改性聚酰胺的合成及其性能研究
- 格式:pdf
- 大小:146.32 KB
- 文档页数:3
聚酰胺水解改性法的基本原理聚酰胺水解改性法是通过使聚酰胺分子链发生水解反应,并在反应过程中引入新的官能团或改变酰胺官能团的性质,从而实现对聚酰胺性能进行改善和调整的一种方法。
聚酰胺水解改性方法可以分为酸性水解、碱性水解和酶水解三种不同的方式。
酸性水解是在酸性条件下进行的聚酰胺水解反应。
酸性环境可以切断聚酰胺链中的酰胺键,使其分解成酸或酸酐以及相应的胺。
水解过程中产生的酸酐或酸可以进一步与胺反应,形成新的酰胺键或酰亚胺键,实现对聚酰胺骨架的改变。
此外,酸性环境还可以引入新的官能团,如羧酸基、醇基等,使聚酰胺具有更多的官能性质。
碱性水解是在碱性条件下进行的聚酰胺水解反应。
碱性环境可以使聚酰胺链中的酰胺键断裂,生成相应的酸盐和胺盐。
这种水解反应通常更为迅速和彻底,但容易引起聚酰胺分子的断裂和降解。
碱性水解方法通常适用于在聚酰胺中引入羧酸基、亚胺基或胺基等官能团。
酶水解是利用特定酶进行的聚酰胺水解反应。
酶的存在可以在温和的条件下实现聚酰胺的水解,且水解产物通常具有更高的纯度和选择性。
酶催化的水解反应可以选择性地切断聚酰胺链中的某些键,并引入特定的官能团。
聚酰胺水解改性法的基本原理是通过切断聚酰胺链中的酰胺键,引入新的官能团或改变原有酰胺官能团的性质,从而改善聚酰胺的性能。
改性后的聚酰胺具有更多的功能性官能团、更好的溶解性、更高的热稳定性和抗氧化性能等,适用于更多的领域和应用。
聚酰胺水解改性方法的过程涉及多种条件和参数的控制,如反应温度、反应时间、溶剂选择、酸碱催化剂的种类和浓度等。
这些条件和参数的选择直接影响到聚酰胺水解改性的效果和产物的质量。
因此,在实际应用中,需要根据具体的需求和目标,灵活控制条件和参数,以获得理想的改性效果。
总而言之,聚酰胺水解改性法是通过切断聚酰胺链中的酰胺键,并引入新的官能团或改变原有官能团的性质,实现对聚酰胺性能进行改善和调整的一种方法。
这种方法具有简单、灵活、高选择性的特点,适用于多种聚酰胺材料的改性和功能化。
尼龙—66改性研究作者:董美丽来源:《商情》2016年第26期【摘要】聚酰胺(Polyamide缩写为PA,俗称尼龙具有高强度、耐磨、自润滑等优良特性,是产量最大的工程塑料。
但聚酰胺工程塑料的耐热性和耐酸性较差,在干态和低温下抗冲击强度低,吸水率大,影响制品尺寸稳定性和电性能,因此,对聚酰胺改性的研究受到人们的广泛关注。
目前,对聚酰胺改性主要有接枝共聚、共混、填充和增强等方法,使其向多功能方向发展。
尼龙66的改性通常分为化学改性和物理改性。
【关键词】尼龙66 物理改性化学改性前言:尼龙(Nylon)又称聚酰胺,英文名称Polyamide(简称PA),是分子主链上含有重复酰胺基团)NHCO)的热塑性树脂总称,其包括脂肪族PA、脂肪-芳香族PA和芳香族PA。
其中,脂肪族PA品种多,产量大,应用广泛,其命名由合成单体具体的碳原子数而定。
尼龙纤维主要是由己内酰胺(CPL)开环聚合制得的尼龙6和尼龙66盐缩聚合而成的尼龙66生产的,在我国又称为锦纶。
尼龙树脂中亦以尼龙6和尼龙66为主,此外还有尼龙1010、尼龙9、尼龙11、尼龙12、尼龙610等。
