设最优滤波器为时变形式。
对于这个更加困难的问题,十分成功的一个解决方案使采用卡尔曼滤波器(Kalman filter)。
该滤波器在各种工程应用中式一个强有力的系统。
维纳滤波器的设计要求所要处理的数据统计方面的先验知识。
只有当输入数据的统计特性与滤波器设计所依赖的某一先验知识匹配时,该滤波器才是最优的。
当这个信息完全未知时,就不可能设计维纳滤波器,或者该设计不再是最优的。
而且维纳滤波器的参数是固定的。
在这种情况下,可采用的一个直接方法是“估计和插入过程”。
该过程包含两个步骤,首先是“估计”有关信号的统计参数,然后将所得到的结果“插入(plug into)”非递归公式以计算滤波器参数。
对于实时运算,该过程的缺点是要求特别精心制作,而且要求价格昂贵的硬件。
为了消除这个限制,可采用自适应滤波器(adaptive filter)。
采用这样一种系统,意味着滤波器是自设计的,即自适应滤波器依靠递归算法进行其计算,这样使它有可能在无法获得有关信号特征完整知识的环境下,玩完满地完成滤波运算。
该算法将从某些预先确定的初始条件集出发,这些初始条件代表了人们所知道的上述环境的任何一种情况。
我们还发现,在平稳环境下,该运算经一些成功迭代后收敛于某种统计意义上的最优维纳解。
自适应滤波算法及其应用研究随着科技的不断发展,我们对信号处理的要求也越来越高。
因此,滤波器的设计和优化就显得至关重要。
自适应滤波算法以其广泛应用于信号处理和控制领域,受到研究者的普遍关注。
本文将介绍自适应滤波算法及其应用研究。
一、自适应滤波算法概述自适应滤波是指滤波器能够自动调节其参数以适应输入信号的变化。
在实际应用中,输入信号通常是非稳态的,而传统的滤波器无法有效处理这些非稳态信号。
相反,自适应滤波器能够根据输入信号的实际情况来自动调整其滤波参数,以达到更好的滤波效果。
自适应滤波器通常具有以下几个基本特征:1. 自动调节参数自适应滤波器可以根据输入信号的特征自动调节其参数。
这些参数通常是滤波器的带宽、增益、延迟等。
2. 可适应采样率自适应滤波器能够根据输入信号的频率来自动调整采样率。
这使得自适应滤波器能够更好地适应不同频率的信号。
3. 更好的滤波效果与传统的固定滤波器相比,自适应滤波器的滤波效果更好,可以有效地过滤掉噪声和干扰信号。
二、常见的自适应滤波算法1. 最小均方差滤波算法最小均方差滤波算法是自适应滤波器中最常见的一种算法。
该算法通过最小化误差平方和来调整滤波器参数。
这个算法不仅可以用于信号处理,还可以用于控制系统中的自适应控制。
2. 递归最小二乘滤波算法递归最小二乘滤波算法是一种基于递归最小二乘算法的自适应滤波算法。
该算法通过计算输入信号的残差来优化滤波器参数。
在实际应用中,递归最小二乘滤波算法通常比最小均方差滤波算法更有效。
3. 梯度自适应滤波算法梯度自适应滤波算法是一种基于梯度算法的自适应滤波算法。
该算法通过计算残差的梯度来调整滤波器参数。
相比其他自适应滤波算法,梯度自适应滤波算法具有更好的收敛性。
三、自适应滤波算法的应用自适应滤波算法在信号处理和控制领域中有着广泛的应用。
下面我们将介绍其中几个应用案例。
1. 降噪在语音处理、音频处理和图像处理领域,自适应滤波算法常常用于降噪。
通过对输入信号进行滤波,可以去除不必要的噪声信号,从而获得更清晰、更可靠的信号。
自适应滤波法自适应滤波法是一种常用的数字信号处理技术,主要用于去除噪声、提取信号以及增强图像等应用中。
它可以根据信号的特性和噪声的特点,自动调整滤波器的参数,从而达到最佳的信号处理效果。
本文将介绍自适应滤波法的基本原理和常用算法,并通过实例演示其应用。
自适应滤波法的基本原理是根据信号和噪声的统计特性,利用滤波器自身的调整机制,来使滤波效果更好。
传统的滤波器往往采用固定的参数来对信号进行处理,不管信号的特性如何,滤波器的参数都是不变的。
而自适应滤波器则能够针对不同的信号和噪声特性,动态地调整滤波器的参数,从而提高信号处理的效果。
自适应滤波法主要分为线性自适应滤波器和非线性自适应滤波器两种。
线性自适应滤波器是指滤波器的输出值与输入值之间存在线性关系,而非线性自适应滤波器则没有这个限制。
