当前位置:文档之家› 现代电机技术及其应用

现代电机技术及其应用

现代电机技术及其应用
现代电机技术及其应用

现代电机技术及其应用

黄苏融

(上海大学自动化系200072, email: srhuang@https://www.doczj.com/doc/9d325997.html,)

摘要:传统的交流电机设计思想是约束在正弦波电压源供电与径向磁场结构基础上。然而,电力电子逆变器与电机的结合,以及开关磁阻电机、无刷直流电机、轴向磁场电机和横向磁场电机的出现则打破了这一传统理念,促使电机设计技术新的变革和创新,导致了逆变器供电电机。逆变器供电电机的设计则建立在电机本体和逆变器的最佳融合以及与电子驱动负载转矩特性的配合上。本文论述了现代电机技术的主要发展过程、现状与近期的研究热点。关键词: 逆变器供电电机汽车线控电子化现代电机设计

1 引言

电机设计是传统电气工程的一个重要分支,早在二十世纪二十年代至二十世纪三十年代初期,异步电机、同步电机等传统电机设计技术的研究已达到顶峰。在被称之为电机设计技术研究的第一个黄金年代的这一时期[1],几乎所有的交流电机设计被约束在正弦波电压源供电基础上,这就不可避免地导致传统的异步电机和同步电机必须采用正弦分布的定子绕组以最佳匹配正弦波电压源供电。电力电子变换器的发展,给电机设计研究者提供了打破正弦波电压源供电约束的可能性;然而,在相当长的一段时期内,交流电机设计仍然被束缚在正弦波逆变器电压源供电基础上。二十世纪七十年代,随着电力电子技术的发展,电流控制型逆变器首先在异步电机驱动系统中成功应用。开关磁阻电机研究热的兴起和无刷直流方波电机理论的不断完善,促使电机设计理念产生新的变革和创新。于是,电机研究者开始探索思考: 难道三相仍是交流电机的最佳相数吗?正弦波电压源仍是电机的最好波形吗?甚至径向气隙磁场结构是电机的唯一结构吗?

电力电子逆变器与电机的结合,永磁材料的广泛应用和新型软磁铁芯的不断出现,导致了电机结构、设计、性能和制造技术方面的革命,促使逆变器供电电机家族(Converter Fed Machines)迅速壮大。主要有开关磁阻电机、双凸极永磁电机、无刷直流永磁电机、无刷永磁同步电机、轴向磁场电机、横向磁场电机和具有磁场控制能力的永磁电机等。八十年代初期发展至今的逆变器供电电机技术被称之为电机设计的第二个黄金年代[1]。

现代电机设计是建立在逆变器供电电机基础上,典型的逆变器供电电机驱动系统如图1所示。当今,电流控制型电压源PWM逆变器(CRPWM)已成为高性能电机控制器的基本部分;逆变器供电电机的设计和系统性能仿真被建立在电机本体和逆变器的最佳融合以及与电本研究项目与美国威斯康星大学T.A.Lipo教授合作并得到中国国家自然科学基金资助(59877014)。

子驱动负载转矩特性的配合上。现代电机设计技术的发展,不仅促进了电机学科不断向前发展,而且带动了商用设计软件的开发,目前国际电工界公认的设计软件有Ansoft, Magsoft 和Speed等。Ansoft软件已提供了从电机概念设计、自动产生有限元分析和系统仿真模型到深入分析直至含控制电路、控制算法在内的电子驱动系统仿真。

图1典型的逆变器供电电机驱动系统

2 现代电机的几个研究热点与发展趋势

电机与电力驱动系统是传统的老学科。近年来,随着世界军事技术革命和工业电气自动化的需求以及世界经济一体化发展的趋势,推动了新型逆变器供电电机的研究和发展。

当前,高密度、高效率、轻量化的电子驱动系统的研发已成为军事装备的一个技术制高点。在某些军事领域,如舰艇、坦克等的内燃机动力系统将逐步被小型紧凑的高密度电力驱动系统所取代。具有快速响应能力的高密度电力驱动系统大大提高了坦克等军用车载的快速应战能力。在舰艇推进动力系统中,高密度低噪声的电力驱动系统取代体积庞大的内燃机动力系统后,不仅提高舰艇的快速应战能力和隐蔽性,而且小型紧凑的高密度电力驱动系统便于安置在舰艇的适当位置而不易被对方火力所击中,使得舰艇推进系统更具有安全性、可靠性[2-3]。高密度、高效率、轻量化也是各种车辆驱动系统和航空发动机一高密度发电机组的关键性能指标。近年来,运用航空发动机一高密度发电机组技术开发的高密度、高效率、轻量化的备用电源和移动电源在国际市场上供不应求。

高密度、低成本、具有宽广的恒功率调速范围的车辆牵引电机的研发是一个颇有挑战性和竞争性的课题。高性能、低成本的电子驱动和电子伺服系统的研发是国际电工界的一个新的热点。为此,促进了内置式永磁同步电机驱动系统,具有弱磁结构的永磁电机驱动系统、同步磁阻电机驱动系统、双凸极永磁电机驱动系统和开关磁阻电机驱动系统的深入研究[4]。

汽车线控电子化(X-by-wire)技术的发展,给电子驱动系统和电子伺服系统的发展带来了极大的机遇和挑战,图2是下一代线控电子化概念汽车模型。线控电子化技术将汽车各种电

子转向、牵引、制动、悬挂等各种独立的控制系统进行线控电子化连接,实行一体化底盘控制系统。线控电子汽车四轮转向和电子牵引系统采用四个车轮电机及其伺服技术,可以不需要机械联接,每个轮子上都会有一个DSP信号处理器,通过装在每个轮子上的电机来控制转向和牵引,使汽车四轮转向变得非常容易,灵活性和安全性大大提高。线控制动系统(Elec. Brake-by-wire)直接对车轮进行制动控制与牵引控制,使汽车迅速刹车或减速,防止事故发生。图3是线控电子动力转向系统(Elec. Power Steering),在这个系统中不仅削减了相当多的机械部件,如液压泵等;而且节能10%左右。

图2下一代线控电子化概念汽车模型

图3线控电子动力转向系统

随着汽车线控电子化技术的应用,安全集成系统、自动巡航系统等军事高新技术将逐步运用到汽车上;遇有紧急事故,安全集成系统自动运用防抱死制动装置和牵引力控制装置,汽车便自动刹车或转向,防止事故发生,使汽车的安全性、舒适性、智能性提升到最大限度。汽车电子化技术的发展,使得汽车用电机及其驱动装备快速增长,汽车工业将由传统汽车向电子化汽车过渡,机械驱动向电子驱动发展。许多传统的汽车机械部件将逐步减少,汽车的

操纵性以及汽车的总体结构大大改善,汽车设计的灵活度也大大增加,汽车的零部件将进行脱胎换骨的更新与产业结构调整。

为提高车辆电力驱动系统零部件在全球的竞争力,产品的高可靠性和低成本至关重要。由此,采用铁氧体磁钢聚磁结构的永磁电机、车轮电机、汽车动力传动与电机一体化部件的研发成为一个新的热点,车辆电力电子专用集成模块IPEC的研发是一个新的技术制高点。

