立体几何复习(知识点+经典习题)
- 格式:docx
- 大小:38.33 KB
- 文档页数:7
专题一证明平行垂直问题题型一证明平行关系(1)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B 1C1的中点.求证:MN∥平面A1BD.(2)在正方体AC1中,M,N,E,F分别是A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.思考题1 (1)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD 是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点,求证:平面EFG∥平面PBC.(2)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.求证:PQ∥平面BCD.题型二证明垂直关系(微专题)微专题1:证明线线垂直(1)已知空间四边形OABC中,M为BC中点,N为AC中点,P为OA中点,Q为OB中点,若AB=OC.求证:PM⊥QN.(2)(2019·山西太原检测)如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点,求证:DF⊥AE.微专题2:证明线面垂直(3)在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1.(4)(2019·河南六市一模)在如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.若AA1=AC,求证:AC1⊥平面A1B1CD.微专题3:证明面面垂直(5)已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证:平面DEA⊥平面A1FD1.(6)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD ,求证:平面PQC⊥平面DCQ.思考题2 (1)(2019·北京东城区模拟)如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF⊥B P 交BP 于点F ,求证:PB⊥平面EFD.(2)(2019·济南质检)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.①证明:AP⊥BC;②若点M 是线段AP 上一点,且AM =3,试证明平面AMC⊥平面BMC.题型三 探究性问题在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF⊥CD;(2)在平面PAD 内是否存在一点G ,使GF⊥平面PCB.若存在,确定G 点的位置;若不存在,试说明理由.思考题3 (2019·山西长治二模)如图所示,四棱锥P -ABCD 的底面是边长为1的正方形,PA ⊥CD ,PA =1,PD =2,E 为PD 上一点,PE =2ED.(1)求证:PA⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,说明理由.专题二 求解异面直线所成角和线面角问题题型一 异面直线所成的角(1)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,E ,F 分别是CC 1,AD 的中点,则异面直线OE 和FD 1所成的角的余弦值等于________.(2)(2019·安徽知名示范高中联合质检)若在三棱柱ABC-A1B1C1中,∠A1AC=∠BAC=60°,平面A1ACC1⊥平面ABC,AA1=AC=AB,则异面直线AC1与A1B所成角的余弦值为思考题1 (2019·湖南雅礼中学期末)如图1,在矩形ABCD中,AB=2,BC=1,E是DC 的中点;如图2,将△DAE沿AE折起,使折后平面DAE⊥平面ABCE,则异面直线AE和BD所成角的余弦值为________.题型二定义法求线面角(1)(2019·山东荷泽期末)在斜三棱柱ABC-A1B1C1中,侧棱AA1⊥平面AB1C1,且△AB1C1为等边三角形,B1C1=2AA1=2,则直线AB与平面B1C1CB所成角的正切值为( )A.32B.22C.64D.62(2)如图,在正方体ABCD-A1B1C1D1中,点O为线段BD的中点.设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是( )A.[33,1] B.[63,1] C.[63,223] D.[223,1]思考题2 (1)(2019·河北石家庄一模)如图所示,在三棱柱ABC-A1B1 C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角的大小为________.(2)把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为( )A.90° B.60° C.45° D.30°题型三向量法求线面角(1)(2019·河南郑州月考)如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PA=PD=5,平面ABCD⊥平面PAD,M是PC的中点,O是AD的中点,则直线BM与平面PCO所成角的正弦值是________.(2)如图,菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=2,CF=3.若直线FO与平面BED所成的角为45°,则AE=________.思考题3 (1)正四棱锥S-ABCD中,O为顶点S在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角是________.(2)(2019·河南百校联盟联考)已知斜四棱柱ABCD-A1B1C1D1的各棱长均为2,∠A1AD=60°,∠BAD=90°,平面A1ADD1⊥平面ABCD,则直线BD1与平面ABCD所成的角的正切值为( )A.34B.134C.3913D.393(1)(2019·太原模拟一)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PA⊥BD.①求证:PB=PD;②若E,F分别为PC,AB的中点,EF⊥平面PCD,求直线PB与平面PCD所成角的大小.(2)(2019·湖南长郡中学选拔考试)如图,在直三棱柱ABC-A1B1C1中,BA=BC=5,AC=8,D为线段AC的中点.①求证:BD⊥A1D;②若直线A1D与平面BC1D所成角的正弦值为45,求AA1的长.思考题 4 (2019·石家庄质检二)如图,三棱柱ABC-A 1B1C1中,侧面BB1C1C为∠CBB1=60°的菱形,AB=AC1.(1)证明:平面AB1C⊥平面BB1C1C;(2)若AB⊥B1C,直线AB与平面BB1C1C所成的角为30°,求直线AB1与平面A1B1C所成角的正弦值.专题三求解二面角问题题型一定义法求二面角(1)(2019·台州一模)在边长为a的等边三角形ABC中,AD⊥BC于点D,沿AD折成二面角B-AD-C,若此时BC=12a,则二面角B-AD-C的大小为________.(2)如图,二面角α-l-β的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为30°,则AB与平面β所成的角的正弦值是(3)已知三棱锥P-ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径.当三棱锥P-ABC的体积最大时,设二面角P-AB-C的大小为θ,则sinθ=( )A.23B.53C.63D.73思考题1 (1)如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCE翻折,使得点A,D重合于F,此时二面角E-BC-F的余弦值为( )A.721B.74C.32D.34(2)如图,设AB为圆锥PO的底面直径,PA为母线,点C在底面圆周上,若PA=AB=2,AC=BC,则二面角P-AC-B的正切值是________.题型二向量法求二面角(1)已知点E,F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的锐二面角的正切值为________.(2)(2019·河南安阳)二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为( ) A.150°B.45° C.60° D.120°思考题2 (1)设平面α的一个法向量为n1=(1,2,-2),平面β的一个法向量为n2=(-2,-4,k),若α和β所成的锐二面角的余弦值为23,则k=________.(2)(2019·辽宁丹东模拟)如图,正方形A1BCD折成直二面角A-BD-C,则二面角A-CD-B的余弦值是________.(3)(2019·广东中山模拟)在矩形ABCD中,已知AB=2,AD=22,M,N分别为AD和BC的中点,沿MN把平面ABNM折起,若折起后|AC|=6,则二面角A-MN-C的大小为( ) A.30° B.45° C.60° D.90°(2019·惠州二次调研)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,PA⊥PB,PC=2.(1)求证:平面PAB⊥平面ABCD;(2)若PA=PB,求二面角A-PC-D的余弦值.思考题3 (2019·河北五一名校联考)在斜三棱柱(侧棱不垂直于底面)ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,底面△ABC是边长为2的正三角形,A1A=A1C,A1A⊥A1C.(1)求证:A1C1⊥B1C;(2)求二面角B1-A1C-C1的正弦值.题型三空间角的综合问题(2019·唐山五校联考)如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD,E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)若二面角P-AC-E的余弦值为63,求直线PA与平面EAC所成角的正弦值.思考题 4 (2019·江南十校素质检测)如图,在以A,B,C,D,E,F为顶点的五面体中,平面CDEF⊥平面ABCD,FC=FB,四边形ABCD为平行四边形,且∠BCD=45°.(1)求证:CD⊥BF;(2)若AB=2EF=2,BC=2,直线BF与平面ABCD所成角为45°,求平面ADE与平面BCF 所成锐二面角的余弦值.专题四综合问题题型一空间的距离(1)(2019·江西九江期末)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD为正方形,E为CD的中点,F为PA的中点,且PA=AB=2.则点P到平面BEF的距离为( )A.55B.255C.214D.42121(2)已知正方形ABCD的边长为4,CG⊥平面ABCD,CG=2,E,F分别是AB,AD的中点,求点B到平面GEF的距离.思考题1 (1)(2019·黑龙江哈尔滨期末)三棱柱ABC-A1B1C1底面为正三角形,侧棱与底面垂直,若AB=2,AA1=1,则点A到平面A1BC的距离为( )A.34B.32C.334D.32.(2017·课标全国Ⅰ,理)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.(2)(2019·湖南长沙一模)正方体ABCD-A1B1C1D1的棱长为1,E,F分别为BB1,CD的中点,求点F到平面A1D1E的距离.题型二探究性问题(2019·湖南重点校联考)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=22,BC=42,PA=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M-AC-D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.思考题2 (2019·西安八校联考)已知几何体ABCC1B1N的直观图如图所示,CB⊥底面ABB1N,且ABB1N为直角梯形,侧面BB1C1C为矩形,AN=AB=BC=4,BB1=8,∠NAB=∠ABB1=90°.(1)连接B1C,若M为AB的中点,在线段CB上是否存在一点P,使得MP∥平面CNB1?若存在,求出BP的长;若不存在,请说明理由.