以CPL和尼龙66盐为原料生产的尼龙树脂在全部尼龙树脂中所占比例约为85%。
尼龙66的改性包括物理改性和化学改性两个方面。
1化学改性1.1共聚合改性通过选择合适的单体,采用与普通尼龙66基本相同的聚合方法,以达到改善普通尼龙66某些特性如透明性、柔软性、结晶性、溶解性等为目的的改性方法。
1.1.1尼龙66与己内酰胺共缩聚。
聚合过程中加入一定量的己内酰胺进行共聚,使其相对分子质量及其分子量分布更加趋于合理,破坏了尼龙66分子链排列的规整性,适当降低其结晶度,增加了端胺基含量,从而降低了尼龙66的熔点,改善了流动性和染色,提高了产品的韧性、可纺性。
1.1.2尼龙66与二聚酸共缩聚。
在尼龙66聚合过程中添加具有C36长的主链和2个大的烷基支链的二聚酸进行共缩聚,可降低其密度、熔点、吸水率,显著提高柔性和缺口冲击强度。
聚酰胺酸的合成研究1 聚酰胺酸──在日常生活中的广泛应用聚酰胺酸是一类多羟醛类高分子化合物,通常可简单称为高分子酸。
酰胺类物质不仅有增塑剂的功能,而且还可以经过改性,用于制备光氧耐磨和耐腐蚀、良好的可降解性、低生物毒性等特殊属性的高性能复合材料,因此它在化学、服装、食品、生物技术等多个领域产生了广泛应用,这些应用对提高生产、提高生活质量都有着重要意义。
2 聚酰胺酸的合成聚酰胺酸是由多羟醛和某些醇或醛组成,经过改变其不同的方法,可制备多种多样的聚酰胺酸,不仅特性多样,而且它们的制备工艺也广泛应用于工业中。
最常用的合成工艺包括单醇/醛缩合法、多羟基还原法、聚合物取代炉法等。
其中单醇/醛缩合法是聚酰胺酸合成得最多的一种方式,它是以一种活化官能团(如烷基胺或其他)封装一种醇或醛,再将其加入另一种醇或醛并发育出聚酰胺酸的基础上进行反应的合成方法。
3 聚酰胺酸的改性聚酰胺酸的改性也是它的核心应用之一,可以将高分子基体的性能进一步提升。
目前主要有功能化改性和交联改性两种。
其中功能化改性可以使聚酰胺酸的基体呈现出更好的氧化耐久性、耐热性、耐抗性以及抗加B及降解性,例如,可以经由加入硅或磷改性,让聚酰胺酸具备良好的抗蚀性能和可降解性。
聚酰胺酸的交联改性,则可以进一步提高材料的高温热稳定性和绝缘性。
通过这种改性,可以让聚酰胺酸材料具备钢骨级的强度,以及良好的加工性能。
4总结聚酰胺酸无疑是一种重要的现代工业材料,通过其多样性、良好的热稳定性以及可降解性等特点,可以大大改善在日常生活中的应用;而其合成与改性工艺也已经发展成熟,可以在工业上广泛使用以满足各行各业的要求。
聚酰胺的改性方法
实际应用的聚酰胺热熔胶大多采用共聚聚酰胺树脂以满足不同使用要求。
通过共聚,分子链规整性被打乱,氢链遭到破坏,使之结晶性下降,从而降低熔点,采用不同的物质的量比,可制得高(180〜190℃)、中(140〜150℃)、低(105〜110℃)环球软化点的聚酰胺热熔胶。
对聚酰胺热熔胶的改性,主要是添加一些特殊单体,聚合时,在聚酰胺分子链上接上一些链段或基团,对聚酰胺分子进性改性;当然,也可以聚酰胺为主体,加入一些特殊成分,以满足使用要求。
以下是一些聚酰胺改性的例子。
①改善热氧化性。
为改善二聚酸型聚酰胺的热氧化性除加抗氧剂外,还可以将二聚酸氢化处理,大大提高了这种聚酰胺的抗氧化性能,但成本较高。
