不同截面钢管混凝土结构承载力
- 格式:pdf
- 大小:2.15 MB
- 文档页数:2
钢管混凝土结构的特点与应用摘要:钢管混凝土结构由于具有一系列优点,近年来在国内外的研究和应用取得了令人瞩目的成果,本文介绍了钢管混凝土结构的特点,论述了钢管混凝土在国内外的研究现状,并探讨了钢管混凝土结构的发展前景。
关键词:钢管混凝土结构;抗震性能;承载力abstract: concrete filled steel tube structure has a series of advantages, has been made in research and application of the results attract people’s attention in recent years at home and abroad, this paper introduces the characteristics of steel pipe concrete structure, discusses the current research of the concrete filled steel tube at home and abroad, and discusses the steel tube concrete structure development prospect.key words: concrete filled steel tube structure; seismic performance; bearing capacity中图分类号:tu375文献标识码:a引言钢管混凝土是指在钢管中填充混凝土而形成的构件。
按截面形式不同,可分为圆钢管混凝土,方、矩形钢管混凝土和多边形钢管混凝土等。
其中矩形钢管混凝土和圆钢管混凝土应用较广。
钢管混凝土利用钢管和混凝土两种材料在受力过程中的相互作用,即钢管对核心混凝土的约束作用,使混凝土处于三向受压状态,混凝土的强度得以提高,塑性和韧性得到改善,同时克服了钢管容易发生局部屈曲的缺点。
钢管混凝土综述袁摘要:简要介绍了钢管混凝土结构的研究现状,具体阐述了钢管混凝土结构的特点,分别论述了钢管混凝土结构在高层建筑、拱桥、地铁车站工程中的应用,并对钢管混凝土结构今后的发展方向进行了分析,以期促进钢管混凝土结构的应用与推广。
关键词:钢管混凝土结构,特点,应用,新型,发展方向1.引言钢管混凝土(Concrete-Filled Steel Tube ,简称CFT)是将混凝土灌入钢管而形成的一种组合材料,是在钢管中填充混凝土后形成的构件。
构件型式包括内填型、外包型和内填外包型三类。
钢管可以是圆钢管, 也可以是方钢管或八角形钢管等,混凝土可以是素混凝土, 也可以配有钢筋。
钢管混凝土是在劲性钢筋混凝土及螺旋配筋混凝土的基础上演变和发展起来的。
钢管混凝土由于其抗压强度高、自重轻、抗震性能突出、施工方便、外型美观和造价经济等优点, 广泛应用于单层或多层工业厂房的结构柱、设备构架柱、各种支架和超高层建筑以及桥梁结构中。
目前,钢管混凝土结构的应用很广泛,国内外学者对钢管混凝土进行了研究, 取得了一些有意义的成果。
柱是建筑物中的主要承重构件, 研究柱的承载能力对建筑物的安全可靠具有重要意义, 一些学者在试验研究的基础上, 提出了一些以计算其极限承载力为目的计算理论和公式, 并反映在各国的有关设计规范和规程中。
在当今工程实践中, 钢管混凝土柱越来越广泛地被应用于高层和超高层建筑, 巨型框架结构中的钢管混凝土柱与其斜撑的交接处存在很大的剪力,以及在钢管棍凝土柱和钢筋混凝土梁节点处,当梁的剪力通过焊接在节点底部的反牛腿传递给柱子时,钢管混凝土的抗剪力能力可能起着主导作用,此时需根据钢管混凝土柱的抗剪承载力来确定钢管尺寸。
现阶段只能从实用出发,对钢管混凝土柱的抗剪承载力做出偏于保守的估算, 这在一定程度上限制了钢管混凝土在工程实践中的应用。