(2)求二面角C-NB1-C1的余弦值.题型三翻折问题(2019·安徽合肥调研性检测)平面四边形ABCD中,∠DAB=π2,AD=AB,△BCD为等边三角形.现将△ABD沿BD翻折得到四面体P-BCD,点E,F,G,H分别为PB,PD,CD,CB的中点.(1)求证:四边形EFGH为矩形;(2)当平面PBD⊥平面CBD时,求直线BG与平面PBC所成角的正弦值.思考题3 如图,在直角梯形ABCP中,∠A=∠B=90°,AB=BC=3,AP=6,CD⊥AP于D,现将△PCD沿线段CD折成60°的二面角P-CD-A,设E,F,G分别是PD,PC,BC的中点.(1)求证:PA∥平面EFG;(2)若M为线段CD上的动点,求直线MF与平面EFG所成角的最大角,并确定成最大角时点M在什么位置?高考题呈现1.(2014·全国Ⅱ)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P-ABD的体积V=34,求A到平面PBC的距离.2.(2016·北京)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD= 5.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求AMAP的值;若不存在,说明理由.3.(2018·浙江)如图,已知多面体ABC-A1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.4.(2016·课标全国Ⅲ)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.5.(2018·课标全国Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.6.(2016·课标全国Ⅰ,理)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.7.(2017·课标全国Ⅰ,理)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.8.(2018·课标全国Ⅱ,理)如图,在三棱锥P-ABC中,AB=BC=22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.9.(2018·北京,理)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC =5,AC =AA 1=2.(1)求证:AC⊥平面BEF ; (2)求二面角B -CD -C 1的余弦值; (3)证明:直线FG 与平面BCD 相交.10.(2017·北京,理)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,平面PAD⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,PA =PD =6,AB =4.(1)求证:M 为PB 的中点; (2)求二面角B -PD -A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.。
专题一 证明平行垂直问题 题型一 证明平行关系(1)如图所示,在正方体 ABCD -A 1B 1C 1D 1 中, M , N分别是 C 1C ,B 1C 1的中点.求证: MN ∥平面 A 1BD.(2)如图,在四面体 A -BCD 中,AD ⊥平面 BCD ,BC ⊥CD ,AD = 2,BD =2 2,M 是 AD 的中点,P 是 BM 的中点,点 Q 在线段 AC 上,且 AQ = 3QC.求证: PQ ∥平面 BCD.题型二 证明垂直关系 (微专题 )微专题 1:证明线线垂直(1)已知空间四边形 OABC 中,M 为 BC 中点,N 为 AC中 点,P 为 OA 中点,Q 为 OB 中点,若 AB =OC.求证:PM ⊥QN.(2)(2019 山·西太原检测 )如图,直三棱柱 ABC -A 1B 1C 1中,AA 1=AB = AC =1,E ,F 分别是 CC 1,BC 的中点,AE ⊥A 1B 1,D 为棱 A 1B 1上的点,求证:DF ⊥AE.(3)在正方体 ABCD -A 1B 1C 1D 1中,求证: BD 1⊥平面 ACB 1. (4)(2019 河·南六市一模 )在如图所示的几何体中, ABC -A 1B 1C 1为三棱柱, 且 AA 1⊥平面 ABC ,四边形 ABCD 为平行四边形, AD =2CD ,∠ADC = 60°. 若 AA 1= AC ,求证: AC 1⊥平面 A 1B 1CD.微专题 3:证明面面垂直(5)已知正方体 ABCD -A 1B 1C 1D 1中,E ,F 分别是 BB 1,CD 的中点, 求证:平面 DEA ⊥平面 A 1FD 1.(2)在正方体 AC 1 中,M ,点,求证:平面 AMN ∥平N ,E ,F 分别是 A 1B 1,A 1D 1,B 1C 1,C 1D 1 的中 EFDB.思考题 1 (1)如图所示, 平面PAD ⊥平面 ABCD ,ABCD 为正方形,△ PAD 是直角三角形, 且 PA =AD =2,E ,F ,G 分别是线段 PA ,PD ,CD 的中点, 求证:平面 EFG ∥平面 PBC.微专题 2:证明线面垂直若不存在,说明理由.专题二 求解异面直线所成角和线面角问题题型一 异面直线所成的角(1)在棱长为 2 的正方体 ABCD -A 1B 1C 1D 1中,O 是底面 ABCD 的中心, E ,F 分别1(6)如图,四边形 ABCD 为正方形, PD ⊥平面 ABCD ,PD ∥QA ,QA =AB = 2 PD ,求证:平面 PQC ⊥平面 DCQ.思考题 2 (1)(2019 北·京东城区模拟 )如图,在四棱锥 P-ABCD 中,底 面 ABCD 是正方形,侧棱 PD ⊥底面 ABCD ,PD =DC ,E 是 PC 的中点,作 EF ⊥BP 交 BP 于点 F ,求证: PB ⊥平面 EFD.(2)(2019济·南质检)如图,在三棱锥 P -ABC 中,AB =AC ,D 为 BC 的 中点, PO ⊥平面 ABC ,垂足 O 落在线段 AD 上.已知 BC =8,PO =4,AO =3,OD =2.①证明: AP ⊥BC ;②若点 M 是线段 AP 上一点,且 AM =3,试证明平面 AMC ⊥平面BMC.题型三 探究性问题在四棱锥 P -ABCD 中,PD ⊥底面 ABCD ,底面 ABCD 为正 方形, PD =DC ,E ,F 分别是 AB ,PB 的中点.(1)求证: EF ⊥CD ;(2)在平面 PAD 内是否存在一点 G ,使 GF ⊥ 平面 PCB若. 存在,确定 G 点的位置;若不存在,试说明理由.思考题 3 (2019 ·山西长治二模 )如图所示,四棱锥 P -ABCD 的底面 是边长为 1的正方形, PA ⊥CD ,PA =1,PD = 2,E为 PD 上一点, PE = 2ED.(1)求证: PA ⊥平面 ABCD ; (2)在侧棱PC 上是否存在一点 F ,使得 BF ∥ 平面 AEC 若存在,指出 F 点的位置,并证明;是 CC 1,AD 的中点,则异面直线 OE 和 FD 1 所成的角的余弦值等于 .(2)(2019 安·徽知名示范高中联合质检 )若在三棱柱 ABC -A 1B 1C 1中,∠A 1AC=∠BAC =60°, 平面 A 1ACC 1⊥平面 ABC ,AA 1=AC =AB ,则异面直线 AC 1与 A 1B 所成角的余弦值为思考题 1 (2019·湖南雅礼中学期末 )如图 1,在矩形 ABCD 中,AB =2,BC =1,E 是的中点;如图 2,将△DAE 沿 AE 折起,使折后平面 DAE ⊥平面 ABCE ,则异面直线 AE 和 所成角的余弦值为(1)(2019 山·东荷泽期末 )在斜三棱柱 ABC -A 1B 1C 1中,侧棱 AA 1⊥平面 AB 1C 1, △AB 1C 1为等边三角形, B 1C 1=2AA 1=2,则直线 AB 与平面 B 1C 1CB 所成角的正切值为 ((2)如图,在正方体 ABCD -A 1B 1C 1D 1中,点O 为线段 BD 的中点.设点 P 在线段 CC 1上,直线 OP 与平面 A 1BD 所成的角为 α,则 sin α的取值范围是 B .[ 36, 1] C .[ 36,232]D .思考题 2 (1)(2019 河·北石家庄一模 )如图所示,在三棱柱中,侧棱垂直于底面,底面是边长为 2 的正三角形,侧棱长为 面 AB 1C 1 所成的角的大小为(2)把正方形 ABCD 沿对角线 AC 折起,当以 A ,B ,C ,D 四点为顶点的三棱锥体积最大时, 直线 BD 和平面 ABC 所成的角的大小为 ( )题型三 向量法求线面角DCBD ()A .[ 33, 1]22 [232,1]A .90°B .60°C . 45°D . 30°)ABC -3,则 BB 1与(1)(2019河·南郑州月考)如图,已知四棱锥P-ABCD 的底面ABCD是边长为2的正方形,PA=PD=5,平面ABCD⊥平面PAD,M 是PC 的中点,O是AD的中点,则直线BM与平面PCO所成角的正弦值是.(2)如图,菱形ABCD中,∠ ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=2,CF=3.若直线FO 与平面BED所成的角为45°,则AE = ______ .思考题 3 (1)正四棱锥 S -ABCD 中,O 为顶点 S 在底面上的射影, P 为侧棱SD 的中点, 且 SO = OD ,则直线 BC 与平面 PAC 所成的角是 .(2) (2019 河·南百校联盟联考 )已知斜四棱柱 ABCD -A 1B 1C 1D 1 的各棱长均为 2,∠A 1AD = 60°,∠ BAD = 90°,平面 A 1ADD 1⊥平面 ABCD ,则直线 BD 1 与平面 ABCD 所成的角的正切值为 ()是边长为 2的正方形, PA ⊥ BD.①求证: PB =PD ;②若 E ,F 分别为 PC ,AB 的中点, EF ⊥平面 PCD ,求直线 PB 与平面PCD 所成角的大小.(2)(2019 湖·南长郡中学选拔考试 )如图,在直三棱柱 ABC-A 1B 1C 1中,BA =BC =5,AC =8,D 为线段 AC 的中点.①求证: BD ⊥A 1D ;4②若直线 A 1D 与平面 BC 1D 所成角的正弦值为 5,求 AA 1的长.思考题 4 (2019 ·石家庄质检二 )如图,三棱柱 ABC -A 1B 1C 1 中,侧面BB 1C 1C 为∠CBB 1=60°的菱形, AB =AC 1.(1)证明:平面 AB 1C ⊥平面 BB 1C 1C ;(2)若 AB ⊥B 1C ,直线 AB 与平面 BB 1C 1C 所成的角为 30°,求直线 AB 1 与平面 A 1B 1C 所成角的正弦值.专题三 求解二面角问题 题型一 定义法求二面角(1)(2019 台·州一模 )在边长为ABC 中,AD ⊥BC 于点 D ,沿 AD 折成二面角1(1)(2019太·原模拟一 )如图,在四棱锥 P -ABCD 中,底面 ABCDa 的等边三角B -AD -C ,若时BC=2a,则二面角B-AD-C 的大小为.(2)如图,二面角α-l-β的大小是60°,线段ABα,B∈l,AB与l 所成的角为30°,则AB 与平面β所成的角的正弦值是(3)已知三棱锥P-ABC的所有顶点都在表面积为16π的球O的球面上,AC 为球O的直径.当三棱锥P-ABC的体积最大时,设二面角P-AB-C的大小为θ,则sin θ=( )思考题 1 (1)如图,在矩形ABCD中,AB=2,AD=3,点E为AD 的中点,现分别沿BE,CE将△ABE,△DCE翻折,使得点A,D 重合于F,此时二面角E-BC-F的余弦值为( )(2)如图,设AB为圆锥PO的底面直径,PA为母线,点C在底面圆周上,题型二向量法求二面角若PA=AB=2,AC=BC,则二面角P-AC-B的正切值是.(1)已知点E,F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的锐二面角的正切值为.(2)(2019河·南安阳)二面角的棱上有A,B两点,直线AC,BD分别在这个A.150°B.45°C.60°D.120°二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2 17,则该二面角的大小为( )思考题 2 (1)设平面α的一个法向量为n1=(1,2,-2),平面β的一个法向量为n2=(-22,-4,k),若α和β所成的锐二面角的余弦值为3,则k=(2)(2019 辽·宁丹东模拟)如图,正方形A1BCD折成直二面角 A-BD-C,则二面角A-CD-B 的余弦值是.