图4牵引电机与减速齿轮一体化部件

图5牵引电机、逆变器与水冷结构一体化部件

3. 开关磁阻电机与双凸极永磁电机的发展

电流控制型电源和变磁阻概念电机的结合导致了开关磁阻电机驱动系统,也称为双凸极电机驱动系统。1980年,英国学者https://www.doczj.com/doc/9d325997.html,wrenson及其同事们在IEE会议上系统地介绍了他们的工作成果,在国际上奠定了现代开关磁阻电机驱动系统的地位[7]。20年来,双凸极电机驱动系统作为一种新型调速系统已成功地用于车辆牵引、风机、泵及卷扬机等工业应用领域。1994年至1998年期间,美国学者T.A.Lipo教授及其助手们提出了多种双凸极永磁电机和具有磁场控制能力的双凸极永磁电机,引起了汽车工业界和美国空军的兴趣[8-12],双凸极永磁发电机已应用于美国空军的战斗机发动机的起动发电装置[13]。图6是几种典型的双凸极电机结构。

4. 横向磁场电机的发展

二十世纪八十年代德国学者Weh教授及其助手们提出了一种新型高密度电机一横向磁场电机[14],横向气隙磁场电机被建议用作牵引电机和推进电机[14-17]。图7是几种典型的

横向磁场环形绕组电机结构,图8是用于美国海军舰艇推进系统的20 MW横向磁场电机[15]。

常规结构的三相6/4极双凸极电机[7]双凸极永磁电机[8-9]

带有磁场绕组的双凸极永磁电机[10-11] 带有机械弱磁调节的双凸极永磁电机[12]

图6典型的双凸极电机结构

U型定子铁芯两相环形绕组结构E型定子铁芯两相环形绕组结构C型定子铁芯单相环形绕组结构

图7典型的横向磁场环形绕组电机结构

图8美国海军舰艇推进系统的20 MW横向磁场电机结构

5. 轴向磁场盘式电机的发展

进入二十世纪九十年代后,轴向磁场盘式电机的发展引起了人们的兴趣,并成功应用于汽车发电机和电动车辆的车轮电机[18-20],图9是几种典型的轴向气隙磁场辐射式盘形绕组电机结构,图10是几种典型的车轮电机传动系统。

高密度高效率低噪声的舰艇电力推进系统的研发推动了轴向磁场盘式电机的深入研究。1998年至2001年期间,上海大学与美国威斯康星大学T.A.Lipo教授合作提出了多种新型高密度轴向磁场盘式电机结构,并对轴向磁场电机的设计技术和性能分析评估方法展开了深入的研究,同时还探索了具有磁场控制能力的轴向磁场永磁电机模型[1-2, 21-27]。

图11是具有磁场控制能力的TORUS NS型盘式永磁电机结构,该电机被建议应用于混合型电动汽车的电力驱动装置中。

单定子、单转子轴向磁场电机双定子、单转子轴向磁场电机单定子、双转子轴向磁场电机图9典型的轴向磁场辐射式盘形绕组电机结构

图10典型的车轮电机传动系统

field

core

rotor

core

iron

图11具有磁场控制能力的TORUS NS型盘式永磁电机结构

6. 轴向磁通环形绕组永磁电机的发展

随着汽车电气自动化技术的发展,低成本、高密度车用电机开发是车辆电气自动化产业面临的的一个难题。1998年至1999年期间,上海大学和美国威斯康星大学合作开发了单相轴向磁通环形绕组永磁电机,如图12所示。该电机的特点是,采用铁氧体磁钢的聚磁结构既能满足低成本要求又可改变定子磁极的轴向长度来达到高气隙磁通密度数值;环形定子绕组的最大优点是,该绕组匝链所有磁极的磁通并且无绕组端部,有利于提高电机密度。该电机存在的问题是,电机的转矩脉动大、起动性能差。

2000年至2001年期间,上海大学和美国威斯康星大学采用软磁粉末铁芯开发了两相轴向磁通环形绕组永磁电机,如图11所示。软磁粉末铁芯的应用既解决了三维磁路结构电机的迭片困难又降低了定子铁芯加工费用,两相轴向磁通环形绕组永磁电机结构有效地降低了电机的转矩脉动和提高起动性能,被建议用作汽车起动电机/发电机装置和风机调速系统。

轴向气隙环形绕组永磁电机模型轴向气隙环形绕组永磁电机样机

图12单相轴向磁通环形绕组永磁电机

图13两相轴向磁通环形绕组永磁电机

7. 结束语

本文论述了现代电机技术及其应用的发展。新一代逆变器供电电机是建立在电机本体和逆变器的最佳融合以及与电力驱动负载转矩特性的配合上。

参考文献

1.T.A. Lipo and Y. Li, “CFMs-A New Family of Electrical Machines”, Conf. Rec. IPEC(Japan), April 3-7, 1995,

pp.1-8.

2.T. A. Lipo, S. Huang and M. Aydin, “Performance Assessment of Axial Flux Permanent Magnet Motors for

Low Noise Applications”, F inal Report to ONR, Oct 2000.

3.S Huang, M. Aydin and T. A. Lipo, “Comparison of (Non-slotted and Slotted) Surface Mounted PM Motors

and Axial Flux Motors for Submarine Ship Drives”, Third Naval Symposium on Electrical Machines, Philadelphia, Dec. 2000.

4.T. A. Lipo, F. Leonardi, J. Luo and S. Huang, “Selection of 50Kw Electrical Motor for Vehicle Driving”, Final

Report to ANSALDO INC, August 10, 1996.

5.S. Chen, C. Namuduri and S. Mir, “Controller In duced Parasitic Torque Ripples in a PM Synchronous Motor”,

2000 IEEE-IAS 35th Annual Meeting.

6.S. Huang,M. Aydin and T. A. Lipo, “A Direct to Electrical Machine Performance Evaluation: Torque Quality

Assessment”, 2001 IEEE-IAS 36th Annual Meeting.

7.P.J. Lawrenson, J.M. Stephenson, P.T. Blenkinsop, J. Corda and N.N. Fulton, “Variable Speed Switched

Reluctance Motors”, Proc. IEE, Pt. B. vol. 127, July 1980, pp.253-265.

8.T.A. Lipo, Y. Liao and F. Liang, U.S. Patent 5,304,882 “A New Class of Variable Reluctance Motors with

Permanent Magnet Excitation”, April 19, 1994.

9.Y. Liao, F. Liang and T.A. Lipo, “A Novel Permanent Magnet Motor with Doubly Salient Structure”, IEEE

Trans. On IAS vol. 31 no.5. Sept./Oct. 1995, pp.1069-1078.

10.Y. Li and T.A. Lipo, “A Three Phase Doubly Salient Permanent Magnet Motor Capable of Field Weakening”,

IEEE Power Electronics Specialist?s Conf., June 1995.

11.S. Huang, J. Luo, F. Leonardi and T. A. Lipo, …A general approach to sizing and power density equations for

comparison of electrical machines?, IEEE Trans. IA-34, No.1, pp.92-97, 1998.

12. A. Shakal, Y Liao and T.A. Lipo, “A New Permanent Magnet Motor Structure with True Field Weakening”,

Electric Machines and Power Systems, vol.24, No.5, July/August 1996, pp.259-270.

13.T. Matsuo, J. Luo, E. P. Hoffman and T. A. Lipo, "Self Excited Variable Reluctance Generator", IEEE IAS

Annual Meeting, Oct. 1997, pp. 653-660.