因此,对钢管混凝土的抗剪力学性能进行深入系统的研究, 对钢管混凝土结构的发展, 特别是在超高层建筑中的推广应用也具有积极的促进作用。
浅谈钢管混凝土结构的特点摘要:钢管混凝土结构是介于钢结构和混凝土结构之间的一种新型结构。
它利用钢管和混凝土两种材料在受力过程中的相互作用,弥补了两种材料各自的缺点,且可充分发挥二者的优点,使钢管混凝土具有承载力高、塑性和韧性好、旋工方便和耐火性能好等诸多优点而得到了较为广泛的应用。
关键词:承载力;耐火性;混凝土结构一、钢管混凝土结构特点钢管混凝土结构是近年来发展起来的一种新型结构,相比钢筋混凝土、钢结构有很多力学上和经济上的优点,被广泛运用于高层建筑、工业厂房、拱桥结构中。
钢管混凝土结构是指在薄壁钢管内填充普通混凝土,将两种不同性质的材料组合而成的复合结构,结构中一般都不再配钢筋,将钢管结构和钢筋混凝土结构的优点结合在一起而发展起来的新型结构。
和钢筋混凝土、钢结构相比较,钢管混凝土结构有以下优点:(一)结构承载力高对于薄壁钢管来说,其抗弯性能强,具有良好的弹塑性,但在受压时容易失稳而丧失轴向抗压能力;对于混凝土来说,其抗压强度高,但抗弯能力很弱。
在钢管中灌入混凝土形成钢管混凝土构件,钢管保护了混凝土,混凝土受到钢管的约束而处于三向受力状态,使得核心混凝土具有更高的抗压强度和变形性能,而混凝土的存在可以避免或延缓薄壁钢管过早出现局部屈曲,从而使钢管混凝土柱具有很高的承载力。
(二)具有良好的塑性和韧性单向受压的混凝土常属脆性破坏;钢管混凝土结构中,核心混凝土在钢管的约束下,不但使用阶段工作时弹性性质得到改善,而且被破坏时产生很大的塑性变坏的特征。
在反复荷载作用下,p一△滞回曲线表明,钢管混凝土结构的吸能性能特别好,延性好,无刚度退化现象,弯矩和曲率的关系曲线无下降段。
(三)结构耐火性能好与钢结构相比,钢管混凝土由于钢管内填灌了混凝土,能吸收大量的热能,因此遭受火灾时柱子截面温度场的分布很不均匀,增加了柱子的耐火时间,耐火极限高于钢结构,为抗火而增加的保护材料比钢柱少。
(四)施工过程便捷与钢结构相比,钢管混凝土结构零部件少,焊缝少,而且柱脚构造简单,可直接插入混凝土基础的预留杯口中,不需要复杂的柱脚构造。
钢管混凝土柱—钢梁平面框架的力学性能研究一、本文概述随着现代建筑技术的不断进步和创新,钢管混凝土柱-钢梁平面框架作为一种新型的建筑结构形式,已经在工程中得到了广泛的应用。
该结构形式结合了钢管混凝土柱的高承载能力和钢梁的优良延性,使得整体结构在承受外部荷载时表现出良好的力学性能。
本文旨在对钢管混凝土柱-钢梁平面框架的力学性能进行深入的研究和分析,以期为相关工程实践提供理论依据和技术支持。
具体而言,本文首先将对钢管混凝土柱-钢梁平面框架的基本构造和受力特点进行详细的介绍,包括钢管混凝土柱的受力性能、钢梁的受力性能以及两者之间的连接方式等。
在此基础上,本文将通过建立理论模型、进行数值模拟和开展实验研究等多种方法,全面探讨该结构形式在不同荷载作用下的受力性能、变形特性以及破坏模式等关键问题。
通过本文的研究,期望能够更深入地理解钢管混凝土柱-钢梁平面框架的力学特性,揭示其受力机理和破坏规律,为相关工程设计和施工提供更为准确和可靠的理论依据。
本文的研究成果也有助于推动新型建筑结构形式的发展和创新,为现代建筑技术的进步做出积极的贡献。
二、钢管混凝土柱-钢梁平面框架的基本构造和特点钢管混凝土柱-钢梁平面框架作为一种混合结构体系,结合了钢管混凝土柱和钢梁的优点,展现出了独特的力学性能和广泛的应用前景。
其基本构造主要包括钢管混凝土柱和钢梁两部分,通过节点连接形成一个整体稳定的结构体系。
钢管混凝土柱是指将混凝土填入钢管中,利用钢管对混凝土的约束作用提高混凝土的抗压强度和延性,同时钢管自身也承受一定的拉力。
这种结构形式能够充分发挥钢材和混凝土两种材料的优点,提高柱子的整体承载能力,同时具有较好的抗震性能。
