钢管柱承载力计算
- 格式:xls
- 大小:18.00 KB
- 文档页数:1
钢管立柱承重计算公式
钢管立柱承重计算公式是用于确定钢管立柱所能承受的最大负荷的公式。
这些承重计算公式通常是建筑和工程设计中必不可少的工具,用于确保结构的稳定性和安全性。
钢管立柱承重计算公式的一般形式为:P = A × σ × F
其中,P代表立柱所能承受的最大负荷;A代表立柱的截面面积;σ代表材料的屈服应力;F为安全系数。
要计算钢管立柱的截面面积A,可以使用以下公式:A = π × (D² - d²) / 4
其中,D代表较大的直径,d代表较小的直径。
材料的屈服应力σ是指材料可以承受的最大应变强度。
常见的钢管立柱材料有Q235、Q345等,其屈服应力可以通过查阅相关资料获取。
安全系数F用于考虑不确定因素和安全性要求,通常取值范围为1.5到2.5之间,具体取值应根据具体情况和设计要求确定。
需注意,以上给出的钢管立柱承重计算公式仅为一般形式,在实际应用中,还需要根据具体的工程要求、材料特性和结构设计等因素进行修正和调整。
在进行任何工程设计和计算时,应始终遵循相关国家和地区的法律法规以及建筑设计规范和标准。
建议在设计过程中寻求专业工程师的咨询和指导,以确保计算结果的准确性和结构的安全性。
钢管柱编号Z-1混凝土强度等级C50钢管钢材牌号Q345钢材强度设计值 f (Mpa )295钢管柱外径(mm )1200钢管壁厚(mm )30N(kN)30000M(kN-m)9000V(kN)2000是否地震组合是γRE 0.75钢管面积 As (mm2)110269.902砼面积 Ac (mm2)1020703.453fc*Ac + f*As (kN)56107.9截面含钢率 αs(%)10.803径厚比 D/t 40.000限值,不大于70.153套箍指标设计值θ 1.37965限值不大于 3套箍指标标准值ξ 1.15035限值不宜小于 0.9短柱承载力 N0(kN )83802.5按行业规程计算Kh10.96Kc 0.8ηs 1.2322ηc-0.137256fsc(Mpa)62.70fscv(Mpa)32.91Asc(mm2)1130973截面抵抗矩 Wsc(mm3)169646003轴心受压承载力 Nu(kN)70915.3γm 1.4γv0.8Mu(kN-m)14892γv * Asc * fscv(kN)29776强度验算26.5312.510.98754<1满足稳定验算L07500λ=4L0/d 25稳定系数 ψ0.995(查表 p85 表7.3.6)αs 0.108Esc 59359.00(查表 p83 表7.3.5-1)Kh21.3310(查表 p84 表7.3.5-2)等效弯矩系数βm 1.0000(钢结构设计规范 p47)欧拉临界力 NE(KN)1411031.5826.5312.450.99652<1满足按上海市《高层建筑钢-混凝土混合结构设计规程》验算圆钢管柱承载力0.2*sqrt(1-(V/γvAscfscv)^2)*fscN/Asc0.2*sqrt(1-(V/γvAscfscv)^2)*fsc*ψ[ N/ψNu + βmM/1.071(1-0.4N/NE)Mu ]^1.4+(V/γv*Asc*fscv)^2( N/Nu + M/(1.07Mu) )^1.4 + ( V / γv * Asc * fscv )^2N/Asc。
柱的承载力计算建筑结构柱截面承载力的计算公式3%>ρmin > ρ =0.6%柱的截面复核计算【解】(1)求稳定系数φ柱的长度为L 。