14.H. Weh, "Ten Years of Research In the Field of High Force Density-Transverse Flux Machines", Conf. Rec. of

SPEEDAM, Capri Italy, 5-7 June 1996, pp.A3-1 to A3-8.

15. A. Mitcham and M. Bolton, “The Transverse Flux Motor: A New Approach to Naval Propulsion”, Naval

Symposium on Electrical Machines, Newport, July 28-31, 1997, pp.1-8.

16.S. Huang, J. Luo and T. A. Lipo, “Analysis and evaluation of the transverse flux circumferential current

machine”, Conferen ce Record of the 1997 IEEE Industry Applications Society, 32nd IAS Annual Meeting, 1997, pp. 378—384.

17. A. Masmoudi and A. Elantably, “TFPM Concept Based Hybrid Bus Electric Propulsion Machinery:

Pre-Prototyping Design Assessment of Two Major Topologies”, ICEM 98 proceedings, September 2-4, 1998, pp.1150-1155.

18. E. Spooner and B.J. Chalmers, “TORUS, A Toroidal Stator, Permanent Magnet Machine for Small Scale

Power Generation”, Proc. Int. Conf. Elect. Machines, Aug. 1990, pp.1053-1058.

19. C.C. Jensen, F. Profumo and T.A. Lipo, “A Low Loss Permanent Magnet Brushless DC Motor Utilizing Tape

Wound Amorphous Iron”, IEEE Trans. On IAS-28, No.3, May/June 1992, pp.646-651.

20. F. Profumo, Z. Zhang and A. Tenconi, “Axial Fulx Machines Drives: A New Viable Solution for Electric

Cars”, IEEE Trans. On Industrial Electronics V ol.44, No.1, Feb. 1997, pp.39-45.

21.S. Huang, J. Luo, F. Leonardi and T. A. Lipo, "A Comparison of Power Density for Axial Flux Machines

Based on the General Purpose Sizing Equation", IEEE Trans. on Energy Conversion, V ol.14, No.2 June 1999, pp. 185-192.

22.S. Huang, M. Aydin and T. A. Lipo, “Low Noise and Smooth Torque Propulsion PM Motor: Comparison of

(Non-slotted and Slotted) Radial and Axial Flux Topologies”, ACEMP 2001, Kusadasi, Turkey, June 27-29, 2001.

23.M. A ydin, S. Huang and T. A. Lipo, “Design and 3D Electromagnetic Field Analysis of Non-slotted and

Slotted TORUS Type Axial Flux Surface Mounted Permanent Magnet Disc Machines,” International Electrical Machines and Drives Conference, 2001, Boston.

24.S. Huang, M. Aydin and T. A. Lipo, “TORUS Concept Machines: Pre-Prototyping Design Assessment for

Two Major Topologies”, 2001 IEEE-IAS 36th Annual Meeting.

25.S. Huang, M. Aydin and T. A. Lipo, “Electromagnetic Vibration and Noise Assessment for Surface Mounted

PM Mach ines”, 2001 IEEE Power Engineering Society Summer Meeting.

26.M. Aydin, S. Huang and T. A. Lipo, “Optimum Design and 3D Finite Element Analysis of Non-slotted and

Slotted Internal Rotor Type Axial Flux PM Disc Machines”, 2001 IEEE Power Engineering Society Su mmer Meeting.

27.M. Aydin, S. Huang and T. A. Lipo, “Torque Quality and Comparison of Internal and External Rotor Axial

Flux Surface-Magnet Disc Machines”, IECON 2001, 27th Annual Conference of IEEE Industrial Electronics, Denver, CO, Nov 29-Dec 2, 2001 (accept for publication).

28.J. Luo, S. Huang,S. Chen, T. A. Lipo, “Design and Experiments of A Novel Axial Flux Circumferential

Current Permanent Magnet (AFCC) Machine with Radial Airgap", 2001 IEEE-IAS 36th Annual Meeting.

现代控制理论在电机中的应用

现代控制理论与电机控制 刘北 070301071 电气工程及其自动化0703班 现代控制理论在电机控制中的具体应用: 自70年代异步电动机矢量变换控制方法提出,至今已获得了迅猛的发展。这种理论的主要思想是将异步电动机模拟成直流机,通过坐标变换的方法,分别控制励磁电流分量与转矩电流分量,从而获得与直流电动机一样良好的动态调速特性。这种控制方法现已较成熟,已经产品化,且产品质量较稳定。因为这种方法采用了坐标变换,所以对控制器的运算速度、处理能力等性能要求较高。近年来,围绕着矢量变换控制的缺陷,如系统结构复杂、非线性和电机参数变化影响系统性能等等问题,国内、外学者进行了大量的研究。伴随着推进矢量控制、直接转矩控制和无传感器控制技术进一步向前发展的是人工智能控制,这是电机现代控制技术的前沿性课题,已取得阶段性的研究成果,并正在逐步实用化。 矢量控制和直接转矩控制技术的一个新的发展方向是直接驱动技术,这种零方式消除了传统机械传动链带来的一系列不良影响,极大地提高了系统的快速响应能力和运动精度。但是,这种机械上的简化,导致了电机控制上的难度。为此,需要电机控制技术的进一步提高和创新。这正是电机现代控制技术有待深入研究和具有广阔开发前景的新领域。 电机的现代控制技术与先进制造装备息息相关,已在为先进制造技术的重要研究领域之一,国内很多学者和科技人员正在从事这方面的研究和开发。 一、三相感应电动机的矢量控制 1、 定、转子磁动势矢量 三相感应电动机是机电能量转换装置,这种的物理基础是电磁间的相互作用或者磁场能量的变化。因此,磁场是机电能量转换的媒介,是非常重要的物理量。为此,对各种电动机都要了解磁场在电动机空间内的分布情况。感应电动机内磁场是由定、转子三相绕组的磁动势产生的,首先要确定电动机内磁动势的分布情况。对定子三相绕组而言,当通以三相电流A i 、B i 、C i 时,分别产生沿着各自绕组轴线脉动的空间磁动势波,取其基波并记为A f 、B f 、C f ,显然它们都是空间矢量。对于分布和短矩绕组,定义正向电流产生的空间磁动势波基波的轴线为该相绕组的轴线,亦即A f 、B f 、C f 是以ABC 为轴线沿圆周正弦分布的空间矢量,各自的幅值是变化的,取决于相电流的瞬时值,即有