钢梁作为框架的另一部分,主要承受弯矩和剪力,其截面形式多样,可以根据实际需求选择合适的截面形状和尺寸。
钢梁与钢管混凝土柱的连接通常采用刚性连接或半刚性连接,以确保框架的整体稳定性和承载能力。
承载能力高:钢管混凝土柱的抗压强度高,钢梁的抗弯承载能力大,使得整个框架具有较高的承载能力。
GB50936-2014钢管混凝土结构技术规范形隔板,变径钢管的壁厚不应小于所连接的钢管壁厚,变径段的斜度不宜大于1:6,变径段宜设置在楼盖结构高度范围内。
7.2.3钢管分段接头在现场连接时,宜加焊内套圈和必要的焊缝定位件。
7.2.4钢管混凝土柱的直径较小时,钢梁与钢管混凝土柱之间可采用外加强环连接(图7.2.4-1),外加强环应为环绕钢管混凝土柱的封闭的满环(图7.2.4-2)。
外加强环与钢管外壁应采用全熔透焊缝连接,外加强环与钢梁应采用栓焊连接。
外加强环的厚度不宜小于钢梁翼缘的厚度、宽度c不宜小于钢梁翼缘宽度的0.7倍。
外加强环也可按本规范附录C中的方法进行设计。
图7.2.4-1钢梁与钢管混凝土柱采用外加强环连接构造示意图1-外加强环图7.2.4-2外加强环构造示意图7.2.5钢管混凝土柱的直径较大时,钢梁与钢管混凝土柱之间可采用内加强环连接。
内加强环与钢管内壁应采用全熔透坡口焊缝连接。
梁与柱可采用现场直接连接,也可与带有悬臂梁段的柱在现场进行梁的拼接。
悬臂梁段可采用等截面悬臂梁段(图7.2.5-1),也可采用不等截面悬臂梁段(图7.2.5-2、图7.2.5-3),当悬臂梁段的截面高度变化时,其坡度不宜大于1:6。
图7.2.5-1等截面悬臂钢梁与钢管混凝土柱采用内加强环连接构造示意图1-内加强环(a)立面图(b)甲面囲图7.2.6钢梁-钢管混凝土柱穿心式连接图7.2.5-2翼缘加宽的悬臂钢梁与钢管混凝土柱连接构造示意图1-内加强环;2-翼缘加宽图7.2.5-3翼缘加宽、腹板加腋的悬臂钢梁与钢管混凝土柱连接构造示意图1-内加强环;2-翼缘加宽;3-梁腹板加腋7.2.6当钢管柱直径较大且钢梁翼缘较窄的时候可采用钢梁穿过钢管混凝土柱的连接方式,钢管壁与钢梁翼缘应采用全融透剖口焊,钢管壁与钢梁腹板可采用角焊缝(图7.2.6)。
1-钢管混凝土柱;2-钢梁A,7.2.8钢筋混凝土梁与钢管混凝土柱连接时,钢管外剪力传递可采用环形牛腿或承重销;钢筋混凝土无梁楼板或井式密肋楼板与钢管混凝土柱连接时,钢管外剪力传递可采用台锥式环形深牛腿。
钢管混凝土计算的三种理论介绍钢管混凝土构件的基本计算理论框架基本上可分为以下三种:1.,基于试验回归的“统一理论”,该理论最先由哈尔滨工业大学的钟善桐教授提出,它的含义是“钢管混凝土构件的性能,随着物理参数、几何参数、应力状态及截面型式的改变而变化,变化是连续的、相关的和统一的.”该理论将钢和混凝土混合成一种“组合材料”,不再对二者进行区分,从而摒弃了内力分配或叠加的概念.采用该理论的规范有电力行业标准DL/T5085和福建省标准DBJ13-51-2003.2.,折算理论,将混凝土折算成钢,然后按纯钢结构设计.该理论的核心是“在不改变钢管横截面面积的前提下,将填充混凝土作为对钢管壁的屈服强度和弹性模量的提高,以此来换算求的等效钢管的性质,并以等效钢管构件的承载力作为原型钢管混凝土构件的承载力.”典型的规范如AISC360、我国规范CECS159:2004、CECS28:90及欧洲规范.3.,叠加理论:其实质是将钢管的承载力与混凝土的承载力迭加得到钢管混凝土构件的承载力.但该方法认为,如果轴压力小于混凝土的承载力,则全部由混凝土部分承担,否则,剩余部分由钢管承担,这种混凝土优先受力的模式可能并不符合实际.日本的钢管混凝土设计指南基本采用该原理.