(3)(2019 广·东中山模拟)在矩形ABCD中,已知AB=2,AD= 2 2,M,N分别为AD和BC的中点,沿MN把平面ABNM折起,若折起后|AC| =6,则二面角A-MN-C的大小为( )A.30°B.45°C.60° D.90°(2019 ·惠州二次调研)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ ABC=60°,PA⊥PB,PC=2.(1)求证:平面PAB⊥平面ABCD;(2)若PA=PB,求二面角A-PC-D 的余弦值.思考题 3 (2019 ·河北五一名校联考)在斜三棱柱(侧棱不垂直于底面)ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,底面△ABC是边长为 2 的正三角形,A1A=A1C,A1A⊥ A1C.(1)求证:A1C1⊥B1C;(2)求二面角B1-A1C-C1 的正弦值.题型三空间角的综合问题(2019 ·唐山五校联考)如图,在四棱锥P-ABCD中,ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD,中点.(1)求证:平面EAC⊥平面PBC;(2)若二面角P-AC-E 的余弦值为36,求直线PA与平面EAC所成角的正弦值.思考题 4 (2019·江南十校素质检测)如图,在以为顶点的五面体中,平面CDEF⊥平面四边形,且∠BCD=45°.ABCD,FC=FB,(1)求证:CD⊥BF;(2)若AB=2EF=2,BC=2,直线BF与平面ABCD所成角为45°,求平面ADE与平面BCF 所成锐二面角的余弦值.专题四综合问题题型一空间的距离(1)(2019 江·西九江期末)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD为正方形,E为CD的中点,F为PA的中点,且PA=AB=2.则点P到平面BEF的距离为( )(2)已知正方形ABCD的边长为4,CG⊥平面ABCD,CG=2,E,F 分别是AB,AD的中点,求点 B 到平面GEF的距离.思考题 1 (1)(2019黑·龙江哈尔滨期末)三棱柱ABC -A1B1C1 底面为正三角形,侧棱与底面垂直,若AB=2,AA1=1,则点A到平面A1BC的距离为( )2.(2017 课·标全国Ⅰ,理)如图,在四棱锥P-ABCD中,∠BAP=∠CDP=90 °.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠ APD=90°,求二面角A-PB-C的余弦值.(2)(2019 湖·南长沙一模)正方体ABCD-A1B1C1D1的棱长为1,E,F分别为BB1,CD的中点,求点 F 到平面A1D1E 的距离.题型二探究性问题(2019 ·湖南重点校联考)如图,在四棱锥P-ABCD中,PA⊥ 平面ABCD,AD∥BC,AD⊥CD,且AD=CD=22,BC=4 2,PA=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M-AC-D 的大小为45°,如果存在,求BM 与平面MAC 所成角的正弦值,如果不存在,请说明理由.思考题 2 (2019 ·西安八校联考)已知几何体ABCC 1B1N的直观图如图所示,CB⊥底面ABB1N,且ABB1N 为直角梯形,侧面BB1C1C为矩形,AN=AB=BC=4,BB1=8,∠NAB=∠ABB1=90°.(1)连接B1C,若M 为AB的中点,在线段CB上是否存在一点P,使得MP∥平面CNB1 若存在,求出BP的长;若不存在,请说明理由.(2)求二面角C-NB1-C1 的余弦值.题型三翻折问题(2019 安·徽合肥调研性检测)平面四边形ABCD中,π∠DAB=2,AD=AB,△BCD为等边三角形.现将△ABD沿BD 翻折得到四面体P-BCD,点E,F,G,H 分别为PB,PD,CD,CB的中点.(1)求证:四边形EFGH为矩形;(2)当平面PBD⊥平面CBD时,求直线BG 与平面PBC所成角的正弦值.思考题 3 如图,在直角梯形 ABCP 中,∠ A =∠B = 90°,AB =BC =3,AP =6,CD ⊥AP 于 D ,现将 △PCD 沿线 段 CD 折成 60°的二面角 P -CD -A ,设 E ,F ,G 分别是 PD ,PC ,BC 的中点.(1)求证: PA ∥平面 EFG ;(2)若M 为线段 CD 上的动点,求直线 MF 与平面 EFG 所成角的最大角,并确定成最大角 时点 M 在什么位置高考题呈现1.(2014 全·国Ⅱ)如图,四棱锥 ⊥平面 ABCD ,E 为 PD的中点.(1)证明: PB ∥平面 AEC ; (2)设 AP =1,AD = 3,三棱锥PBC 的距离.2.(2016北·京)如图,在四棱锥 P -ABCD 中,平面 PAD ⊥平面 ABCD , PA ⊥PD ,PA = PD , AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证: PD ⊥平面 PAB ;(2)求直线 PB 与平面 PCD 所成角的正弦值;(3) 在棱 PA 上是否存在点 M ,使得 BM ∥平面 PCD 若存在,求A A M P 的值;若不存在,说明 P -ABCD 中,底面 ABCD 为矩形,PA 3P -ABD 的体积 V = 4 ,求 A 到理由.3.(2018 浙·江)如图,已知多面体ABC-A1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明: AB 1⊥平面 A 1B 1C 1;(2)求直线 AC 1 与平面 ABB 1所成的角的正弦值.4. (2016 课·标全国 Ⅲ)如图,四棱锥 P -ABCD 中,PA ⊥底面 ABCD , AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段 AD 上一点,AM=2MD , N 为 PC 的中点.(1)证明: MN ∥平面 PAB ;(2)求直线 AN 与平面 PMN 所成角的正弦值.5.(2018课·标全国Ⅰ)如图,四边形 ABCD 为正方形, E ,F 分别为 AD ,BC 的中点,以 DF 为折痕把△ DFC 折起,使点 C 到达点 P 的位置,且(1)证明:平面 PEF ⊥平面 ABFD ;(2)求 DP 与平面 ABFD 所成角的正弦值.6.(2016·课标全国 Ⅰ,理)如图,在以 A ,B , 为顶点的五面体中,面 ABEF 为正方形, AF =2FD , 面角 D -AF -E 与二面角C -BE - F 都是 60°.(1)证明:平面 ABEF ⊥ 平面 EFDC ;(2)求二面角 E -BC -A 的余弦值.7.(2017 课·标全国Ⅰ,理 )如图,在四棱锥 P -ABCD 中,AB ∥CD , 且∠BAP =∠CDP =90°.(1)证明:平面 PAB ⊥平面 PAD ;(2)若 PA =PD =AB =DC ,∠ APD =90°,求二面角 A -PB-C 的余 弦值.PF ⊥BF.C ,D ,E ,F∠AFD =90°,且8.(2018 课·标全国Ⅱ,理)如图,在三棱锥P-ABC中,AB =BC=2 2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M 在棱BC上,且二面角M-PA-C 为30°,求PC 与平面PAM 所成角的正弦值.9.(2018·北京,理)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G 分别为AA1,AC,A1C1,BB1的中点,AB=BC=5,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1 的余弦值;(3)证明:直线FG与平面BCD相交.10.(2017北·京,理)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M 在线段PB上,PD∥平面MAC,PA=PD=6,AB=4.(1)求证:M 为PB的中点;(2)求二面角B-PD-A 的大小;(3)求直线MC 与平面BDP所成角的正弦值.。
【考点梳理】一、考试内容1.平面。
平面的基本性质。
平面图形直观图的画法。
2.两条直线的位置关系。
平行于同一条直线的两条直线互相平行。
对应边分别平行的角。
异面直线所成的角。
两条异面直线互相垂直的概念。
异面直线的公垂线及距离。
3.直线和平面的位置关系。
直线和平面平行的判定与性质。
直线和平面垂直的判定与性质。
点到平面的距离。
斜线在平面上的射影。
直线和平面所成的角。
三垂线定理及其逆定理。
4.两个平面的位置关系。
平面平行的判定与性质。
平行平面间的距离。
二面角及其平面角。
两个平面垂直的判定与性质。
二、考试要求1.掌握平面的基本性质,空间两条直线、直线与平面、平面与平面的位置关系(特别是平行和垂直关系)以及它们所成的角与距离的概念。
对于异面直线的距离,只要求会计算已给出公垂线时的距离。
2.能运用上述概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题。
对于异面直线上两点的距离公式不要求记忆。
3.会用斜二测画法画水平放置的平面图形(特别是正三角形、正四边形、正五边形、正六边形)的直观图。
能够画出空间两条直线、两个平面、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
4.理解用反证法证明命题的思路,会用反证法证明一些简单的问题。
三、考点简析1.空间元素的位置关系2.平行、垂直位置关系的转化3.空间元素间的数量关系(1)角①相交直线所成的角;②异面直线所成的角——转化为相交直线所成的角;③直线与平面所成的角——斜线与斜线在平面内射影所成的角;④二面角——用二面角的平面角来度量。
(2)距离①两点之间的距离——连接两点的线段长;②点线距离——点到垂足的距离;③点面距离——点到垂足的距离;④平行线间的距离——平行线上一点到另一直线的距离;⑤异面直线间的距离——公垂线在两条异面直线间的线段长;⑥线面距离——平行线上一点到平面的距离;⑦面面距离——平面上一点到另一平面的距离;⑧球面上两点距离——球面上经过两点的大圆中的劣弧的长度。
1.空间几何体的结构特征 (1)多面体①棱柱的侧棱都平行且相等,上、下底面是全等的多边形. ②棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. ③棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形. (2)旋转体①圆柱可以由矩形绕其一边所在直线旋转得到. ②圆锥可以由直角三角形绕其直角边所在直线旋转得到.③圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上、下底中点连线所在直线旋转得到,也可由平行于底面的平面截圆锥得到. ④球可以由半圆或圆绕直径所在直线旋转得到. 2.空间几何体的直观图画空间几何体的直观图常用斜二测画法,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴、y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半. 3.柱、锥、台和球的表面积和体积名称几何体表面积体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台) S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 34.(1)与体积有关的几个结论①一个组合体的体积等于它的各部分体积的和或差. ②底面面积及高都相等的两个同类几何体的体积相等. (2)几个与球有关的切、接常用结论 a .正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .b .若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. c .正四面体的外接球与内切球的半径之比为3∶1. (3)斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x ,z 轴平行的线段的长度不改变,相对位置不改变.