现代电子测量的认识

现代电子测量的认识 时光如流水一般划过指甲,不留一丝痕迹。很快这学期就过去了。通过这学期的学习对现代电子测量有了更深刻的认识! 第三次科技革命以来至今,科学技术的发展日新月异,以信息技术为代表的新技术促进了电子行业的飞速增长,也极大地推动了测试测量仪器和设备的快速发展。科学技术的不断发展对电子测量技术提出越来越高的要求,同样地电子测量技术是推动科学技术进步的重大力量。而电子测量技术凭借其诸多优势成为现代测量技术的主角,在信息获取与工业控制方面发挥着不可替代的作用。近年来的发展是基于大规模集成电路发展的重要时期,它同时也带来了电子测量仪器技术的革命。由于大规模集成电路的大量应用,使得现代电子测量仪器体积更小、功能更全面、可靠性更高、功耗更低。新工艺、新材料、新的制造技术催生了新的一代电子元器件,同时也促使电子测量技术和电子测量仪器产生了新概念和新发展趋势。 人类社会从远古时代发展到物质文明和精神文明都高度发达的今天,没有测量技术的作用是不可想象的。电子测量除具体运用电子科学的原理、方法和设备对各种电量、电信号及电路元器件的特性和参数进行测量外,还可以通过各种敏感器件和传感装置对非电量进行测量,这种测量方法往往更加方便、快捷、准确,有时是用其他测量方法不可替代的。因此,电子测量不仅用于电学这专业,也广泛用于物理学,化学,机械学,材料学,生物学,医学等科学领域。近几十年来计算机技术和微电子技术的迅猛发展为电子测量和测量仪器增添了巨大活力。电子计算机尤其是尤其是微型计算机与电子测量仪器相结合,构成了一代崭新的仪器和测试系统,即人们通常所说的“智能仪器”和“自动测试系统”,它们能够对若干电参数进行自动测量,自动量程选择,数据记录和处理,数据传输,误差修正,自检自校,故障诊断及在线测试等,不仅改变了若干传统测量的概念,更对整个电子技术和其他科学技术产生了巨大的推动作用。现在,电子测量技术已成为电子科学领域重要且发展迅速的分支学科。 一.电子测量的特点 频率范围宽。除测量直流电量外,还可以测量交流电量,其频率范围低至10-4Hz,高至THz。电子测量设备能够工作在这样宽的频率范围,这就使它的应用范围大大扩展。如果利用各种传感器,则几乎可以测量全部的电磁频谱物理量。当然对于不同频段的测量需采用不同的测量方法与测量仪器。 量程很广。量程是仪器测量范围上限值与下限值之差。由于所测量的大小相差极大,因而要求测量仪器的量程也必须极宽。同一台电子仪器,往往要求最高量程与最低量程要相差几个甚至几十个数量级,量程范围广正是电子测量的突出优点。 测量准确度高。电子仪器的准确度通常可比其它测量仪器高很多,例如,长度测量的准确度最高为10-8,而用电子测量方法对频率和时间进行测量,由于原子频标和原子秒作为基准,可以使测量准确度达到10-15的量级,这是目前人类在测量准确度方面达到的最高指标。 二.测量速度快。电子测量由于是通过电子的运动和电磁波的传播来进行工作的,因此具有通过其它测量方法通常无法类比的高速度。在有些测量中,希望在相同条件下对同一量进行多次测量,再用求平均值的方法以减小误差。 易于实现遥测和长期不间断的测量。电子测量同电子计算机相结合,使测量仪器智能化,并在自动化系统中占据重要的地位。可以把电子仪器或与它连接的传感器放到人类不便长期停留或无法到达的区域去进行遥测,而且可在被测对象正常工作的情况下进行测量。对于测量结果,电子测量的显示方法也比较清晰、直观。

现代电机控制技术复习资料

1.机电能量转换:dt时间内磁能的变化d W m=ΨA di A+ΨB di B+i A i BeL AB(θr)/eθr dθr,由绕组A和B中变压器电动势从电源所吸收的全部电能加之运动电动势从电源所吸收电能的一半所组成;由运动电动势吸收的另外一半电能成为转换功率,成为机械功率。产生感应电动势是耦合场从电源吸收电能的必要条件,产生运动电动势是通过耦合场实现机电能量转换的关键。转子在耦合场中运动产生电磁转矩,运动电动势和电磁转矩构成一对机电耦合项,是机电能量转换的核心部分。 2.磁阻转矩:t e=?0.5 L d?L q i A2sin2θr。当转子凸极轴线与定子绕组轴线重合,此时气隙磁导最大,定义此时定子绕组的自感为直轴电感L d;当转子交轴与定子绕组轴线重合,此时气隙磁导最小,定义此时定子绕组的自感为交轴电感L q;因此在转子旋转过程中,定子绕组的自感将发生变化。由于转子运动使气隙磁导发生变化而产生的电磁转矩称为磁阻转矩。转子励磁产生的电磁转矩称为励磁转矩。 3.直流电机电磁转矩:主磁极基波磁场轴线定义为d(直)轴,d轴反时针旋转90°定义为q(交)轴。直流电动机的电枢绕组又称为换向器绕组,其特征:电枢绕组本来是旋转的,但在电刷和换向器的作用下,电枢绕组产生的基波磁场轴线在空间却固定不动。在动态分析中,常将换向器绕组等效为一个单线圈,若电刷放在几何中性线上,单线圈的轴线就被限定在q轴,称为q轴线圈。因q轴磁场在空间是固定的,当q轴磁场变化时会在电枢绕组内感生变压器电动势;同时它又在旋转,在d轴励磁磁场作用下,还会产生运动电动势,q轴线圈为能表示出换向器绕组这种产生运动电动势的效应,它应该也是旋转的。这种实际旋转而在空间产生的磁场却静止不动的线圈具有伪静止特性,称为伪静止线圈,它完全反映了换向器绕组的特征,可以由其等效和代替实际的换向器绕组。电磁转矩t e=Ψf i a,控制i f不变,改变i a即改变t e,线性控制良好。转子产生运动电动势,不断吸收电能,同时将电能转换为机械能,此时转子成为了能量转换的“中枢”,因此称为电枢。 4.三相异步电机电磁转矩:其运行原理是①定子三相绕组通入三相对称正弦电流,②将会在气隙中产生正弦分布的两极旋转磁场,当转子静止不动时,由电磁感应原理,定子旋转磁场将在转子绕组中感生出三相对称正弦电流,其同样会在气隙中产生两极旋转磁场,旋转速度和方向与定子旋转磁场相同,但存在相位差,③定、转子旋转磁场相互作用产生电磁转矩,若其大于负载转矩,转子将开始旋转,而转子速度总是小于定子旋转磁场速度,否则转子绕组不会感生电流,电磁转矩也将消失,所以称为异步电机。当转子速度稳定于ωr,与定子旋转磁场的转速差为Δω=ωs?ωr,可用转差率s表示这种速度差,即s=(ωs?ωr)/ωs。气隙旋转磁场在转子绕组中感生的三相对称电流频率为ωf,ωf=ωs?ωr=sωs,称为转差频率。 5.磁动势矢量:通过控制三相电流(时间变量)能控制三相绕组的基波磁动势波(空间矢量)。f s运动轨迹圆形,圆的半径是每相基波磁动势最大幅值的3/2倍。 6.三相感应电机定、转子磁链:Ψs=Ψsσ+Ψg,Ψr=Ψrσ+Ψg,Ψg=Ψsg+Ψrg,其中Ψsσ=L sσi s,Ψrσ=L rσi r,Ψsg=L m i s,Ψrg=L m i r,根据上式能够完成矢量图的绘制。Ψg是气隙磁链矢量,Ψs和Ψr是