下面介绍各规范的情况:现有的国内和国际标准:《钢管混凝土结构设计与施工规程》(CECS28:90)、《高层建筑钢-混凝土混合结构设计规程》(CECS28:2008)、福建省《钢管混凝土结构技术规程》(DBJ13-51-2003);美国钢结构学会AISC360-05、澳洲桥梁设计规范AS5100.6-2004、欧洲规范EN1994-1-1:2004、日本新都市房屋技术协会的钢管混凝土设计指南,其中AS5100.6-2004和EN1994-1-1:2004的设计方法和要求是一模一样的.欧洲规范从力学原理出发,由截面反应计算出压-弯曲线四个代表受力状态的承载力,考虑混凝土因钢管约束效应而增加的混凝土受压强度和钢管壁因受双向应力而产生的等效屈服值折减系数,并规定若是长细比超过0.5或偏心率超过10%就不考虑约束效应.受压稳定性承载力可根据规范内公式计算,可是计算系数跟钢材牌号有关,中国大陆的建筑材料并不能完全对应计算公式要求.欧洲规范亦没有提供对于构件受拉时的计算方法.日本的设计指南也是从力学原理出发,不同之处是该指南将混凝土和钢管受力分别考虑,混凝土约束效应值计算方法跟欧洲规范相似,钢管双向应力效应由MISES屈服条件控制,所以其等效单向受拉和受压的屈服值并不相同.轴-弯承载力曲线在有效长细比下并不会改变.CECS28:90规程是以概率理论为基础发展出的计算公式,把钢管等效为混凝土材料,其基本承载力有套箍效应来决定,然后乘上偏心(即压弯)和长细比影响系数决定最终承载力.混凝土约束效应应和钢管双向应力效应没有直接体验在公式上,但经过数学方法可以被分解出来.压-弯承载力曲线呈双折线形,明显是经过工程简化而得出的.CECS28:2008是在CECS28:90公式的基础上对钢管混凝土柱(考虑偏心影响)的轴向受压承载力增加0.9的修正系数,同时限制了管内混凝土在约束效应下的强度增幅,并另外提供了一个钢管混凝土柱受弯承载力的公式.福建省规范把钢管等效为约束混凝土材料,然后按力学原理结合试验数据制定出构件啦、压、拉-弯、压-弯和双向受弯设计公式,并有构件的稳定性计算.混凝土约束效应和钢管双向应力效应可以经过数学方法被分解出来.。
文案大全GB50936-2014钢管混凝土结构技术规范 4.1.8 钢管混凝土柱的钢管在浇筑混凝土前,其轴心应力不宜大于钢管抗压强度设计值的60%,并应满足稳定性要求。
4.1.11 直径大于2m 的圆形钢管混凝土构件及边长大于1.5m 的矩形钢管混凝土构件,应采取有效措施减小钢管内混凝土收缩对构件受力性能的影响。
5.4.1 对轴压构件和偏心率不大于0.3的偏心钢管混凝土实心受压构件,当由永久荷载引起的轴心压力占全部轴心压力的50%及以上时,由于混凝土徐变的影响,钢管混凝土柱的轴心受压稳定承载力设计值 Nu 应乘以折减系数0.9。
7.2.1 等直径钢管对接时宜设置环形隔板和内衬钢管段,内衬钢管段也可兼作为抗剪连接件,并应符合下列规定: 1 上下钢管之间应采用全熔透坡口焊缝,坡口可取35°,直焊缝钢管对接处应错开钢管焊缝; 2 内衬钢管仅作为衬管使用时(图7.2.1a ),衬管管壁厚度宜为4mm ~6mm ,衬管高度宜为50mm ,其外径宜比钢管内径小2mm ; 图7.2.1 等直径钢管对接构造 1-环形隔板;2-内衬钢管3 内衬钢管兼作为抗剪连接件时(图7.2.1b ),衬管管壁厚度不宜小于16mm ,衬管高度宜为100mm ,其外径宜比钢管内径小2mm 。
7.2.2 不同直径钢管对接时,宜采用一段变径钢管连接。
变径钢管的上下两端均宜设置环3.1.4 材应符合下列规定: 强度实测值的比值不应大于 伸长率不应小于 的冲击韧性。
9.4.1 用含氯化物类的外加剂。
形隔板,变径钢管的壁厚不应小于所连接的钢管壁厚,变径段的斜度不宜大于1:6,变径段宜设置在楼盖结构高度范围内。
7.2.3 钢管分段接头在现场连接时,宜加焊内套圈和必要的焊缝定位件。
7.2.4 钢管混凝土柱的直径较小时,钢梁与钢管混凝土柱之间可采用外加强环连接(图7.2.4-1),外加强环应为环绕钢管混凝土柱的封闭的满环(图7.2.4-2)。