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,若∠A 的两边分别平行于x 轴和y 轴,且∠A =90°,则在直观图中,∠A =45°.( × ) (4)圆柱的侧面展开图是矩形.( √ )(5)台体的体积可转化为两个锥体的体积之差来计算.( √ ) (6)菱形的直观图仍是菱形.( × )1.(教材改编)下列说法正确的是________.①相等的角在直观图中仍然相等; ②相等的线段在直观图中仍然相等; ③正方形的直观图是正方形;④若两条线段平行,则在直观图中对应的两条线段仍然平行. 答案 ④解析 由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变.故④正确. 2.(教材改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为________ cm. 答案 2解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2(cm).3.(2014·陕西改编)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是________. 答案 2π解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.4.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D -ABC 的体积为________. 答案212a 3解析 O 是AC 的中点,连结DO ,BO ,△ADC ,△ABC 都是等腰直角三角形.因为DO =BO =AC 2=22a ,BD =a ,所以△BDO 也是等腰直角三角形.又因为DO ⊥AC ,DO ⊥BO ,AC ∩BO =O ,所以DO ⊥平面ABC ,即DO 就是三棱锥D -ABC 的高.因为S △ABC =12a 2,所以三棱锥D -ABC 的体积为13×12a 2×22a =212a 3.5. 用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是__________________________________________.答案 ①解析平面图形的直观图为正方形,且其边长为1,对角线长为2,所以原平面图形为平行四边形,且位于x轴上的边长仍为1,位于y轴上的对角线长为2 2.题型一空间几何体的结构特征例1(1)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是________.(2)下列结论:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④一个平面截圆锥,得到一个圆锥和一个圆台;⑤用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是球.其中正确结论的序号是________.(3)设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.答案(1)0(2)③⑤(3)①④解析(1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图1所示;③不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.图1图2(2)这条边若是直角三角形的斜边,则得不到圆锥,①错;这条腰若不是垂直于两底的腰,则得到的不是圆台,②错;圆柱、圆锥、圆台的底面都是圆面是显然成立的,③正确;如果用不平行于圆锥底面的平面截圆锥,则得到的不是圆锥和圆台,④错;只有球满足任意截面都是圆面,⑤正确.(3)命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.思维升华(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.答案②③④解析①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC1中的三棱锥C1-ABC,四个面都是直角三角形.题型二 空间几何体的直观图例2 已知△A ′B ′C ′是△ABC 的直观图,且△A ′B ′C ′是边长为a 的正三角形,求△ABC 的面积.解 建立如图所示的坐标系xOy ′,△A ′B ′C ′的顶点C ′在y ′轴上,边A ′B ′在x 轴上,把y ′轴绕原点逆时针旋转45°得y 轴,在y 轴上取点C 使OC =2OC ′,A ,B 点即为A ′,B ′点,长度不变.已知A ′B ′=A ′C ′=a ,在△OA ′C ′中,由正弦定理得OC ′sin ∠OA ′C ′=A ′C ′sin 45°,所以OC ′=sin 120°sin 45°a =62a ,所以原三角形ABC 的高OC =6a , 所以S △ABC =12×a ×6a =62a 2.引申探究1.若本例改为“已知△ABC 是边长为a 的正三角形,求其直观图△A ′B ′C ′的面积”,应如何求?解 由斜二测画法规则可知,直观图△A ′B ′C ′一底边上的高为32a ×12×22=68a , 故其面积S △A ′B ′C ′=12a ×68a =616a 2.2.本例中的直观图若改为如图所示的直角梯形,∠ABC =45°,AB =AD =1,DC ⊥BC ,则原图形的面积为________. 答案 2+22解析 如图①,在直观图中,过点A 作AE ⊥BC ,垂足为E ,则在Rt △ABE 中,AB =1,∠ABE =45°, ∴BE =22.而四边形AECD 为矩形,AD =1, ∴EC =AD =1.∴BC =BE +EC =22+1. 由此可还原原图形如图②,是一个直角梯形.在原图形中,A ′D ′=1,A ′B ′=2,B ′C ′=22+1,且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′,∴原图形的面积为S =12(A ′D ′+B ′C ′)·A ′B ′=12×⎝⎛⎭⎫1+1+22×2=2+22. 思维升华 用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连结而画出.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,C ′D ′=2 cm ,则原图形是________. ①正方形; ②矩形;③菱形; ④一般的平行四边形. 答案 ③解析 如图,在原图形OABC 中,应有OD =2O ′D ′=2×22=42(cm),CD =C ′D ′=2 cm. ∴OC =OD 2+CD 2=(42)2+22=6(cm),∴OA =OC ,∴四边形OABC 是菱形.题型三 求空间几何体的表面积例3 (1)(2014·山东)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 12解析 由题意知该六棱锥为正六棱锥,∴设正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1, ∴斜高h ′=12+(3)2=2,∴S 侧=6×12×2×2=12.(2)如图,斜三棱柱ABC —A ′B ′C ′中,底面是边长为a 的正三角形,侧棱长为b ,侧棱AA ′与底面相邻两边AB 与AC 都成45°角,求此斜三棱柱的表面积. 解 如图,过A ′作A ′D ⊥平面ABC 于D ,过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,连结A ′E ,A ′F ,AD . 则由∠A ′AE =∠A ′AF , AA ′=AA ′,又由题意知A ′E ⊥AB ,A ′F ⊥AC , 得Rt △A ′AE ≌Rt △A ′AF , ∴A ′E =A ′F ,∴DE =DF , ∴AD 平分∠BAC ,又∵AB =AC ,∴BC ⊥AD ,∴BC ⊥AA ′, 而AA ′∥BB ′,∴BC ⊥BB ′, ∴四边形BCC ′B ′是矩形,∴斜三棱柱的侧面积为2×a ×b sin 45°+ab =(2+1)ab . 又∵斜三棱柱的底面积为2×34a 2=32a 2, ∴斜三棱柱的表面积为(2+1)ab +32a 2.思维升华 (1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)在求多面体的侧面积时,应对每一侧面分别求解后再相加,对于组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32cm.(1)求三棱台的斜高;(2)求三棱台的侧面积和表面积.解 (1)设O 1、O 分别为正三棱台ABC —A 1B 1C 1的上、下底面正三角形的中心,如图所示,则O 1O =32,过O 1作O 1D 1⊥B 1C 1,OD ⊥BC ,则D 1D 为三棱台的斜高;过D 1作D 1E ⊥AD 于E ,则D 1E =O 1O =32,因O 1D 1=36×3=32,OD =36×6=3, 则DE =OD -O 1D 1=3-32=32. 在Rt △D 1DE 中, D 1D =D 1E 2+ED 2=⎝⎛⎭⎫322+⎝⎛⎭⎫322=3(cm). 故三棱台斜高为 3 cm.(2)设c 、c ′分别为上、下底的周长,h ′为斜高, S 侧=12(c +c ′)h ′=12(3×3+3×6)×3=2732 (cm 2),S 表=S 侧+S 上+S 下=2732+34×32+34×62=9934(cm 2). 故三棱台的侧面积为2732 cm 2,表面积为9934cm 2.题型四 求空间几何体的体积例4 (2015·山东改编)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为________. 答案42π3解析 如图,设等腰直角三角形为△ABC ,∠C =90°,AC =CB =2,则AB =2 2.设D 为AB 中点,则BD =AD =CD = 2.∴所围成的几何体为两个圆锥的组合体,其体积V =2×13×π×(2)2×2=42π3.思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(2014·课标全国Ⅱ改编)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为________. 答案 1解析 在正△ABC 中,D 为BC 的中点, 则有AD =32AB =3, S △DB 1C 1=12×2×3= 3.又∵平面BB 1C 1C ⊥平面ABC , AD ⊥BC ,AD ⊂平面ABC , ∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1底面上的高.∴V 三棱锥A -B 1DC 1=13S △DB 1C 1·AD =13×3×3=1.题型五 与球有关的切、接问题例5 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为________. 答案132解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52, OM =12AA 1=6, 所以球O 的半径R =OA =(52)2+62=132. 引申探究1.本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少?解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r .又正方体的棱长为4,故其体对角线长为43,从而V 外接球=43πR 3=43π×(23)3=323π, V 内切球=43πr 3=43π×23=32π3. 2.本例若将直三棱柱改为“正四面体”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少?解 设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 3.本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少?解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为 (32)2-(12×6)2=3, 因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为________.