现代测试技术及应用学习课件【新版】

现代测试技术及应用作业学号2013010106 姓名刘浩峰 专业核技术及应用 提交作业时间2014 12 10

无损检测中的CT重建技术 1无损检测 1.1无损检测概述 无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。中国在1978年11月成立了全国性的无损检测学术组织——中国机械工程学会无损检测分会。此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市和地级市成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。 无损检测缩写是NDT(或NDE,non-destructive examination),也叫无损探伤,是在不损害或不影响被检测对象使用性能的前提下,采用射线、超声、红外、电磁等原理技术并结合仪器对材料、零件、设备进行缺陷、化学、物理参数检测的技术。利用材料内部结构异常或缺陷存在引起的热、声、光、电、磁等反应的变化,以物理或化学方法为手段,借助现代化的技术和设备器材,对试件内部及表面的结构、性质、状态及缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化进行检查和测试。无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,无损检测的重要性已得到公认,主要有射线检验(RT)、超声检测(UT)、磁粉检测(MT)、液体渗透检测(PT)、涡流检测(ECT)、声发射(AE)和超声波衍射时差法(TOFD)。 1、射线照相法(RT)是指用X射线或γ射线穿透试件,以胶片作为记录信息的器材的无损 检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。工作原理是射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线强度也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。RT的定性更准确,有可供长期保存的直观图像,总体成本相对较高,而且射线对人体有害,检验速度会较慢。 2、超声波检测(UT)原理是通过超声波与试件相互作用,就反射、透射和散射的波进行研 究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。适用于金属、非金属和复合材料等多种试件的无损检测;可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;而且缺陷定位较准确,对面积型缺陷的检出率较高;灵敏度高,可检测试件内部尺寸很小的缺陷;并且检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。缺点是对具有复杂形状或不规则外形的试件进行超声检测有困难;并且缺陷的位置、取向和形状以及材质和晶粒度都对检测结果有一定影响,检测结果也无直接见证记录。 3、磁粉检测(MT)原理是铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表 面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小。磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米

王成元 《现代电机控制技术》作业

一、论述PMSM 转矩生成及其控制 要求: 1.面装式PMSM 定子磁场矢量方程为f s s s ψi ψ+=L ,说明PMSM 内存在哪三个正弦分布磁场,为什么可以其中任何两个磁场相互作用来表达电磁转矩生成,试分别推导其相应的电磁转矩矢量方程。 答:在面装式PMSM 中,存在由永磁体产生的励磁磁场f ψ,由定子电流矢量s i 产生的电枢磁场s s i L 和由两者合成而得的定子磁场s ψ。转矩生成的本质就是两个磁场相互作用生成的,所以PMSM 中的电磁转矩可以由任何两个磁场的相互作用来表示。 电磁转矩可以看成是由转子磁场与电枢磁场相互作用生成的,其表达式为: ?=f e p t ψ s i =()s 1i s f s L L p ?ψ 电磁转矩也可以看成是定子磁场与电枢磁场相互作用生成的,其表达式为: ()()s s s 11i i i s s s s s f s e L L p L L L p t ?=?+=ψψ 电磁转矩也可以看成由转子磁场与定子磁场相互作用生成的,其表达式为: ()s f s f s s s e L p L L p t ψ ψ ψ ψ?= +?=11s i 。 其相应的推导过程如下: 电磁转矩t e ,机械角速度Ωr ,机械功率P m 以及机械能W m 之间有如下的关系,即 dt dWm Pm r te = =Ω (1) 由式(1)可以推导出电磁转矩矢量表达式。为此可先推导机械能量dW m 的方程。 根据机-电能量转换原理,向电动机输入的电能We 应包括以下几个部分的能量,即 W e =W r +W f +W m (2) 式中,W r 为定、转子损耗掉的能量;W f 为磁场储能。于是有 dW e =dW r +dW f +dW m (3) 下面推导式(3)右端三项的表达式。 假定定子没有零序分量,则有 dWe=Re(u s i s +u r i r )dt (4) W r 中应该包括定、转子绕组的电阻损耗,磁性材料中的磁滞和涡流损耗、风耗

现代测试技术及应用学习心得

《现代测试技术》课程总结 学校:太原科技大学 班级:力学141802班 姓名:曹华科 学号:201418020202

《现代测试技术》课程总结 经过这学期现代测试技术的学习,让我对测试技术有了一个全新的认识和理解。让我以前对现代测试技术浅薄的认知有了很大的变化,现代测试的飞速发展也让我对之充满信心。 随着自动化技术的高速发展,仪器及检测技术已成为促进当代生产的主流环节,同时也是生产过程自动化和经营管理现代化的基础,没有性能好、精度高、质量可靠的仪器测试到各种有关的信息,要实现高水平的自动化就是一句空话。随着自动化程度要求的不断提高,测试技的作用越来越明显。可以说,自动化的提高很大作用取决于现代测试技术的提高。科学技术的发展历史表明,许多新的发现和突破都是以测试为基础的。同时,其他领域科学技术的发展和进步又为测试提供了新的方法和装备,促进了测试技术的发展。 测试的基本任务是获取有用的信息,而信息又是蕴涵在某些随时间或空间变化的物理量中,即信号之中的。因此,首先要检测出被测对象所呈现的有关信号,再加以分析处理,最后将结果提交给观察者或其他信息处理装置、控制装置。测试技术已成为人类社会进步和各学科高级工程技术人员必须掌握的重要的基础技术。 测试系统是执行测试任务的传感器、仪器和设备的总称。当测试的目的、要求不同时,所用的测试装置差别很大。测试系统的基本特性是测试系统与其输入、输出的关系,它一般分为两类:静态特性和动态特性。在选用测试系统时,要综合考虑多种因素,其中最主要的一个因素是测试系统的基本特性是否能使其输入的被测物理量在精度要求范围内真实地反映出来。 基于计算机的测量师现代测试技术的特点。20多年来,仪器开始与计算机连接起来。如今,计算机已成为现代测试和测量系统的基础。随着计算机技术、大规模集成电路技术和通信技术的飞速发展,传感器技术、通信技术和计算机技术者3大技术的结合,使测试技术领域发生了巨大变化。 第一种结合是计算机技术与传感器技术的结合。其结果是产生了智能传感器,为传感器的发展开辟了全新的方向。多年来,智能传感器技术及其研究在国

电子测试技术的应用与发展

电子测试技术的应用与发展 ——结合一种具体电子测试仪器说明其原理、结 构、应用与发展 班级:电信0603姓名:贾琳琳学号:20060915 摘要:电子测试技术是一门以测试信息为主的科学门类,它阐述了各种电子仪器的基本原理和方法,并重点介绍了测试信号的获取,及它在现实生活和军事中的应用。本文主要介绍了电子测试技术的的意义,发展和重要性,以及在国家经济发展中所发挥的作用,然后又综述《现代电子测试技术》这门课程所介绍的主要内容,最后着重介绍光元器件分析仪的工作原理、结构与应用。 著名科学家门捷列夫说过:“没有测量就没有科学”。测试技术和仪器是科学研究中信息的获取、处理和显示的重要手段,是人们认识客观世界并取得定性或定量信息的基本方法,是信息工程的源头和重要组成部分。随着科学信息的快速发展,对测试技术的要求逐步提高,电子测试技术必将成为新时代的重点学科,并将其应用于学习、生活、科研的各个领域。电子测试技术及仪器是指利用现代电子技术对电量和非电量进行测量的方法与设备。电子测量技术与仪器一般包含能量的测量、产生能量的信号的测量以及传输信号的网络的测量;定量测量侧重于量的精准确定;电子测试技术覆盖的面更宽,除了上述测量外,还包括了信息的测量,如软件协议测量、硬件故障诊断等 这种科学的方法包含了一系列测试技术,这种手段包含了相关门类的仪器。测试技术和仪器是物质信息的获取、处理与输出的方法和手段。科技要发展,测试须先行。现代科技发展依赖于先进的测试技术与仪器的发展,现代制造业无论是研发、中试,还是生产过程控制、产品检测和维护都需要先进的科学仪器作为技术和测试手段。21世纪,面对国际科学技术发展趋势,越来越多的国家都把大力加强测试技术与仪器科学作为一种国家发展战略,对大至宇宙、小到基本粒子的物质世界奥秘的探寻,从信息、材料、生物、环境、能源到多学科交叉等领域的科技前沿,均对测试技术与仪器提出了越来越高的先行需求。它是进行军事装备研究,新产品试制和开发,以及生产与维护运转中不可缺少的测试手段和工具。一切重大的科学技术成就都与测试技术和测试仪器有直接关系。因此,电子测试技术及仪器的水平常常是衡量一个国家科技发展和生产技术的重要标志,也是军事实力的重要表现。 在科学技术发展的今天,测试工作将处于各种现代军事装备系统设计和制造的首位,并成为生产率、制造能力及实用性水平的重要标志。据有关资料报道:目前,测试成本达到所研制的军事装备系统总成本的50%,甚至70%;而且,编制测试程序所花的时间比系统设计所花的时间更长。因此,在未来激烈竞争的世界中,测试将与现代军事装备系统的设计和制造构成为一个完整的整体,是保证现代军事装备系统实际性能指标的重要手段,电子测试技术和仪器是直接或间接地为军事目的服务的,而且,测试仪器本身也是军事装备中的重要组成部分。因此,一个国家要在军事上实现现代化,则必须具有先进的军事测试技术来予以保证。而《现代电子测试技术》这门课程也突出了军事应用中的先进测试技术及仪器,应用范围更广,它不仅深入介绍了电子测量的基本原理和技术方法,电子仪器及测试系统的组成及工作原理,而且还介绍电子测量中的误差分析和数据处理的能力,以及学会把电子测量技术,电子仪器和测量系统应用到实际中的基本