=1.0H=1.0×6.4m=6.4mL 。
/b=6400/400=16查表φ=0.87一、公式N ≤ 0.9φ (f cA + AS ’f y ′)N —轴向力设计值φ —轴心受压构件稳定系数f c 混凝土轴心抗压强度设计值A 构件截面面积为矩形时A=b ×hAS ’全部纵向钢筋的截面面积当纵向钢筋配筋率大于3%时,式中A 应改用A- AS ’f y ′纵向钢筋的抗压强度设计值二、公式的适用条件【例A 】已知多层现浇钢筋混凝土框架结构,底层中柱按轴心受压构件计算,柱高H=6.4m,柱截面尺寸b ×h=400×400,轴向压力设计N =3000kN ,采用C30级混凝土(f c=14.3N/mm 2),已配箍筋Ф6@300,纵向钢筋8 Ф22( A s ′=3042mm 2,f y ′=300N/mm 2)。
计算该柱是否满足承载力要求。
(2)验算配筋率ρ = A s ′ ×100%b ×h=3041mm 2 ×100%400mm × 400mm=1.9 %3% > ρmin > ρ=0.6%配筋率符合要求(3)、验算轴向力 NuNu=0.9 φ(fcA+AS ’ fy ′)=0.9x0.87(14.3N/mm 2x400mm 2 +3041mm 2x 300N/mm 2)= 2505834.9N=2505.83kNNu=2505.83kN <N=3000kN此中柱承载力不满足要求。
【例B 】已知某多层现浇钢筋混凝土框架结构,首层柱轴向力设计N =2030kN ,截面尺寸b ×h=400mm ×400mm,,采用C20级混凝土(f c=9.6N/mm2),已配箍筋Ф6@300,纵向钢筋8 Ф22( A s ′=2513mm 2,f y ′=300N/mm 2)。
施工临时钢管桩承载力及钢管桩(柱)长度计算本文档主要计算桥梁工程临时钢管立柱(桩)的承载力和入土深度,根据支座反力求出钢管桩受力后计算稳定承载力和局部稳定性,根据相关规范要求、荷载以及地质参数计算钢管柱(桩)抗力并以表格形式计算土深度。
计算思路清晰,表格简便实用。
一、钢管立柱选择钢管柱采用直径609mm、壁厚16mm的轧制无缝钢管,截面特性如下:钢管立柱根据所承受荷载、外露长度、入土深度以及钢材材质等因素计算确定长度。
二、钢管立柱承受荷载根据钢管桩钢横梁上传来荷载得到钢管立柱荷载表:1轴和6轴传来支座反力2轴和5轴传来支座反力3轴和4轴支座反力因前述简化荷载,故每个轴取最大支座反力确定荷载钢管立柱荷载表(KN)三、钢管立柱整体稳定承载计算1、长细比验算钢管考虑到计算长度:钢管钢管立柱最大外露长度为 2.4m,按照二端铰接确定计算长=L=2.4m。
度L回转半径:ix=20.973cm查《钢结构设计规范》,轴心受压构件允许长细比[λ]=150,/ ix=100/20.973=11.45<[150],满足要求。
钢管立柱长细比:λx= L2、稳定承载力计算查《钢结构设计规范》a类截面轴心受压构件稳定系数ψ=0.993稳定承载力N=ψ*f*A=0.993*205*1000*298.074/10000=6067KN钢管立柱最大竖向压力N=3735KN <稳定承载力5873KN ,稳定承载力满足要求。
四、钢管柱局部稳定性验算钢管桩外径与壁厚比Dg/t=60.9/1.6=38.1<允许值100*235/f yg =100*235/205=114.6,局部稳定性满足要求。