答案 2 解析 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为△ABC 所在圆面的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中点.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x 2,OC 1=R =1(R 为球的半径), ∴(x 2)2+(x 2)2=1,即x =2,则AB =AC =1, ∴S 矩形ABB 1A 1=2×1= 2.15.巧用补形法解决立体几何问题典例 如图:△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5.则此几何体的体积为________.思维点拨 将所求几何体补成一个直三棱柱,利用棱柱的体积公式即可求得该几何体的体积. 解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ·AA ′=12×24×8=96.答案96温馨提醒(1)补形法的应用思路:“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”.(2)补形法的应用条件:当某些空间几何体是某一个几何体的一部分,且求解的问题直接求解较难入手时,常用该法.[方法与技巧]求空间几何体的侧面积、体积的思想与方法(1)转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.(2)求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.[失误与防范]求空间几何体的表面积应注意的问题(1)求组合体的表面积时,要注意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.A 组 专项基础训练(时间:45分钟)1.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是________.答案 ①2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数为________.答案 10解析 如图,在五棱柱ABCDE -A 1B 1C 1D 1E 1中,从顶点A 出发的对角线有两条:AC 1,AD 1,同理从B ,C ,D ,E 点出发的对角线均有两条,共2×5=10(条).3.用平面α截球O 所得截面圆的半径为3,球心O 到平面α的距离为4,则此球的表面积为________________________________________________________________________. 答案 100π解析 依题意,设球半径为R ,满足R 2=32+42=25,∴S 球=4πR 2=100π.4.(2015·课标全国Ⅰ改编)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有________斛.答案 22解析 由题意知:米堆的底面半径为163(尺),体积V =13×14πR 2·h ≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛). 5.如图,在三棱柱ABC —A 1B 1C 1中,侧棱AA 1⊥平面AB 1C 1,AA 1=1,底面△ABC 是边长为2的正三角形,则此三棱柱的体积为________.答案 2 解析 因为AA 1⊥平面AB 1C 1,AB 1⊂平面AB 1C 1,所以AA 1⊥AB 1,又知AA 1=1,A 1B 1=2,所以AB 1=22-12=3,同理可得AC 1=3,又知在△AB 1C 1中,B 1C 1=2,所以△AB 1C 1的B 1C 1上的高为h =3-1=2,其面积S △AB 1C 1=12×2×2=2,于是三棱锥A —A 1B 1C 1的体积V 三棱锥A —A 1B 1C 1=V 三棱锥A 1—AB 1C 1=13×S △AB 1C 1×AA 1=23,进而可得此三棱柱ABC —A 1B 1C 1的体积V =3V 三棱锥A —A 1B 1C 1=3×23= 2. 6.(2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.答案 7解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7. 7.(2015·课标全国Ⅱ改编)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为________.答案 144π解析 如图,要使三棱锥O-ABC 即C-OAB 的体积最大,当且仅当点C 到平面OAB 的距离,即三棱锥COAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O-ABC 最大=V C-OAB 最大=13×S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S 球O =4πR 2=4π×62=144π.8.(2015·盐城一模)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.答案 932解析 设等边三角形的边长为2a ,球O 的半径为R ,则V 圆锥=13·πa 2·3a =33πa 3. 又R 2=a 2+(3a -R )2,所以R =233a , 故V 球=4π3·(233a )3=323π27a 3,则其体积比为932. 9.(教材改编)已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm 和 30 cm ,且其侧面积等于两底面面积之和,求棱台的高. 解 如图所示,三棱台ABC —A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得3×12×(20+30)×DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中, O 1O =DD 21-(OD -O 1D 1)2=43, 所以棱台的高为4 3 cm.10.如图所示,已知E 、F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱A 1A 、CC 1的中点,求四棱锥C 1—B 1EDF 的体积.解 方法一 连结A 1C 1,B 1D 1交于点O 1,连结B 1D ,EF ,过O 1作O 1H ⊥B 1D 于H .∵EF ∥A 1C 1,且A 1C 1⊄平面B 1EDF ,∴A 1C 1∥平面B 1EDF .∴C 1到平面B 1EDF 的距离就是A 1C 1到平面B 1EDF 的距离.∵平面B 1D 1D ⊥平面B 1EDF ,平面B 1D 1D ∩平面B 1EDF =B 1D ,∴O 1H ⊥平面B 1EDF ,即O 1H 为棱锥的高.∵△B 1O 1H ∽△B 1DD 1,∴O 1H =B 1O 1·DD 1B 1D =66a . ∴VC 1—B 1EDF =13S 四边形B 1EDF ·O 1H =13·12·EF ·B 1D ·O 1H =13·12·2a ·3a ·66a =16a 3. 方法二 连结EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a . 由题意得,VC 1—B 1EDF =VB 1—C 1EF +VD —C 1EF=13·S △C 1EF ·(h 1+h 2)=16a 3. B 组 专项能力提升(时间:30分钟)11.已知某圆锥体的底面半径r =3,沿圆锥体的母线把侧面展开后得到一个圆心角为23π的扇形,则该圆锥体的表面积是________.答案 36π解析 由已知沿圆锥体的母线把侧面展开后得到的扇形的弧长为2πr =6π,从而其母线长为l =6π2π3=9,从而圆锥体的表面积为S 侧+S 底=12×9×6π+9π=36π. 12.三棱锥P —ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D —ABE 的体积为V 1,P —ABC的体积为V 2,则V 1V 2=________. 答案 14解析 V 1=V D —ABE =V E —ABD =12V E —ABP =12V A —BEP =12×12V A —BCP =12×12V P —ABC =14V 2. 13.已知圆台的母线长为4 cm ,母线与轴的夹角为30°,上底面半径是下底面半径的12,则这个圆台的侧面积是________cm 2.答案 24π解析 如图是将圆台还原为圆锥后的轴截面,由题意知AC =4 cm ,∠ASO =30°,O 1C =12OA ,设O 1C =r , 则OA =2r ,又O 1C SC =OA SA=sin 30°,∴SC =2r ,SA =4r , ∴AC =SA -SC =2r =4 cm ,∴r =2 cm.∴圆台的侧面积为S =π(r +2r )×4=24π cm 2.14.(2015·课标全国Ⅰ)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥EACD的体积为63,求该三棱锥的侧面积.(1)证明因为四边形ABCD为菱形,所以AC⊥BD. 因为BE⊥平面ABCD,所以AC⊥BE.故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.(2)解设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt △AEC中,可得EG=32x. 由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=22x.由已知得,三棱锥EACD的体积V EACD=13×12AC·GD·BE=624x3=63.故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥EACD的侧面积为3+2 5.15.如图,△ABC中,∠ACB=90°,∠ABC=30°,BC=3,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C、M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体.(1)求该几何体中间一个空心球的表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积.解 (1)如图,连结OM ,则OM ⊥AB ,设OM =r ,OB =3-r ,在△BMO 中,sin ∠ABC =r 3-r =12⇒r =33. ∴S =4πr 2=43π. (2)∵△ABC 中,∠ACB =90°,∠ABC =30°,BC =3, ∴AC =1.∴V =V 圆锥-V 球=13π×AC 2×BC -43πr 3 =13π×1×3-43π×39=5327π.。
A BC第1题图ABCD第1题图立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD 把△ABC折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.2.如图,已知正四棱柱ABCD—A1B1C1D1的底面边长为3,侧棱长为4,连结A1B过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E。
(Ⅰ)求证:D1B⊥平面AEC;(Ⅱ)求三棱锥B—AEC的体积;(Ⅲ)求二面角B—AE—C的大小的正弦值.3.如图,正三棱柱ABC—A1B1C1的底面边长为1,点M在BC上,△AMC1是以M为直角顶点的等腰直角三角形.(I)求证:点M为BC的中点;(Ⅱ)求点B到平面AMC1的距离;(Ⅲ)求二面角M—AC1—B 的正切值. 4.如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求多面体ABCDE的体积;(Ⅲ)求二面角C-BE-D 的正切值.5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.(Ⅰ)求证:MN⊥AB;(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.6.在正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点。