线性自适应滤波器较为简单,常用的算法有LMS(最小均方)算法和RLS(递推最小二乘)算法等。
非线性自适应滤波器突破了线性关系的限制,能够更好地适应复杂的信号和噪声环境。
LMS算法是自适应滤波器中最简单且最常用的一种算法。
它的基本思想是通过调整滤波器的权值来最小化滤波器的输出信号与期望信号之间的均方误差。
LMS算法的核心是更新权值,通过不断迭代使误差最小化。
具体的计算过程是,根据当前输入信号和滤波器的输出信号计算出误差,然后根据误差调整滤波器的权值。
通过多次迭代,滤波器的权值逐渐收敛到最佳值,使滤波器的输出信号尽可能接近期望信号。
RLS算法是另一种常用的自适应滤波算法,它的特点是拥有更好的收敛性能和跟踪性能。
RLS算法的基本原理是通过递归的方式计算滤波器的权值,使滤波器的输出与期望信号之间的均方误差最小。
与LMS算法相比,RLS算法的计算复杂度较高,但在一些要求较高的应用中,如语音处理和雷达信号处理等,RLS算法更能胜任。
除了LMS算法和RLS算法外,还有其他一些自适应滤波算法,如NLMS(归一化最小均方)算法、AP(逐次逼近)算法、SAF(选择性自适应)算法等。
自适应滤波算法解析
自适应滤波算法的核心思想是根据信号自身的统计特性来调整滤波器的参数。
通常情况下,信号的统计特性是由信号的功率谱密度或自相关函数表示的。
根据这些统计特性,可以设计滤波器的参数,从而使得滤波器能够较好地适应信号的变化。
在自适应滤波算法中,最常用的一种方法是最小均方误差(Mean Square Error,MSE)准则。
该准则的目标是通过最小化滤波器输出与期望输出之间的均方误差,来选择最佳的滤波器参数。
为了实现这个目标,通常采用梯度下降法或者最小二乘法等优化方法。
在梯度下降法中,通过计算误差函数关于滤波器参数的梯度,来不断调整滤波器的参数。
具体而言,首先随机初始化滤波器的参数,然后计算误差函数的梯度,并根据梯度的方向和大小来更新滤波器的参数。
重复这个过程直到滤波器参数收敛。
最小二乘法是另一种常用的优化方法,它的核心思想是通过最小化误差函数的二次方和,来选择最佳的滤波器参数。
与梯度下降法不同的是,最小二乘法可以通过对误差函数进行求导并令其等于零来求解滤波器的最佳参数。
除了最小均方误差准则之外,还有一些其他的自适应滤波算法,例如最小绝对值差准则、最小二乘差准则等。
这些算法的核心思想都是通过合适的准则来选择滤波器的参数,从而实现自适应滤波。
总的来说,自适应滤波算法是一种根据信号自身的特性来调整滤波器参数的方法。
该算法通过最小化误差准则来选择最佳的滤波器参数,具有
广泛的应用价值。
在实际应用中,可以根据具体的问题选择合适的自适应滤波算法,并通过调整算法的参数来获得最佳的滤波效果。
LMS自适应滤波算法1960年Widrow和Hoff提出最小均方误差算法(LMS),LMS算法是随机梯度算法中的一员。
使用“随机梯度”一词是为了将LMS算法与最速下降法区别开来。
该算法在随机输入维纳滤波器递归计算中使用确定性梯度。
LMS算法的一个显著特点是它的简单性。
此外,它不需要计算有关的相关函数,也不需要矩阵求逆运算。
由于其具有的简单性、鲁棒性和易于实现的性能,在很多领域得到了广泛的应用。
1LMS算法简介LMS算法是线性自适应滤波算法,一般来说包含两个基本过程:(1)滤波过程:计算线性滤波器输出对输入信号的响应,通过比较输出与期望响应产生估计误差。
(2)自适应过程:根据估计误差自动调整滤波器参数。
如图1-1所示,用表示n时刻输入信号矢量,用表示n时刻N阶自适应滤波器的权重系数,表示期望信号,表示误差信号,是主端输入干扰信号,u是步长因子。
则基本的LMS算法可以表示为(1)(2)图1-1 自适应滤波原理框图由上式可以看出LMS算法实现起来确实很简单,一步估计误差(1),和一步跟新权向量(2)。
2迭代步长u的作用2.1 理论分析尽管LMS算法实现起来较为简单,但是精确分析LMS的收敛过程和性能却是非常困难的。
最早做LMS收敛性能分析的是Widrow等人,他们从精确的梯度下降法出发,研究权矢量误差的均值收敛特性。