现代测试技术应用_论文

现代测试技术在液压缸设计中的应用 摘要:随着自动化技术的高速发展及其对测试技术要求的不断提高,从而使测试技术作为一种新产品开发的重要手段,可以有效缩短新产品研发周期,提高产品研发成功率。本文以液压缸缓冲设计为例,介绍测试技术在液压缸中的应用。结果表明,采用测试技术能够直观、量化缓冲性能指标及结果,并能进行改进前后性能的对比,缩短了元件满足主机性能需要的试制周期。最后,通过对工程机械的研发过程的总结,提出现代测试技术的主要任务及其发展方向。 关键词:测试技术,液压缸,智能化,集成化,网络化 1 引言 我国工程机械主机技术仍落后于发达国家,为其配套的关键液压元件是制约其发展的主要因素,尽快缩短与国外技术的差距,已在行业形成共识。 随着自动化技术的高速发展,仪器及检测技术已成为促进当代生产的主流环节,同时也是生产过程自动化和经营管理现代化的基础,没有性能好、精度高、质量可靠的仪器测试到各种有关的信息,要实现高水平的自动化就是一句空话。因此,借鉴测试技术与传感技术在工程技术的成功应用,在液压件开发领域中引入测试技术的理念,将大幅度提高国产液压件的发展速度。 液压缸作为主要的执行元件,在某些主机上对其缓冲性能要求越来越高。利用较好的缓冲结构延长液压缸的寿命越来越受到关注。本文介绍利用测试与传感技术建立计算机辅助测试系统,如何研究液压缸缓冲结构的设计和定型。利用测试结果,调节液压缸缓冲参数和节流孔参数。通过测试不同工况下缓冲腔工作压力及行程等参数,实现仿真设计,确保样机性能验证结果的可信度。 2 测试技术及传感技术 在传统的产品开发模式中,进行产品的改进是被动的,是由主机厂使用过程中发现问题、提出问题并反馈,得到信息后再进行设计改进的。鉴于传统产品开发模式耗费开发周期时间长,被动改进,我们提出了新型产品开发模式如图1。 图1 新型产品开发模式 结合自身的需求,我们开发出一套适用于液压缸缓冲结构研发过程中的计算机辅助测试系统。图2为计算机辅助测试系统的构成示意图,由液压系统传感器和数据采集系统组成,被测液压缸为带缓冲的液压缸,在主机上进行规定动作试验,采用多功能数据采集模块及数据采集软件,完成两腔压力( 缓冲压力或工作压力) 位移-时间的采集和测量。

双闭环直流电机控制完整版.

双闭环直流电机调速系统设计 摘要 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。根据晶闸管的特性,通过调节控制角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图。然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称做外环。这就形成了转速、电流双闭环调速系统。先确定其结构形式和设计各元部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算然后最后采用MATLAB/SIMULINK对整个调速系统进行了仿真分析,最后画出了调速控制电路的电气原理图。 关键词:双闭环;转速调节器;电流调节器 目录 前言0 第1章绪论1 1.1直流调速系统的概述1 1.2研究课题的目的和意义1 1.3设计内容和要求1 1.3.1设计要求1 1.3.2设计内容1 第2章双闭环直流调速系统设计框图3 第3章系统电路的结构形式和双闭环调速系统的组成4

3.1主电路的选择与确定4 3.2 双闭环调速系统的组成6 3.3 稳态结构框图和动态数学模型7 3.3.1稳态结构框图7 3.3.2 动态数学模型9 第4章主电路各器件的选择和计算10 4.1变流变压器容量的计算和选择10 4.2 整流元件晶闸管的选型12 4.3 电抗器设计13 4.4 主电路保护电路设计15 4.4.1过电压保护设计15 4.4.2过电流保护设计17 第5章驱动电路的设计18 5.1晶闸管的触发电路18 5.2脉冲变压器的设计20 第6章双闭环调速系统调节器的动态设计22 6.1 电流调节器的设计23 6.2 转速调节器的设计24 第7章基于MATLAB/SIMULINK的调速系统的仿真28 小结31 致谢32 参考文献33 附表34 附图35

交流电机控制技术作图题交流电机控制技术的发展与展望

交流电机控制技术作图题交流电机控制技术的发展与展望引言与直流电机相比,交流电动机是多变量,强耦和的非线形系统,要实现良好的转矩控制非常困难。20世纪70年代德国工程师F.Blaschke首先提出异步电动机矢量控制理论来解决交流电机转矩控制问题。1985年,德国的Depenbrock教授提出了异步电动机直接转矩控制方法。近年来,矢量控制和直接转矩控制技术不断发展,且有各自不同的应用领域。随着现代控制理论和电子技术的发展,各种控制方法和器件不断出现。 矢量控制技术的现状与展望 矢量控制新技术 磁通的快速控制:在直接磁场定向矢量控制异步电动机变频调速系统中,利用磁链预测值进行磁通快速控制的方法。 参数辨识和调节器自整定:基于模型参考自适应算法的一惯性系统及二惯性系统转动惯量参数的辨识方法。

非线性自抗扰控制器:在异步电动机系统的动态方程中,用自抗扰控制器取代经典PID控制器进行控制。 矩阵式变换器:一种适用于矩阵式变换器驱动异步电动机调速系统的组合控制策略,同时实现了矩阵式变换器的空间矢量调制和异步电动机的直接磁场定向矢量控制。 矢量控制技术的发展 矢量采用高速电动机控制专用DSP、嵌入式实时软件操作系统,开发更实用的转子磁场定向方法和精确的磁通观测器,使变频器获得高起动转矩、高过载能力,将是未来矢量控制技术的重要发展方向。无速度传感器的交流异步电动机驱动系统和永磁电动机驱动系统控 制也是开发热点之一。永磁电动机驱动系统由于它的高效、高功率因数、高可靠性而得到越来越多的关注。无刷电动机的无位置传感器控制和正弦波电流控制,在应用方面已趋成熟。开关磁阻电动机在许多领域应用也取得了很多进展。