(I)求二面角B1—MN—B的正切值;(II)证明:PB⊥平面MNB1;(III)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离。
2023初中数学立体几何复习题集附答案2023初中数学立体几何复习题集附答案在几何学中,立体几何是研究物体的形状、大小、位置以及它们之间的关系的分支。
它是数学中一个重要的领域,也是初中数学的一部分。
为了帮助学生更好地复习立体几何知识,本文将提供一套题集,并附带答案供参考。
一、长方体和正方体1. 已知一个正方体的边长为6cm,求其体积和表面积。
答案:该正方体的体积为216cm³,表面积为216cm²。
2. 一个长方体的长、宽、高分别为5cm、3cm、8cm,求其对角线的长度。
答案:该长方体的对角线长度为√98 cm。
3. 一个长方体的体积为192cm³,长为8cm,宽和高分别为a cm和b cm,若a:b=3:4,求该长方体的表面积。
答案:该长方体的表面积为264 cm²。
二、棱柱和棱锥1. 一个棱柱的底面为边长为5cm的正方形,高为8cm,请计算其体积和表面积。
答案:该棱柱的体积为200 cm³,表面积为220 cm²。
2. 已知等腰三角形的底边长为6cm,两腰长都为8cm,以底边为底的等腰三角棱锥,高为10cm,请计算其体积。
答案:该等腰三角棱锥的体积为80 cm³。
3. 一个棱柱的体积为300 cm³,底面为正方形,一条侧边的长度为10cm,求该棱柱的高。
答案:该棱柱的高为3 cm。
三、圆柱和圆锥1. 一个圆柱的底面半径为4 cm,高为10 cm,请计算其体积和表面积。
答案:该圆柱的体积为160π cm³,表面积为88π cm²。
2. 一个圆柱的底面半径为3 cm,高为8 cm,求其侧面积和全面积。
答案:该圆柱的侧面积为24π cm²,全面积为78π cm²。
3. 一个圆柱的体积为2000π cm³,底面积为100π cm²,求该圆柱的高。
答案:该圆柱的高为20 cm。
高考立体几何知识点总结整体知识框架:一、空间几何体(一)空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
(二)几种空间几何体的结构特征1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等;棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式ch S =直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征 2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。
2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高) 正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。
立体几何知识点和典型例题1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱ABCDE A'B'C'D'E'或用对角线的端点字母,如五棱柱AD'几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P A'B'C'D'E'几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台P A'B'C'D'E'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分(2)特殊几何体表面积公式(c 为底面周长,h 为高,h 为斜高,I 为母线) s 正棱锥侧面积2ch 'S 直棱柱侧面积ch S 圆柱侧2 rhs 圆锥侧面积rl1 ,S 正棱台侧面积2(G Q )hr r l台侧面积(rR)S 圆柱表 2(3)柱体、 S 圆锥表s 圆台表2 2r rl Rl RV 柱 Sh1V 台3(S锥体、台体的体积公式 V 圆柱Sh r 2h几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是 一个弓形。
立体几何基础A 组题一、选择题:1.下列命题中正确命题的个数是 ( ) ⑴ 三点确定一个平面⑵ 若点P 不在平面α内,A 、B 、C 三点都在平面α内,则P 、A 、B 、C 四点不在同一平面内 ⑶ 两两相交的三条直线在同一平面内⑷ 两组对边分别相等的四边形是平行四边形A.0B.1C.2D.3答案:A2.已知异面直线a 和b 所成的角为︒50,P 为空间一定点,则过点P 且与a 、b 所成的角都是︒30的直线条数有且仅有 ( ) A.1条 B.2条 C.3条 D.4条答案:B 3.已知直线⊥l 平面α,直线⊂m 平面β,下列四个命题中正确的是 ( ) (1) 若βα//,则m l ⊥ (2) 若βα⊥,则m l // (3) 若m l //,则βα⊥ (4) 若 m l ⊥,则βα//A.(3)与(4)B.(1)与(3)C.(2)与(4)D.(1)与(2)答案:B4.已知m 、n 为异面直线,⊂m 平面α,⊂n 平面β,l =βα ,则l ( ) A.与m 、n 都相交 B.与m 、n 中至少一条相交 C.与m 、n 都不相交 D.至多与m 、n 中的一条相交答案:B5.设集合A={直线},B={平面},B A C =,若A a ∈,B b ∈,C c ∈,则下列命题中的真命题是 ( )A. c a b a b c ⊥⇒⎭⎬⎫⊥// B.c a c b b a //⇒⎭⎬⎫⊥⊥ C.c a b c b a //////⇒⎭⎬⎫ D. c a b c b a ⊥⇒⎭⎬⎫⊥//答案:A6.已知a 、b 为异面直线,点A 、B 在直线a 上,点C 、D 在直线b 上,且AC=AD ,BC=BD ,则直线a 、b 所成的角为 ( ) A. ︒90 B. ︒60 C. ︒45 D. ︒30答案:A7.下列四个命题中正确命题的个数是 ( ) 有四个相邻侧面互相垂直的棱柱是直棱柱 各侧面都是正方形的四棱柱是正方体底面是正三角形,各侧面都是等腰三角形的三棱锥是正三棱锥A.1个B.2个C.3个D.0个答案:D8.设M={正四棱柱},N={长方体},P={直四棱柱},Q={正方体},则这些集合之间关系是 ( ) A.Q M N P B.Q M N P C.Q N M P D.Q N M P答案:B9.正四棱锥P —ABCD 中,高PO 的长是底面长的21,且它的体积等于334cm ,则棱AB 与侧面PCD 之间的距离是 ( ) A.cm 2 B. cm 2 C. cm 1 D.cm 22答案:A10.纬度为α的纬圈上有A 、B 两点,弧在纬圈上,弧AB 的长为απcos R (R 为球半径),则A 、B 两点间的球面距离为 ( )A. R πB. R )(απ-C. R )2(απ-D. R )2(απ-答案:D11.长方体三边的和为14,对角线长为8,那么 ( ) A.它的全面积是66 B.它的全面积是132C.它的全面积不能确定D.这样的长方体不存在答案:D12.正四棱锥P —ABCD 的所有棱长都相等,E 为PC 的中点,那么异面直线BE 与PA 所成角的余弦值等于( )A.21B. 22C. 32D. 33答案:D13.用一个过正四棱柱底面一边的平面去截正四棱柱,截面是 ( )A.正方形B.矩形C.菱形D.一般平行四边形答案:B二、填空题:14.正方体1111D C B A ABCD -中,E 、F 、G 分别为AB 、BC 、CC 1的重点,则EF 与BG 所成角的余弦值为________________________答案:510 15.二面角βα--a 内一点P 到两个半平面所在平面的距离分别为22和4,到棱a 的距离为24,则这个二面角的大小为__________________答案:︒︒16575或16.四边形ABCD 是边长为a 的菱形,︒=∠60BAD ,沿对角线BD 折成︒120的二面角A —BD —C 后,AC 与BD 的距离为_________________________答案:a 43 17.P 为︒120的二面角βα--a 内一点,P 到α、β的距离为10,则P 到棱a 的距离是_________________答案:3320 18.如图:正方形ABCD 所在平面与正方形ABEF 所在平面成︒60的二面角,则异面直线AD 与BF 所成角的余弦值是______________________答案:4219.已知三棱锥P —ABC 中,三侧棱PA 、PB 、PC 两两互相垂直,三侧面与底面所成二面角的大小分别为γβα,,,则=++γβα222cos cos cos _______________答案:1 20.若四面体各棱的长是1或2,且该四面体不是正四面体,则其体积的值是_____________(只需写出一个可能的值)。
高考数学一轮复习立体几何多选题知识点总结及解析一、立体几何多选题1.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC 【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH 的边长为()220a a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A 选项,由空间中两点间的距离公式可得2AE AF EF a ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由11110m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-,设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-, 由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--,()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,23CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 6θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.2.已知三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,其长度分别为a ,b ,c .点A 在底面BCD 内的射影为O ,点A ,B ,C ,D 所对面的面积分别为A S ,B S ,C S ,D S .在下列所给的命题中,正确的有( ) A .2A BCO D S SS ⋅=; B .3333A B C D S S S S <++;C .若三条侧棱与底面所成的角分别为1α,1β,1γ,则222111sin sin sin 1αβγ++=;D .若点M 是面BCD 内一个动点,且AM 与三条侧棱所成的角分别为2α,2β,2γ,则22cos α+2222cos cos 1βγ+=.【答案】ACD 【分析】由Rt O OA '与Rt O AD '相似,得边长关系,进而判断A 正确;当M 与O 重合时,注意线面角与线线角的关系,即可得C 正确;构造长方体,建立直角坐标系,代入夹角公式计算可得D 正确;代入特殊值,可得B 错误. 【详解】由三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,则将三棱锥A BCD -补成长方体ABFC DGHE -,连接DO 并延长交BC 于O ', 则AO BC ⊥.对A :由Rt O OA '与Rt O AD '相似,则2O A O O O D '''=⨯又12A S BC O D '=⋅,12BCOS BC O O '=⋅, 22221124DS BC O A BC O A ⎛⎫''=⋅=⋅ ⎪⎝⎭所以2A BCOD S SS ⋅=,故A 正确.对B :当1a b c ===时,33318B C D S S S ===,则33338B C D S S S ++=,而332333322288A S ⎛⎫=⨯⨯=> ⎪ ⎪⎝⎭,此时3333A B C D S S S S >++,故B 不正确. 对D :分别以AB ,AC ,AD 为x ,y ,z 轴,建立空间直角坐标系. 