最终得到代价函数的收敛公式:′(3)式(3)揭示出LMS算法代价函数的收敛过程表现为一簇指数衰减曲线之和的形式,每条指数曲线对应于旋转后的权误差矢量的每个分量,而他们的衰减速度,对应于输入自相关矩阵的每个特征值,第i条指数曲线的时间常数表示为τ小特征值对应大时间常数,即衰减速度慢的曲线。
而大特征值对应收敛速度快的曲线,但是如果特征值过大以至于则导致算法发散。
从上式可以明显看出迭代步长u在LMS算法中会影响算法收敛的速度,增大u可以加快算法的收敛速度,但是要保证算法收敛。
最大步长边界:稳态误差时衡量LMS算法的另一个重要指标,稳定的LMS算法在n时刻所产生的均方误差,其最终值∞是一个常数。
自适应滤波器毕业设计文献综述
自适应滤波器最早由Widrow和Hoff于1960年提出,其最基本的思
想是通过不断调整滤波器的系数,使滤波器的输出信号与输入信号的误差
最小。
最常用的自适应算法是最小均方算法(LMS算法),该算法根据均
方误差的梯度来调整滤波器的系数。
而后又发展出一系列的自适应算法,
如最小均方根算法(NLMS算法)、递归最小二乘算法(RLS算法)等。
自适应滤波器在信号降噪、信号预测、信号检测等方面均有应用。
在
信号降噪方面,自适应滤波器可以用于消除信号中的噪声,提高信号的质量。
在信号预测方面,自适应滤波器可以根据已有的信号数据预测未来的
信号值,对于一些需要提前知道信号走势的应用尤为重要。
在信号检测方面,自适应滤波器可以通过判断滤波器输出信号的功率是否超过一定的阈
值来检测信号是否存在。
除了传统的自适应滤波器,近年来还涌现出一些新型的自适应滤波器。
例如,基于小波变换的自适应滤波器可以结合小波变换的多分辨率特点,
对不同频段的信号进行不同的滤波处理。
基于子空间方法的自适应滤波器
可以通过分解信号子空间和噪声子空间,提高对噪声的抑制能力。
此外,
还有基于深度学习的自适应滤波器等新方法正在不断涌现。
总结起来,自适应滤波器在信号处理领域具有重要的应用价值。
通过
不断调整滤波器的系数,自适应滤波器可以适应不同的信号特征,提高滤
波器的性能。
未来,随着新算法和新方法的不断涌现,自适应滤波器的研
究将会取得更加丰富和深入的成果。
线性自适应滤波算法综述
作者简介蔡卫菊(1981.4-),女,汉族,硕士,讲师。
现工作于长江大学电信学院,研究领域为信号处理。
摘要:分析了最小均方误差滤波和基于最小二乘准则滤波算法、变换域自适应滤波算法、仿射投影算法、共轭梯度算法、基于子带分解的自适应滤波算法、基于qr分解的自适应滤波算法优缺点,并对自适应滤波算法的发展进行了展望。
关键词:自适应滤波算法;最小均方误差算法;最小二乘算法;变换域;仿射投影;共轭梯度;子带分解
中图分类号:tn911文献标识码:a 文章编号:
1672-3791(2011)12(c)-0000-00
随着信号处理理论和技术的迅速发展,自适应信号处理理论和技术已经发展成为这一领域的一个新分支,并且在通信、雷达、声纳、地震学、导航系统、生物医学和工业控制等领域获得越来越广泛的应用。
对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。
1变步长自适应滤波算法
最小均方误差lms算法最早由widrow和hoff于20世纪60年代提出,由于其结构简单,性能稳定,计算复杂度低,便于硬件实现等特点,一直是自适应滤波经典算法之一。
lms算法的优点是结构简单,鲁棒性强,其缺点是收敛速度很慢。
固定步长的自适应滤波
算法在收敛速度、时变系统跟踪速度与收敛精度方面对算法调整步长因子的要求是相互矛盾的。
为了克服这一矛盾,人们提出了许多变步长自适应滤波算法。
yasukawa等[1]提出了使步长因子正比于误差信号的大小。
吴光弼[2]提出了在初始收敛阶段或未知系统参数发生变化时,步长比较大,以便有较快的收敛速度和对时变系统的跟踪速度;而在算法收敛后,不管主输入端干扰信号有多大,都应保持很小的调整步长以达到很小的稳态失调噪声,根据这一步长调整原则,许多学者设计了多种变步长自适应滤波算法,分别能够满足不同场合的应用。
2基于最小二乘准则的rls算法
基于最小二乘准则rls算法对输入信号的自相关矩阵的逆进行递推估计更新,收敛速度快,其收敛性能与输入信号的频谱特性无关。