五、钢管柱入土深度计算1、钢管桩单桩竖向承载力(1)根据《建筑桩基技术规范》:钢管桩单桩竖向承载力Q uk =Q sk +Q p k=u∑q sik *L i +λp q pk *A p 本工程为开口桩径,且h b /d≥5,因此λp 取0.8(2)单桩竖向承载力特征值R a =Q uk /K ,根据规范安全系数取K 取2,因此Q uk =2R a(3)在轴心竖向力作用下N k ≤R a ,设计时取N k =R a ,因此Q uk =2R a =2N k ,设计时候按照《钢管立柱荷载表》荷载乘以2确定钢管桩单桩竖向承载力,并据此确定入土深度。
钢管柱承载力计算所有1.钢管柱的几何尺寸钢管柱的几何尺寸包括柱的截面形状和尺寸。
常见的钢管柱的截面形状有圆形、矩形、方形等。
柱截面尺寸则包括截面的外径、内径、壁厚等。
对于圆形钢管柱,其面积可以通过以下公式计算:A=π*(D^2-d^2)/4其中,A为柱的截面面积,D为柱的外径,d为柱的内径。
对于矩形和方形钢管柱,其面积可以通过以下公式计算:A=b*h其中,A为柱的截面面积,b为柱的宽度,h为柱的高度。
2.钢管柱的材料特性钢管柱的材料特性包括钢材的屈服强度和抗弯强度等。
钢材的屈服强度为材料开始塑性变形的极限,抗弯强度为材料在弯曲过程中抵抗破坏的能力。
对于一般的钢管柱,其屈服强度可以通过标准表格、手册或相关规范获取。
一般情况下,钢管柱的屈服强度为其抗弯强度的一半。
3.钢管柱的受力方式钢管柱的受力方式可以分为压力和弯曲两种情况。
对于压力情况下的钢管柱,其承载力可以通过欧拉公式计算:P_cr = (π^2 * E * I )/ (K * L^2)其中,P_cr为柱的临界负荷,E为钢材的杨氏模量,I为柱的惯性矩,K为柱的端部固定系数,L为柱的长度。
对于弯曲情况下的钢管柱,其承载力可以通过铃形关系计算:M_cr = (π^2 * E * I )/ (K * L^2)其中,M_cr为柱的临界弯矩,E为钢材的杨氏模量,I为柱的惯性矩,K为柱的端部固定系数,L为柱的长度。
根据具体的工程设计要求,选取适当的钢管柱几何尺寸和材料特性,结合所受力方式,可以计算出钢管柱的承载力。
计算结果应与实际的工程要求和设计规范相比较,并进行合理的取舍。
此外,还应考虑到钢管柱的稳定性、材质的蠕变和疲劳等因素,并进行综合分析和评估。
191附录G RC 梁-圆钢管混凝土柱节点环梁承载力设计方法G.1 节点环梁受拉环筋和箍筋的计算G.1.1 当环梁(图G.1.1)上部环向钢筋的直径相同、水平间距相等时,环梁受拉环筋面积及箍筋单肢面积按下式计算:1 不考虑楼板的有利作用212sin 7sin θλθ≥(G.1.1-1)ksh dp yh r 22202r51.4{sin sin [sin()sin ]}7M A R rf l l αθλθλθαθ≥-+++- (G.1.1-2)2 考虑楼板的有利作用12212sin 7sin βθλβθ≥(G.1.1-3)ksh dp yh r 22202213r51.4{sin sin [sin()sin ]}7M A R rf l l λαθθλθαθβββ≥-+++- (G.1.1-4)在负弯矩作用下,β1取0.5, β2取0.65, β3取0.6;正弯矩作用下取β1=β2=β3=1.0。