②提高聚酰胺的耐热性聚酰胺热熔胶是热熔胶中耐热牲最好的品种之一,若向胶黏剂中加人1%的1-苯基-3-吡唑烷酮或1-(4-苯氧基)-3-吡唑烷酮,可大幅度提髙其耐热性能,在如260℃空气中保持6h不变色。
若引入硅氧烷分子链也可提高聚酰胺的耐热性。
③调节聚酰胺的熔点调节内酰胺、脂肪族二羧酸的比例和选择不同碳原子数的共聚单体,可以使聚合物的分子具有一定的无规程度,控制其结晶程度,并赋予非晶态的特性,使聚酰胺具有较宽的熔点范围。
PVB改性聚氨酯材料及其性能的研究肖勇;邓新华;孙元;韩宇洋;岳海生【摘要】采用聚乙烯醇缩丁醛(PVB)与封端后的聚氨酯(PU)预聚体进行扩链反应制备新型PU膜,通过傅里叶变换红外光谱仪、热重分析仪、动态热力学分析仪以及电子拉力试验机等对所得的膜进行了表征.结果表明,新型PU膜的热稳定性提高、抗变形能力提高、膜中游离甲苯二异氰酸酯(TDI)含量减少、毒性较小;新型PU膜与聚酰胺纤维进行复合时的剥离强度提高,最高可以达到58.58 N/2.5 cm.【期刊名称】《中国塑料》【年(卷),期】2013(027)009【总页数】5页(P32-36)【关键词】聚氨酯;聚乙烯醇缩丁醛;热稳定性;抗变形能力【作者】肖勇;邓新华;孙元;韩宇洋;岳海生【作者单位】天津工业大学材料科学与工程学院,天津300387;天津工业大学材料科学与工程学院,天津300387;天津工业大学材料科学与工程学院,天津300387;天津工业大学材料科学与工程学院,天津300387;天津工业大学材料科学与工程学院,天津300387【正文语种】中文【中图分类】TQ323.80 前言PU是分子链中含有氨酯键(—NH—COO—)的一类聚合物的统称[1]。
由于其具有良好的耐磨性、耐腐蚀性及高弹性等优点[2],在金属防腐、汽车涂装、地板漆、织物涂层等方面得到了广泛的应用。
然而PU在热稳定性、抗形变能力以及环保等方面的性能还不够理想,限制了其在很多领域的进一步应用,本项目组曾采用端胺基非异氰酸酯基PU预聚体与聚醚型聚氨酯预聚体制备了嵌段共聚改性聚醚型PU膜,使PU的热稳定性、抗形变能力有所提高,并减少了残留异氰酸酯基的含量。
在PVB改性PU方面已有一些人进行了尝试,谭正德等[3]以聚酯二元醇、TDI和三羟甲基丙烷为原料,对PVB进行改性,合成出了单组分的三元接枝共聚水性PVB改性PU胶黏剂,赵梓年等[4]利用浸没沉淀相转化法制备了PU/PVB/SiO2共混杂化膜,然而对于PVB用于PU涂层的改性却鲜有人进行研究,本实验室在PU涂层应用的过程中发现PU涂层与基布的结合牢度是限制PU涂层应用的一个重要因素。
KH560改性双组分室温固化环氧结构胶的制备与性能将γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)与环氧树脂(EP)预反应,采用黏度计、万能电子材料试验机、红外光谱、差示扫描量热仪,考查了KH560含量对EP/改性聚酰胺室温固化环氧结构胶性能的影响。
结果表明,KH560含量从0增加至9质量份(每100份EP中加入量)时,胶体拉伸强度从51 MPa降低至36.5 MPa;压缩强度从79.7 MPa降低至53 MPa;粘接强度从8.7 MPa增至11.7 MPa。
同时,固化物的热稳定性也有一定程度提高,未改性及9份KH560改性的EP固化物50%热失重的温度分别为382.1 ℃与403.6 ℃。