设(),,M x y z ,则(),,AM x y z =,222AM x y z =++,(),0,0AB a =,()0,,0AC b =,()0,0,AD c =所以222222222cos cos cos AM AB AM AC AM AD AM ABAM ACAM ADαβγ⎛⎫⎛⎫⎛⎫⋅⋅⋅++=++ ⎪ ⎪ ⎪ ⎪⎪⎪⋅⋅⋅⎝⎭⎝⎭⎝⎭2222221x y z AMAMAM=++=,所以D 正确.对C :当M 与O 重合时,AO ⊥面BCD ,由D 有222222cos cos cos 1αβγ++=,由各侧棱与底面所成角与侧棱与所AO 成角互为余角,可得C 正确. 故选:ACD.【点睛】关键点睛:本题考查空间线面角、线线角、面积关系的问题,计算角的问题关键是建立空间直角坐标系,写出点的坐标,利用数量积的公式代入计算,解决这道题目还要结合线面角与线线角的关系判断.3.如图所示,正三角形ABC中,D,E分别为边AB,AC的中点,其中AB=8,把△ADE 沿着DE翻折至A'DE位置,使得二面角A'-DE-B为60°,则下列选项中正确的是()A.点A'到平面BCED的距离为3B.直线A'D与直线CE所成的角的余弦值为5 8C.A'D⊥BDD.四棱锥A'-BCED237【答案】ABD【分析】作AM⊥DE,交DE于M,延长AM交BC于N,连接A'M,A'N.利用线面垂直的判定定理判定CD⊥平面A'MN,利用面面垂直的判定定理与性质定理得到'A到平面面BCED的高A'H,并根据二面角的平面角,在直角三角形中计算求得A'H的值,从而判定A;根据异面直线所成角的定义找到∠A'DN就是直线A'D与CE所成的角,利用余弦定理计算即可判定B;利用勾股定理检验可以否定C;先证明底面的外接圆的圆心为N,在利用外接球的球心的性质进行得到四棱锥A'-BCED的外接球的球心为O,则ON⊥平面BCED,且OA'=OC,经过计算求解可得半径从而判定D.【详解】如图所示,作AM⊥DE,交DE于M,延长AM交BC于N,连接A'M,A'N.则A'M⊥DE,MN⊥DE, ,∵'A M∩MN=M,∴CD⊥平面A'MN,又∵CD⊂平面ABDC,∴平面A'MN⊥平面ABDC,在平面A'MN中作A'H⊥MN,则A'H⊥平面BCED,∵二面角A'-DE-B为60°,∴∠A'EF=60°,∵正三角形ABC中,AB=8,∴AN=43∴A'M3,∴A'H=A'M sin60°=3,故A正确;连接DN,易得DN‖EC,DN=EC=4,∠A'DN就是直线A'D与CE所成的角,DN=DA'=4,A'N=A'M3,cos∠A'DN=22441252448+-=⨯⨯,故B正确;A'D =DB =4,A'B=22121627A N BN +=+=',∴222A D DB A B '≠'+,∴A'D 与BD 不垂直,故C 错误’ 易得NB =NC =ND =NG =4,∴N 为底面梯形BCED 的外接圆的圆心, 设四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC , 若O 在平面BCED 上方,入图①所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()()22222433x x R +=-+=,解得23x =-,舍去;故O 在平面BCED 下方,如图②所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P , 则HP =x ,易得()()22222433x x R +=++=, 解得23x =, ∴244371699R ⨯=+=,237R ∴=,故D 正确. 故选:ABD .【点睛】本题考查立体几何中的折叠问题,涉及二面角问题,异面直线所成的角,用到线面、面面垂直的判定与性质及外接球的球心的性质和有关计算,余弦定理等,属综合性较强的题目,关键是利用线面垂直,面面垂直的判定和性质进行空间关系和结构的判定,注意球心在四棱锥的底面上方和下方的讨论与验证.4.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P P 点有且只有一个 B .若12A P ,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 2D .若12A P 且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 2P 与B 或D 重合,利用12sin 60A P r =︒,求出6r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =P 在以1A 3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 60333A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.5.已知四面体ABCD 的所有棱长均为2,则下列结论正确的是( ) A .异面直线AC 与BD 所成角为60︒B .点A 到平面BCD 的距离为3C .四面体ABCDD .动点P 在平面BCD 上,且AP 与AC 所成角为60︒,则点P 的轨迹是椭圆 【答案】BC 【分析】在正四面体中通过线面垂直可证得AC ⊥BD ,通过计算可验证BC,通过轨迹法可求得P 的轨迹为双曲线方程即可得D 错误. 【详解】取BD 中点E ,连接,AE CE ,可得BD ⊥面ACE ,则AC ⊥BD ,故A 错误;在四面体ABCD 中,过点A 作AF ⊥面BCD 于点F ,则F 为为底面正三角形BCD 的重心,因为所有棱长均为2,AF ==即点A 到平面BCD ,故B 正确;设O 为正四面体的中心则OF 为内切球的半径,OA 我外接球的半径, 因为11433A BCD BCD BCD V S AF S OF -=⋅=⨯⋅△△,所以4AF OF =,即OF AO =所以四面体ABCD 的外接球体积334433V R OA ππ===,故C 正确;建系如图:0,0,,0,,033A C ⎛⎛⎫⎪ ⎪⎝⎭⎝⎭,设(,,0)P x y ,则,,AP x y AC →→⎛⎛== ⎝⎭⎝⎭,因为cos 60AP AC AP AC →→→→⋅=24192y +=,即833y +,平方化简可得:2240039y x y ---,可知点P 的轨迹为双曲线,故D 错误. 故选:BC .【点睛】方法点睛:立体几何中动点轨迹的求解问题,解决此类问题可采用空间向量法,利用空间向量法表示出已知的角度或距离的等量关系,从而得到轨迹方程.6.如图,已知四棱锥P ABCD -所有棱长均为4,点M 是侧棱PC 上的一个动点(不与点,P C 重合),若过点M 且垂直于PC 的截面将该四棱锥分成两部分,则下列结论正确的是( )A .截面的形状可能为三角形、四边形、五边形B .截面和底面ABCD 所成的锐二面角为4π C .当1PM =时,截面的面积为52D .当2PM =时,记被截面分成的两个几何体的体积分别为()1212,>V V V V ,则123=V V 【答案】BCD 【分析】点M 是侧棱PC 上的一个动点,根据其不同位置,对选项逐一进行判断即可. 【详解】A 选项中,如图,连接BD ,当M 是PC 中点时,2MC =,由题意知三角形PDC 与三角形PBC 都是边长为4的正三角形,所以DM PC ⊥,BM BC ⊥,又DM ,BM 在面MBD 内,且相交,所以PC ⊥平面PBD ,三角形MBD 即为过点M 且垂直于PC 的截面,此时是三角形,点M 向下移动时,2MC <,如图,仍是三角形;若点M 由中点位置向上移动,2MC >,在平面PDC 内作EM PC ⊥,交PD 于E ,在平面PBC 内作FM PC ⊥交PB 于F ,平面MEF 交平面PAD 于EG ,交PAB 于FH ,即交平面ABCD 于GH ,则五边形MEGHF 即为过点M 且垂直于PC 的截面,此时是五边形; 故截面的形状可能为三角形、五边形,A 错误;B 选项中,因为截面总与PC 垂直,所以不同位置的截面均平行,截面与平面ABCD 所成的锐角为定值,不妨取M 是中点,连接AC ,BD ,MB ,MD ,设AC ,BD 交点是N ,连接PN ,由题意知,四边形ABCD 是边长为4的菱形,BD AC ⊥,因为MB =MD ,所以MN BD ⊥,故MNC ∠是截面与平面ABCD 所成的锐角,过点M 作MQ AC ⊥,垂足Q.在三角形PAC中,MN =2,NQ=2,故在直角三角形MNQ 中,2cos 2NQ MNC MN ∠==,故4MNC π∠=,故B 正确;C 选项中,当PM =1时,M 是PC 中点,如图,五边形MEGHF 即为过点M 且垂直于PC 的截面,依题意,直角三角形PME 中,2cos PMPE EPM==∠,故E 为PD 的中点,同理,F是PB 的中点,则EF 是三角形PBD 的中位线,1222EF BD ==,G ,H 分别在,AD AB 的中点上,证明如下,当G ,H ,也是中点时,1//,2GH BD GH BD =,有//,22GH EF GH EF ==,四边形EFHG 是平行四边形.依题意,三角形PAC 中4,42PA PC AC ===,故PA PC ⊥,故PC GE ⊥,易见,正四棱锥中BD ⊥平面PAC ,故BD PC ⊥,GH PC ∴⊥,因为 ,GE GH 均在平面EFHG 内,且相交,所以PC ⊥平面EFHG ,故此时平面EFHG 和平面MEF 即同一平面.又BD ⊥平面PAC ,有GH ⊥面平面PAC ,GH GM ⊥,根据对称性有GH GE ⊥,四边形EFHG 是矩形. 即五边形MEGHF 即为过点M 且垂直于PC 的截面,平面图如下:依题意,22GH EF ==2EG FG ==,三角形高为()()22321h =-=,面积是122122⨯=,四边形面积是22242=,故截面面积是52 故C 正确;D 选项中,若PM =2,看B 选项中的图可知,21124M BCD P BCD P ABCD V V V V ---===,故剩余部分134P ABCD V V -=,所以123=V V ,故D 正确.故选:BCD. 【点睛】本题考查了棱锥的截面问题,考查了二面角、体积等计算问题,属于难题.7.已知棱长为1的正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,以下结论正确的是( ) A .四边形1BFD E 不一定是平行四边形 B .平面α分正方体所得两部分的体积相等 C .平面α与平面1DBB 不可能垂直 D .四边形1BFD E 面积的最大值为2 【答案】BD 【分析】由平行平面的性质可判断A 错误;利用正方体的对称性可判断B 正确;当E 、F 为棱中点时,通过线面垂直可得面面垂直,可判断C 错误;当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积最大,且最大值为2,可判断D 正确. 【详解】 如图所示,对于选项A,因为平面1111//ABB A CC D D ,平面1BFD E 平面11ABB A BE =,平面1BFD E平面111CC D D D F =,所以1//BE D F ,同理可证1//D E BF ,所以四边形1BFD E 是平行四边形,故A 错误; 对于选项B,由正方体的对称性可知,平面α分正方体所得两部分的体积相等,故B 正确; 对于选项C,在正方体1111ABCD A B C D -中,有1,AC BD AC BB ⊥⊥, 又1BD BB B ⋂=,所以AC ⊥平面1BB D , 当E 、F 分别为棱11,AA CC 的中点时, 有//AC EF ,则EF ⊥平面1BB D , 又因为EF ⊂平面1BFD E ,所以平面1BFD E ⊥平面1BB D ,故C 错误;对于选项D,四边形1BFD E 在平面ABCD 内的投影是正方形ABCD , 当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积有最大值,此时1212S D E BE =⋅=⋅=,故D 正确; 故选:BD. 【点睛】本题考查了正方体的几何性质与应用问题,也考查了点线面的位置关系应用问题,属于中档题.8.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π 【答案】BD 【分析】对于选项A ,取AD 中点E ,取1AB 中点K ,连结KN ,BK ,通过假设CN AB ⊥,推出AB ⊥平面BCNK ,得到AB BK ⊥,则22AK AB BK AB =+>,即可判断;对于选项B ,在判断A 的图基础上,连结EC 交MD 于点F ,连结NF ,易得1NEC MAB ∠=∠,由余弦定理,求得CN 为定值即可;对于选项C ,取AM 中点O ,1B O ,DO ,由线面平行的性质定理导出矛盾,即可判断; 对于选项D ,易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,说明此时AD 中点E 为外接球球心即可. 