现代测试技术及应用

现代测试技术及应用作业 学号2013010106 姓名刘浩峰 专业核技术及应用 提交作业时间2014 12 10 无损检测中的CT重建技术 1无损检测 1、1无损检测概述 无损检测就是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。中国在1978年11月成立了全国性的无损检测学术组织——中国机械工程学会无损检测分会。此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市与地级市成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。 无损检测缩写就是NDT(或NDE,non-destructive examination),也叫无损探伤,就是在不损害或不影响被检测对象使用性能的前提下,采用射线、超声、红外、电磁等原理技术并结合仪器对材料、零件、设备进行缺陷、化学、物理参数检测的技术。利用材料内部结构异常或缺陷存在引起的热、声、光、电、磁等反应的变化,以物理或化学方法为手段,借助现代化的技术与设备器材,对试件内部及表面的结构、性质、状态及缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化进行检查与测试。无损检测就是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,无损检测的重要性已得到公认,主要有射线检验(RT)、超声检测(UT)、磁粉检测(MT)、液体渗透检测(PT)、涡流检测(ECT)、声发射(AE)与超声波衍射时差法(TOFD)。 1、射线照相法(RT)就是指用X射线或γ射线穿透试件,以胶片作为记录信息的器材的无损检 测方法,该方法就是最基本的,应用最广泛的一种非破坏性检验方法。工作原理就是射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线强度也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。RT的定性更准确,有可供长期保存的直观图像,总体成本相对较高,而且射线对人体有害,检验速度会较慢。 2、超声波检测(UT)原理就是通过超声波与试件相互作用,就反射、透射与散射的波进行研究, 对试件进行宏观缺陷检测、几何特性测量、组织结构与力学性能变化的检测与表征,并进而对其特定应用性进行评价的技术。适用于金属、非金属与复合材料等多种试件的无损检测;可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材与板材,也可检测几米长的钢锻件;而且缺陷定位较准确,对面积型缺陷的检出率较高;灵敏度高,可检测试件内部尺寸很小的缺陷;并且检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。缺点就是对具有复杂形状或不规则外形的试

现代电气传动及控制技术的发展

现代电气传动及控制技术的发展 1 电气传动技术概述 电气传动技术,是指用电动机把电能转换成机械能,去带动各种类型的生产机械、交通车辆以及生活中需要运动的物品的技术。是通过合理使用电动机实现生产过程机械设备电气化及其自动控制的电气设备及系统的技术总称。 一个完整的电气传动系统包括三部分:控制部分、功率部分、电动机。 2电气传动优点 (1)电机的效率高,运转比较经济; (2)电能的传输和分配比较方便; (3)电能容易控制,因此现在电气传动已经成为绝大部分机械的传动方式,成为工业化的重要基础。传动方式的一种,有机械式如摇臂之类,有压力如液压传动,而通过控制电机来传动的方式就是电气传动。 3 电气传动技术的发展史 电气传动技术诞生于20世纪初的第二次工业革命时期,电气传动技术大大推动了人类社会的现代化进步。它是研究如何通过电动机控制物体和生产机械按要求运动的学科。随着传感器技术和自动控制理论的发展,由简单的继电、接触、开环控制,发展为较复杂的闭环控制系统。自从人类发明并掌握各种机械帮助自己劳动以来,就需要有推动机械的原动力,除人力本身外,最初使用的是畜力、水力和风力,后来又发明了蒸汽机、柴油机、汽油机,19世纪才发明电动机。20世纪60年代,特别是80年代以来,随着电力电子技术、现代控制理论、计算机技术和微电子技术的发展,逐步形成了集多种高新技术于一身的全新学科技术一现代电气传动技术。 4 电气传动的主体——电动机 电动机分为交流电动机和直流电动机。二者的结构、工作原理不同,所需的电气传动装置也不同。电气传动可分为两类:直流电气传动和交流电气传动。由于历史上最早出现的是以蓄电池形式供电的直流电动机,所以直流传动也是唯一的电气传动方式。 直到1885年意大利都灵大学发明了感应电动机,而后出现了交流电,解决了三相制交流电的输变问题交流电气传动才出现。20世纪80年代之前,直流电

现代测试技术及应用

西华大学课程考核试题卷 ( 中考卷) 试卷编号: ( 2012__ 至 2013____ 学年 第_2___学期 ) 课程名称:现代测试技术及应用 考试时间:90 分钟 课程代码:6002699 试总分:100分 考试形式: 网络考试 学生自带普通计算器: 允许 一、判断题(本大题共10小题,每小题2分,总计20分) 1.粗大误差具有随机性,可采用多次测量,求平均的方法来消除或减少。( ) 错 2. 当计数器进行自校时,从理论上来说还是存在±1个字的量化误差。( )对 3.一个频率源的频率稳定度愈高,则频率准确度也愈高。( )错 4. 给线性系统输入一个正弦信号,系统的输出是一个与输入同频率的正弦信号()对 5.随机误差又叫随差,随机误差决定了测量的精密度。( )对 6.测量系统的理想静态特性为y=Sx+S0( ).答案:错 7. 从广义上说,电子测量是泛指以电子科学技术为手段而进行的测量,即以电子科 技术理论为依据,以电子测量仪器和设备为工具,对电量和非电量进行的测量。( ) 答案:对 8. 在进行阿伦方差的测量时,组与组之间以及组内两次测量之间必须都是连续的。 ( )答案:错 9.反射系数、 功率、 导磁率 、信号频率均为有源量( )。答案:错 10. 峰值电压表按有效值刻度,它能测量任意波形电压的有效值。( )答案:对 二、选择题(本大题共10小题,每小题3分,总计30分) 1. 若马利科夫判据成立,则说明测量结构中含有 ____ 。 A:随机误差 B: 粗大误差 C: 恒值系差 D: 累进性变值系差 答案:D 2. 如两组测量的系数误差相同,则两组测量的 相同。 A. 精密度 B. 准确度 C. 精确度 D. 分散度 答案:A 3.在使用连续刻度的仪表进行测量时,一般应使被测量的数值尽可能在仪表满刻度值的 ____ 以上 答案:D 4.±1误差称为____。 A.最大量化误差 B.仅测频的误差 C.±1一个字误差 D.闸门抖动引起的误差 答案:A 5.仪器通常工作在( ),可满足规定的性能。