但是,rls算法的计算复杂度很高,不利于适时实现。
许多文献提出了改进的rls算法,如快速rls算法[6],快速递推最小二乘格型算法[7] 等。
这些算法的计算复杂度低于rls算法,但它们都存在数值稳定性问题。
文献[7]为避免rls类算法递推估计更新自相关矩阵的逆的不足,基于最小二乘准则,利用最陡下降法,得到一种新的梯度型自适应滤波算法,该算法计算复杂度较低,收敛性能良好。
3变换域自适应滤波算法
对于强相关的信号,lms算法的收敛性能降低,这是由于lms算
法的收敛性能依赖于输入信号自相关矩阵的特征值发散程度。
输入信号自相关矩阵的特征值发散程度越小,lms算法的收敛性能越好。
经过研究发现,对输入信号作某些正交变换后,输入信号自相关矩阵的特征值发散程度会变小。
于是,dentin等 1979年首先提出了变换域自适应滤波的概念。
其基本思想是把时域信号转变为变换域信号,在变换域中采用自适应算法。
4仿射投影算法
射投影算法最早由k.ozeki和t.umeda提出,它是归一化最小均方误差(nlms)算法的推广。
仿射投影算法的性能介于lms算法和rls 算法之间,其计算复杂度比rls算法低。
归一化最小均方误差(nlms)算法是lms算法的一种改进算法,它可以看作是一种变步长因子的lms算法,其收敛性能对输入信号的能量变化不敏感。
而仿射投影算法的计算复杂度比nlms算法高很多。
gay等提出的快速仿射投影算法大大降低了仿射投影算法的计算复杂度。
5 共轭梯度算法
虽然rls算法收敛速度快,但其计算复杂度很高,因为它需要估计逆矩阵。
假如被估计的逆矩阵失去正定性,就会引起算法发散;并且算法实现所需的存储量极大,不利于实现。
一些快速rls算法虽降低了rls算法的计算复杂度,但都存在数值稳定性问题。
共轭梯度自适应滤波算法不含有rls算法中的矩阵运算,也没有某些快速rls算法存在的数值稳定性问题,它保留了rls算法收敛速度快
的特点。
6 基于子带分解的自适应滤波算法
子带分解技术用于自适应滤波算法主要是基于以下考虑:对于强相关输入信号,自相关矩阵的特征值发散程度很大,使得所采用的自适应滤波算法的收敛速度和跟踪速度都很慢,并且权值的自适应滤波器的计算量很高。
基于子带分解自适应滤波的基本原理是将输入信号与参考信号
经过分解滤波器组抽取进行子带分解,对信号按频带划分,然后在各个子带上分别进行自适应滤波,再将子带信号内插后通过合成滤波器组得到最后的合成信号。
其中,由于对信号进行了抽取,使完成自适应滤波所需的计算量得以减小;而在子带上进行自适应滤波使收敛性能又有所提高。
7总结
本文对各种类型的自适应滤波算法进行了分析总结,可以看出,收敛速度快、计算复杂度低、数值稳定性好是这些算法努力追求的目标,算法与实现结构有着密切的联系,每个算法都存在不同的等效结构,结合实际应用还有不少问题需要研究,在实际应用中应根据具体环境和系统要求,结合各种算法的特点以达到最优的滤波效果。
参考文献
[1] yasukawa h,shimada s,furukrawa i,et al.acoustic echo
canceller with high speech quality[c]//proc.icassp’87,1987 2125-2128.
[2] 吴光弼,祝琳瑜.一种变步长lms自适应滤波算法.电子学报.1994,22,1:55-60.
[3]luo xiaodong,jia zhenhong,wang qiang.variable step size lms adaptive filtering algorithm[j].acta electronica sinica,2006,34(6):1123-1126.
[4] 孙恩昌,李于衡,张冬英,等.自适应变步长lms滤波算法及分析[j].系统仿真学报,2007,19(14):3172-3175.
[5] j m cioffi,t kailath.windowed fast transversal filters for recursive least squares adaptive filtering.ieee trans.on assp.1985,33,33:607-625.。