【详解】如图1,取AD 中点E ,取1AB 中点K ,连结EC 交MD 于点F ,连结NF ,KN ,BK ,则易知1//NE AB ,1//NF B M ,//EF AM ,//KN AD ,112NE AB =,EC AM = 由翻折可知,1MAB MAB ∠=∠,1AB AB =,对于选项A ,易得//KN BC ,则K 、N 、C 、B 四点共面,由题可知AB BC ⊥,若CN AB ⊥,可得AB ⊥平面BCNK ,故AB BK ⊥,则22AK AB BK AB =+>,不可能,故A 错误;对于选项B ,易得1NEC MAB ∠=∠,在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+, 故CN 为定值,故B 正确;如图2,取AD 中点E ,取AM 中点O ,连结1B E ,OE ,1B O ,DO ,,对于选项C ,由AB BM =得1B O AM ⊥,若1AM B D ⊥,易得AM ⊥平面1B OD ,故有AM OD ⊥,从而AD MD =,显然不可能,故C 错误;对于选项D ,由题易知当平面1AB M 与平面AMD 垂直时,三棱锥B 1﹣AMD 的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,表面积为4π,故D 正确. 故选:BD. 【点睛】本题主要考查了立体几何中的翻折问题以及空间图形的位置关系,考查了空间想象能力,属于较难题.9.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111D C B A 上的动点,给出下列四个结论中正确结论为( )A .若3PD =,则满足条件的P 点有且只有一个B .若3PD =,则点P 的轨迹是一段圆弧C .若PD ∥平面1ACB ,则DP 长的最小值为2D .若PD ∥平面1ACB ,且3PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π 【答案】ABD 【分析】若3PD =,由于P 与1B 重合时3PD =,此时P 点唯一;()313PD =∈,,则12PD =,即点P 的轨迹是一段圆弧;当P 为11A C 中点时,DP 有最小值为3=,可判断C ;平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为32=,可得D . 【详解】 如图:∵正四棱柱1111ABCD A B C D -的底面边长为2, ∴1122B D =11AA =, ∴()2212213DB =+=,则P 与1B 重合时3PD =,此时P 点唯一,故A 正确;∵()313PD =∈,,11DD =,则12PD =,即点P 的轨迹是一段圆弧,故B 正确; 连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,则当P 为11A C 中点时,DP 有最小值为()22213+=,故C 错误;由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为2221322122++=,面积为94π,故D 正确. 故选:ABD . 【点睛】本题考查了立体几何综合,考查了学生空间想象,逻辑推理,转化划归,数学运算的能力,属于较难题.10.如图,1111ABCD A B C D -为正方体,下列结论中正确的是( )A .11A C ⊥平面11BB D D B .1BD ⊥平面1ACBC .1BD 与底面11BCC B 2 D .过点1A 与异面直线AD 与1CB 成60角的直线有2条 【答案】ABD 【分析】由直线与平面垂直的判定判断A 与B ;求解1BD 与底面11BCC B 所成角的正切值判断C ;利用空间向量法可判断D . 【详解】对于A 选项,如图,在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111BB A C ⊥, 由于四边形1111D C B A 为正方形,则1111AC B D ⊥, 1111BB B D B =,因此,11A C ⊥平面11BB D D ,故A 正确;对于B 选项,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,因为四边形ABCD 为正方形,所以,AC BD ⊥,1D DD BD =,AC ∴⊥平面11BB D D , 1BD ⊂平面11BB D D ,1AC BD ∴⊥,同理可得11BD B C ⊥,1ACB C C =,1BD ∴⊥平面1ACB ,故B 正确;对于C 选项,由11C D ⊥平面11BCC B ,得11C BD ∠为1BD 与平面11BCC B 所成角, 且111112tan 2C D C BD BC ∠==,故C 错误; 对于D 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,0,0D 、()0,1,0C 、()11,1,1B ,()1,0,0DA =,()11,0,1CB =,设过点1A 且与直线DA 、1CB 所成角的直线的方向向量为()1,,m y z =, 则221cos ,21DA m DA m DA my z ⋅<>===⋅++, 1122111cos ,221CB m zCB m CB my z ⋅+<>===⋅⋅++, 整理可得2222341y z y z z ⎧+=⎨=++⎩,消去y 并整理得2210z z +-=,解得12z =-12z =-由已知可得3z ≤,所以,12z =-+22y =± 因此,过点1A 与异面直线AD 与1CB 成60角的直线有2条,D 选项正确. 故选:ABD. 【点睛】方法点睛:证明线面垂直的方法: 一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.。
立体几何复习(知识点+经典习题)
1.给出以下命题:
1) 若平面α内的两条相交直线分别平行于平面β内的两条直线,则平面α平行于平面β;
2) 若平面α外一条直线l与平面α内的一条直线平行,则直线l和平面α平行;
3) 设平面α和平面β相交于直线l,若平面α内有一条直线垂直于l,则平面α和平面β垂直;
4) 直线l与平面α垂直的充分必要条件是直线l与平面α内的两条直线垂直。
写出所有真命题的序号。
2.在空间中,以下命题正确的是:
A) 平行直线的平行投影重合;
B) 平行于同一直线的两个平面平行;
C) 垂直于同一平面的两个平面平行;
D) 垂直于同一平面的两条直线平行。
考点为二三视图与直观图及面积与体积。
基础训练】
1.如图,E和F分别为正方体的面ADD1A1和面BCC1B1
的中心,则四边形BFD1E在该正方体的面上的投影可能是什
么形状。
2.如果一个水平放置的图形的斜二测直观图是一个底角为45度,腰和上底均为1的等腰梯形,则原图形的面积是多少?
3.在三角形ABC中,AB=2,BC=1.5,∠ABC=120度。
若使其绕直线BC旋转一周,则它形成的几何体的体积是多少?
4.已知一个长方体共一顶点的三个面的面积分别是2,3,6,则这个长方体的对角线长是多少?若长方体共顶点的三个
侧面面积分别为3,5,15,则它的体积是多少?
5.正方体的内切球和外接球的半径之比为多少?
6.一个正方体的顶点都在球面上,它的棱长为2,则球的
表面积是多少?
7.若三个球的表面积之比是1:2:3,则它们的体积之比是
多少?
8.长方体的一个顶点上三条棱长分别为3、4、5,且它的
8个顶点都在同一球面上,则这个球的表面积是多少?
9.半径为R的半圆卷成一个圆锥,则它的体积为多少?
高考链接】
1.一个棱锥的三视图如图,则该棱锥的全面积为多少?
2.设某几何体的三视图如下,则该几何体的体积为多少?
1.在三棱锥ABCDE中,AB=AC=AD=2,BC=3,CD=4,BE=5,CE=6,DE=7,求∠AED的大小。
2.已知四棱锥ABCD-A1B1C1D1中,AB=AC=BD=CD=4,A1B1=5,A1C1=6,B1D1=8,C1D1=9,求∠A1B1C1的大小。
3.如图2,ABCD为平行六面体,E为BC的中点,F为
AE的中点,连接FD,求∠AFD的大小。
高考链接】
1.如图3,正方体ABCD-A1B1C1D1中,E为BC的中点,F为A1E的延长线上一点,连接FC1,求∠EFB1的大小。
2.如图4,四棱锥ABCD-A1中,AB=AC=3,CD=6,
AD=5,BC=4,A1B=7,A1C=8,B1D=10,C1D=12,求
∠A1B1C1的大小。
3.如图5,正方体ABCD-A1B1C1D1中,E为BC的中点,F为A1E的延长线上一点,连接AF和CC1,求∠AFC1的大小。
1.直角三角形ABC中,斜边AB与平面α垂直,AC与
BC分别与平面α成30度和45度,CD是斜边AB上的高。
求CD与平面α的夹角。
2.在正三棱柱V-ABC中,V在地面上的投影是底面正三
角形的中心,DE、EF、FD分别是VC、VA、AC的中点,P
为VB上任意一点。
求直线DE与PF所成的角的大小。
3.已知直线l与平面α的夹角为30度,且A在平面α上,A不在直线l上。
求直线l与平面α的任意一条垂线m所成角
的取值范围。
4.已知正四棱柱ABCD-A1B1C1D1的底面边长为2,高为
4.求异面直线BD1与AD所成角的正切值。
5.直三棱柱ABC-A1B1C1中,∠BAC为直角,
AB=AC=AA1.求异面直线BA1与AC1所成的角的大小。
6.已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,
A1在底面ABC上的投影为BC的中点。
求异面直线AB与
CC1所成角的余弦值。
7.已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E为
AA1的重心。
求异面直线BE与CD1所成角的余弦值。
8.已知正三棱柱ABC-A1B1C1的各条棱长都相等,M是
侧棱CC1的中点。
求异面直线AB1和BM所成角的大小。
9.在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1.求AC1与平面A1B1C1D1所成角的正弦值。
注意:将符号“”改为“与”,将符号“”改为“α”,删除
明显有问题的段落,并对语言进行简洁明了的改写。
)AD与平面BB
已知AD与平面BB所成角的大小为60度。
六棱锥底面为正六边形,PA垂直于平面ABC且PA等于
2AB,则结论B平面PAB垂直于平面PBC是正确的。
在三棱锥S-ABC中,底面ABC为边长为2的等边三角形,SA垂直于底面ABC且SA等于3,直线AB与平面SBC所成
角的正弦值为4/√73.
正方体ABCD-A中,BB1与平面ACD1所成角的余弦值
为3/√22.
在四棱锥P-ABCD中,底面ABCD为正方形,PD垂直于
平面ABCD且PD等于DC,E和F分别是AB和PB的中点。
结论EF垂直于CD是正确的。
在平面PAD内,点G使GF垂
直于平面PCB。
在四棱锥ABCDA1B1C1D1中,底面BCDA1为矩形,侧面ABC垂直于底面BCDA1且BC等于2,CD等于2,AB等于AC。
结论AD垂直于CE是正确的。
二面角C-AD-E的大小为90度。
正四棱柱ABCD-A1B1C1D1中,AA1等于2AB等于4,点E在CC1上且C1E等于3EC。
结论AC1垂直于BED是正确的。
二面角A1-DE-B的大小为120度。
在直三棱柱ABC-A1B1C1中,点D在B1C1上,A1D垂直于B1CE,F分别是A1B和A1C的中点。
结论EF平行于平面ABC是正确的,平面AFD垂直于平面B1C1是正确的。
在长方体ABCD-A1B1C1D1中,AB等于AD等于1,AA1等于2,M是棱CC1的中点。
二面角A1M和C1D1所成角的正切值为1/2.结论平面ABM垂直于平面AB1M1是正确的。
2.已知一个棱长为6cm的正方体塑料盒子(无上盖),上面放着一个半径为5cm的钢球。
求球心到盒底的距离。
答案:球心到盒底的距离为1cm。
3.设P、A、B、C是球O表面上的四个点,PA、PB、PC
两两垂直,且PA=PB=PC=1.求球的表面积。
答案:球的表面积为3π。
4.在棱长为1的正方体ABCD-A1B1C1D1的底面
A1B1C1D1内取一点E,使AE与AB、AD所成的角都是60°。
求线段AE的长度。
答案:线段AE的长度为√3.。