现代控制理论在电机中的应用

现代控制理论在电机控制中的应用 现代控制理论在电机控制上的发展现状: 1971年,德国学者Blaschke 提出了交流电动机矢量控制,它的出现对电机控制技术的研究具有划时代的意义,使电机控制技术的发展步入了一个全新的阶段。在此后的20多年里,矢量控制技术得到了广泛应用,交流伺服驱动系统逐步代替了直流系统。尽管如此,矢量控制仍有许多技术问题需要进一步解决和完善。 1985年,德国学者Depenbrock 提出了直接转矩控制理论,由于它直接控制定子磁链空间矢量和电磁转矩,使控制系统得以简化,并且提高了快速响应能力。它不仅拓宽了矢量控制理论,也促进了电机现代控制技术的进一步发展。目前,直接转矩控制技术还有待进一步深入研究和改进,加快向实用化方向推进的步伐。 矢量控制和直接转矩控制正在向实现无传感器控制方向发展,但是无传感器控制技术总体上还处于研究和开发阶段,只在部分产品上开始实用化。进一步加大和拓宽无传感器控制技术的应用,还有许多理论和技术问题需要解决。 伴随和推进矢量控制、直接转矩控制和无传感器控制技术进一步向前发展的是人工智能控制,这是电机现代控制技术的前沿性课题,国内外学者正在竞相研究,已取得阶段性的研究成果,并正在逐步实用化。 矢量控制和直接转矩控制技术的一个新的发展方向是直接驱动技术,这种零方式消除了传统机械传动链带来的一系列不良影响,极大地提高了系统的快速响应能力和运动精度。但是,这种机械上的简化,导致了电机控制上的难度。为此,需要电机控制技术的进一步提高和创新。这正是电机现代控制技术有待深入研究和具有广阔开发前景的新领域。 电机的现代控制技术与先进制造装备息息相关,已在为先进制造技术的重要研究领域之一,国内很多学者和科技人员正在从事这方面的研究和开发。 现代控制理论在电机控制中的具体应用: 一、三相感应电动机的矢量控制 1、 定、转子磁动势矢量 三相感应电动机是机电能量转换装置,这种的物理基础是电磁间的相互作用或者磁场能量的变化。因此,磁场是机电能量转换的媒介,是非常重要的物理量。为此,对各种电动机都要了解磁场在电动机空间内的分布情况。感应电动机内磁场是由定、转子三相绕组的磁动势产生的,首先要确定电动机内磁动势的分布情况。对定子三相绕组而言,当通以三相电流A i 、B i 、C i 时,分别产生沿着各自绕组轴线脉动的空 间磁动势波,取其基波并记为A f 、B f 、C f ,显然它们都是空间矢量。对于分布和短矩绕组,定义正向 电流产生的空间磁动势波基波的轴线为该相绕组的轴线,亦即A f 、B f 、C f 是以ABC 为轴线沿圆周正弦分布的空间矢量,各自的幅值是变化的,取决于相电流的瞬时值,即有 4()2s s A A n N k F t i p ωπ=? (1) 4()2s s B B n N k F t i p ωπ=? (2) 4()2s s C C n N k F t i p ωπ= ? (3) 式中,n p 为极对数;s N 为每相绕组匝数;s k ω为绕组因数。当相电流瞬时值为正值时,磁动势矢量方向与该相绕组轴线一致,反之则相反。

现代测试技术学习心得

现代测试技术学习心得 摘要:随着微电子技术、通信技术、计算机技术的发展,现代测试技术进一步得到发展。测试技术与科学研究、工程实践密切相关。科学技术的发展促进测试技术的发展,测试技术的发展反过来又促进科学技术的提高,相辅相成推动社会生产力不断前进。如今,计算机已经成为现代测试与测量技术的基础和核心,现代测试技术的发展几乎是与计算机技术的发展同步的、协调向前发展的,离开了计算机、软件、网络、通信发展的轨道,测试技术将不可能壮大。现代测试技术的发展方向主要有四个方面:传感器的发展、测试手段的发展、测量信号处理的发展、开放平台的发展趋势。科学技术与生产水平的高度发达,要求有更先进的测试技术与仪器做基础。现代测试技术具有广阔的应用空间,由于各行各业的广泛要求,在各种现代装备系统的设计和制造工作中,测量工作内容已经占据首位,它是保证现代工程装备系统实际性能指标和正常工作的重要手段,是其先进性能及实用水平的重要标志。水力发电上的测试技术应用。水力机组是水电站的核心设备,它在运行过程中会产生一系列问题,振动故障是水力发电机组最常见的故障之一。对振动信号的进行分析,解决故障问题。 关键词:现代测试传统的发展发展方向水轮机发电机组振动故障诊断信号分析 Abstract:With the development of micro electronic technology,communication technology and computer technology,modern testing technology has been further developed.Test technology is closely related to scientific research and engineering practice.The development of science and technology to promote the development of test technology,test technology development in turn promote the improvement of science and technology,and promote social productive forces continue to progress. Today,the computer has become the core and foundation of modern testing and measurement technology,the development of modern testing technology is almost the coordinated development of computer technology and synchronization,moving forward, left the development of computer,software,network communication,track testing technology will not be able to grow.The development direction of modern test technology mainly has four aspects:the development of sensors,the development of testing means,the development of measurement signal processing,and the development trend of open platform.The level of science and technology is highly developed, which requires more advanced testing techniques and instruments.Modern testing technology has a broad application space,due to the extensive requirements of all walks of life,in a variety of modern equipment system design and manufacturing work, measurement work has to occupy the first place,it is the important means to guarantee that modern engineering equipment system of actual performance and the normal work, is an important indicator of the performance of advanced and practical level. Application of test technology in hydraulic power generation.Hydraulic power unit is the core equipment of the hydropower station,it will produce a series of problems in the process of operation,the vibration fault is one of the most common faults of the hydropower generating set.Analysis of the vibration signal to solve the problem of failure.

电机现代控制技术作业

一.课题的背景和意义 电机是把电能转换成机械能的设备,它在机械、冶金、石油、煤炭、化学、航空、交通、农业以及其他各种工业领域中都有着广泛的应用。随着现代电力电子技术的飞速发展,现代电机控制技术正朝着小型化和智能化的方向发展。 二.课题的内容 1.电机的基本结构及分类 普通电机主要由定子、转子、端盖、风扇、罩壳、机座和接线盒等组成。以最常见的三相鼠笼式电机为例,其主要由定子和转子构成,定子是静止不动的部分,转子是旋转部分,在定子与转子之间有一定的气隙。定子由铁心、绕组与机座三部分组成。转子由铁心与绕组组成,转子绕组有鼠笼式和线绕式。值得一提的是鼠笼式与绕线式两种电机虽然具有不同的结构,但是工作原理却是相同的。电机按其工作电源种类的不同可划分为直流电机和交流电机两种,常见直流电机按结构及工作原理可进一步划分无刷直流电机和有刷直流电机,常见交流电机按结构及工作原理的不同也可以进一步划分为单相电机和三相电机。这些电机也因为其结构和工作原理的不同而具有不同的特性。 2.无刷直流电机控制技术的发展现状与展望 自1978年,MAC经典无刷直流电机及其驱动器推出之后,国际上对无刷直流电机进行了深入的研究,先后研制出方波无刷电机和正弦波直流无刷电机。三十多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电机得到了长足的发展。 (1)各组成部分发展状况 1)电机本体 无刷直流电机在电磁结构上和有刷直流电机基本一样,但它的电枢绕组放在定子上,转子简化了结构、提高了性能,使其可靠性得以提高。无刷电机的发展与永磁材料的发展是分不开的,基本上经历了铝镍钴,铁氧体磁性材料和钕铁硼三个发展阶段。 2)电子换相电路 控制电路。无刷直流电机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。目前,控制电路一般有专用集成电路、微处理器和数字信号处理器等三种组成形式。 驱动电路。驱动电路输出电功率,驱动电机的电枢绕组,并受控于控制电路,它一般由大功率开关器件组成。随着电力电子技术的飞速发展,出现了全控型功

相关主题
文本预览
相关文档 最新文档