标签:KH560;环氧结构胶;室温固化;热稳定性环氧树脂(EP)与固化剂反应形成三维空间网络结构,交联密度较高,被大量应用于土木工程领域构件的加固、锚固及粘接[1~4]。
然而,高交联密度导致固化物具有脆性大、耐热性不佳的缺陷。
有机硅树脂具有优异的热稳定性、耐候性、低表面能、低温柔顺性[5,6],采用有机硅改性EP能够降低树脂内应力,改善韧性,同时对材料的热稳定性与耐候性有利。
有机硅改性EP存在的最大问题在于2者相容性较差,化学接枝是解决相容性问题的主要方法[7~10]。
KH560是常用的硅烷偶联剂,能够改善树脂与无机物的粘接性。
采用KH560改性EP在有机涂层中的应用已有报道[11],但在建筑结构胶中的研究较少。
本文采用KH560改性EP,加入固化剂改性聚酰胺进行室温固化反应,考查了KH560含量对环氧结构胶力学性能、粘接强度及热稳定性的影响,期望为开发具有优异热稳定性的环氧建筑结构胶提供借鉴。
1 实验部分1.1 主要原料双酚A环氧树脂,环氧值0.51,无锡南亚环氧树脂厂;KH560、二月桂酸二丁基锡、碳酸丙烯酯,阿拉丁试剂(上海)有限公司;改性聚酰胺,自制,为二聚酸与二乙烯三胺的缩合物,胺值为(380±20)mgKOH/g,黏度300~800 mP·s/25 ℃。
新型聚酰胺树脂的合成及其性能研究近年来,随着科技的不断发展,新型材料的诞生也成为了科技界的热门话题。
在这些新材料中,聚酰胺树脂无疑是备受关注的一种,它拥有广阔的应用前景,被广泛地应用于军事、航空、电子和汽车等领域。
因此,如何合成一种性能更为优异的聚酰胺树脂就成为了材料界研究的重点之一。
一、聚酰胺树脂的基本性质及应用聚酰胺树脂是一种大分子化合物。
它具有高强度、高韧性、高温耐性、耐化学腐蚀等诸多优异性能。
这些性能使得它被广泛地运用在航空、航天、国防、电子、汽车等诸多领域。
而聚酰胺树脂的基本单元包括亚酰胺和芳酰胺,并通过亚酰胺和芳酰胺交替排列,在高温下加热后进行缩合反应形成聚酰胺树脂。
同时,聚酰胺树脂也是一种热稳定性芳香族高分子,因此,它具有很好的机械强度、绝缘性能、耐热性能和化学稳定性能。
二、新型聚酰胺树脂的合成方法过去,聚酰胺树脂的制备主要依赖于常规的Amoco方法,即以四氯化碳、苯胺、二甲基甲酰胺及卤代芳烃为原料,利用加热反应将聚酰胺树脂合成。
这种方法虽然成本较低,但是需要热量较高,且产生的有害气体排放比较多,因此环保成了制约这种方法的因素。
追求高性能、低成本、环保的合成方法势在必行。
在最近的研究中,一项新的合成方法逐渐被关注起来:金属配合物催化合成法。
这种方法是在金属离子的催化下,通过重氮化合物与芳香胺或芳香酸的缩合反应得到的聚合物。
这种催化合成方法采用了金属配合物催化剂,除了增加聚酰胺树脂的重复单元,同时也能够降低反应的温度和时间,减少了有害气体的产生,因此环保体现也比较强。
其实,金属配合物催化剂也可以作为一种潜在的绿色催化剂的代表,为环保材料的制备提供技术支持。
三、新型聚酰胺树脂的性能研究研究表明,新型聚酰胺树脂与传统聚酰胺树脂相比,具有更高的热塑性和热稳定性。
这主要来自于其与传统材料相比更高的重复单元密度。
同时,新型聚酰胺树脂也具有更强的机械性能,如抗拉强度、弹性模量、断裂伸长率等指标要更高。