3 环梁箍筋单肢面积sv yh sh H v yv 0.7/()A f A f λγα= (G.1.1-5)式中:λ ——剪环比,为环梁箍筋名义拉力与环梁受拉环筋名义拉力的比值, v h /F F λ=,可取0.35~0.7,不考虑楼板的作用时取较高值,考虑楼板的作用时取较低值;F h ——受拉环筋的名义拉力,h yh sh 0.7F f A =; f yh ——环向钢筋抗拉强度设计值; A sh ——环向钢筋的截面面积;F v ——环梁箍筋的名义拉力,v v sv yv H F A f αγ=; f yv ——箍筋抗拉强度设计值;H γ ——箍筋间夹角(弧度),H h /(/2)S r b γ=+;S ——环梁中线处箍筋间距; A sv ——环梁箍筋单肢面积;αv ——闭合箍筋计算系数,按表G.1.1取值; M k ——由实配钢筋计算得出的框架梁梁端截面弯矩; αdp ——修正系数,取αdp =1.3;l r ——环梁受拉环筋合力作用点到受压区合力点的力臂,取l r =min{0.87h r0,h r -50mm};192h r ——环梁截面高度。
用无缝钢管作立柱承载力计算公式
无缝钢管作为立柱的承载力计算通常使用欧拉公式,也称为欧拉稳定性方程。
这个公式是根据材料的弹性模量、截面形状和长度来计算柱子的临界压缩载荷。
欧拉公式为:
Pcr = (π²* E * I) / L²
其中:
Pcr 是柱子的临界压缩载荷(单位为力),
E 是材料的弹性模量(单位为力除以面积),
I 是柱子的截面惯性矩(单位为长度的四次方),
L 是柱子的有效长度(单位为长度)。
请注意,欧拉公式是针对理想化的条件,不考虑其他因素(如不完美的材料、几何缺陷、局部稳定性等),因此在实际工程设计中,可能需要应用更加详细的计算方法和安全系数来考虑这些因素。
此外,具体的计算方法和参数可能会因应用的规范、国家标准和工程需求而有所不同,因此在实际设计中,应遵循适用的规范和标准。
Development and Innovation | 发展与创新 |·253·2020年第6期作者简介:李明磊(1982—),男,高级工程师,研究方向:隧道与地下工程设计。
深埋暗挖地铁车站施工阶段钢管柱承载力计算方法探讨李明磊(中铁第六勘察设计院集团有限公司,天津 300308)摘 要:受到自身施工工法的制约,洞桩法在顶部扣拱完成后,钢管柱开始受力,其计算长度按柱顶至柱底来算,长细比较大,对承载力折减效果明显,且暗挖覆土荷载较大,因此该阶段钢管柱承载力一般不满足要求,但是该参数可满足使用阶段的承载力要求。
对此,文章提出采用在钢管柱外填筑同标号混凝土的措施,利用复式钢管柱的模型来提高钢管柱在施工阶段承载力,并就相关计算方法进行探讨。
关键词:钢管混凝土柱;承载力;复式钢管柱;计算方法中图分类号:TU398+.9文献标志码:A 文章编号:2096-2789(2020)06-0253-02 1 研究背景随着经济的发展,全国越来越多的城市开始修建地铁。
在城市繁忙地带修建地铁车站时,往往占用道路,影响交通。
当地铁车站设在主干道上,而交通不能中断,且需要确保一定交通流量时,为了尽可能减少对地面交通以及周边环境的影响,可采用暗挖洞桩法进行施工。
洞桩法就是将传统的盖挖法和暗挖法进行结合,即在地面上不具备施作基坑围护结构条件时,在地下施工导洞内施作边桩、中桩、中柱、顶梁、顶拱结构,形成桩、梁、拱及中柱支撑框架体系,承受施工过程的外部荷载,然后在顶拱保护下,逐层向下开挖土体,施作中楼板、底板及侧墙结构。
随着现在地铁埋深逐渐加大,层数逐渐增多,钢管柱越来越长,其施工阶段的承载力,按现有的计算公式很难满足承载力要求,文章在洞桩法施工阶段不加大钢管柱尺寸的情况下,就如何提高钢管柱承载力及如何更合理地计算其承载力进行探讨。
2 传统钢管柱承载力计算方法文章以北京某地铁车站为例,来探讨承载力计算方法。
2.1 工程概况车站为暗挖洞桩法施工三层车站,结构型式为双柱三跨拱顶直墙结构,车站拱顶覆土8.2m ,底板埋深32.7m ,钢管混凝土柱采用直径0.8m ,壁厚16mm ,钢材为Q235B ,柱内填充C50微膨胀混凝土,钢管柱长21.5m ,各层长度分别为5.2m 、6.7m 、9.6m ,钢管柱沿车站纵向间距7m 。
钢管抗压承载力计算一、钢管抗压承载力计算的重要性嘿,宝子们!今天咱们来唠唠钢管抗压承载力计算这事儿。
这可老重要啦,就像盖房子打地基一样重要呢。
不管是在建筑工程里,还是一些机械装置当中,钢管的抗压承载力要是算不好,那可就麻烦大了去了。
比如说建个大桥,如果钢管抗压承载力没算对,那桥可能就会塌掉,这可不是闹着玩的呀。
二、影响钢管抗压承载力的因素1. 钢管的材质不同材质的钢管,抗压能力那可差老多了。
像那种高强度合金钢做的钢管,抗压能力就很强,就像大力水手吃了菠菜一样。
而普通的碳素钢管,抗压能力相对就弱一些。
这就好比一个是肌肉猛男,一个是瘦弱的小书生,差别很明显的啦。
2. 钢管的尺寸钢管的直径和壁厚对抗压承载力影响也超级大。
直径小、壁厚厚的钢管,抗压能力肯定比直径大、壁薄薄的钢管要强得多。
这就像小而厚实的柱子肯定比大而薄的柱子更能承受压力一样的道理。
3. 钢管的长度长的钢管和短的钢管抗压能力也不一样哦。
一般来说,长钢管更容易弯曲变形,抗压能力就相对弱一些。
这就好比一根长长的面条,很容易就弯了,而短短的面条就比较硬挺。
三、钢管抗压承载力的计算方法1. 理论公式计算有一些专门的公式可以用来计算钢管的抗压承载力。
比如说根据材料力学的原理,有公式可以考虑钢管的弹性模量、截面惯性矩等因素来计算。
不过这些公式可有点复杂,就像解奥数题一样,需要我们认真仔细地去推导和计算。
2. 实验测定法除了理论计算,还可以通过做实验来测定钢管的抗压承载力。
把钢管放在专门的压力试验机上,逐渐增加压力,直到钢管变形或者破坏,这样就能得到钢管实际的抗压承载力了。
但是这种方法比较费时间和成本,而且每次实验的钢管样本也有一定的局限性。
四、实际应用中的考虑1. 安全系数在实际工程中,我们不能就按照理论计算或者实验得到的数值来使用钢管,还得考虑安全系数。
安全系数就像是给钢管抗压承载力加了一道保险。
比如说安全系数是 1.5,那就意味着我们实际能承受的压力要比计算出来的抗压承载力除以 1.5才行,这样才能保证安全。
钢管柱承载力计算
1.欧拉稳定性理论:欧拉稳定性理论是计算钢管柱承载力的最基本理论之一、按照该理论,当钢管柱发生屈曲时,其承载力可以通过以下公式进行计算:
Pcr=π²EI/(KL)²
其中,Pcr为临界轴向力(屈曲载荷),E为钢管柱的弹性模量,I 为钢管柱的截面转动惯量,K为属性系数,L为钢管柱的有效长度。
需要注意的是,K值与钢管柱的端部支承情况有关。
2.直接弯矩法:直接弯矩法是一种简化的计算方法,适用于一些特定情况下的钢管柱承载力计算。
在该方法中,承载力可以通过以下公式进行计算:
Pcr=Mc/(KL/4)
其中,Mc为钢管柱的弯矩能力,K为属性系数,L为钢管柱的有效长度。
3.荷载-弯矩法:荷载-弯矩法是一种常见的用于钢管柱承载力计算的方法之一、该方法先通过受力分析确定钢管柱所承受的荷载和弯矩,然后根据钢管材料的弯矩-应力关系曲线计算出钢管柱的应力分布,最后通过计算钢管柱截面处的最大应力来确定其承载力。