高二数学选修第三章空间向量与立体几知识点+习题+答案
- 格式:docx
- 大小:111.73 KB
- 文档页数:25
2019-2020学年高中数学选修2-1第三章《空间向量与立体几何》3.2立体几何中的向量方法(一) 学习目标 1.掌握空间点、线、面的向量表示.2.理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.3.能用向量法证明直线与直线、直线与平面、平面与平面的平行问题.知识点一 直线的方向向量与平面的法向量思考 怎样用向量来表示点、直线、平面在空间中的位置?答案 (1)点:在空间中,我们取一定点O 作为基点,那么空间中任意一点P 的位置就可以用向量OP →来表示.我们把向量OP →称为点P 的位置向量.(2)直线:①直线的方向向量:和这条直线平行或共线的非零向量.②对于直线l 上的任一点P ,存在实数t ,使得AP →=tAB →,此方程称为直线的向量参数方程.(3)平面:①空间中平面α的位置可以由α内两个不共线向量确定.对于平面α上的任一点P ,a ,b 是平面α内两个不共线向量,则存在有序实数对(x ,y ),使得OP →=x a +y b .②空间中平面α的位置还可以用垂直于平面的直线的方向向量表示.梳理 (1)直线的方向向量和平面的法向量设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为μ,v ,则知识点二思考 (1)设v 1=(a 1,b 1,c 1),v 2=(a 2,b 2,c 2)分别是直线l 1,l 2的方向向量.若直线l 1∥l 2,则向量v 1,v 2应满足什么关系.(2)若已知平面外一直线的方向向量和平面的法向量,则这两向量满足哪些条件可说明直线与平面平行?(3)用向量法处理空间中两平面平行的关键是什么?答案 (1)由直线方向向量的定义知若直线l 1∥l 2,则直线l 1,l 2的方向向量共线,即l 1∥l 2⇔v 1∥v 2⇔v 1=λv 2(λ∈R ).(2) 可探究直线的方向向量与平面的法向量是否垂直,进而确定线面是否平行.(3)关键是找到两个平面的法向量,利用法向量平行来说明两平面平行.梳理 利用空间向量解决平行问题时,第一,建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;第二,通过向量的运算,研究平行问题;第三,把向量问题再转化成相应的立体几何问题,从而得出结论.类型一 利用方向向量和法向量判定线面的位置关系例1 (1)设a ,b 分别是不重合的直线l 1,l 2的方向向量,根据下列条件判断l 1,l 2的位置关系: ①a =(4,6,-2),b =(-2,-3,1);②a =(5,0,2),b =(0,1,0);(2)设μ,v 分别是不同的平面α,β的法向量,根据下列条件判断α,β的位置关系:①μ=(-1,1,-2),v =(3,2,-12); ②μ=(3,0,0),v =(-2,0,0);(3)设μ是平面α的法向量,a 是直线l 的方向向量,根据下列条件判断平面α与l 的位置关系:①μ=(2,2,-1),a =(-6,8,4);②μ=(2,-3,0),a =(8,-12,0).解 (1)①∵a =(4,6,-2),b =(-2,-3,1),∴a =-2b ,∴a ∥b ,∴l 1∥l 2.②∵a =(5,0,2),b =(0,1,0),∴a ·b =0,∴a ⊥b ,∴l 1⊥l 2.(2)①∵μ=(-1,1,-2),v =⎝⎛⎭⎫3,2,-12, ∴μ·v =-3+2+1=0,∴μ⊥v ,∴α⊥β.②∵μ=(3,0,0),v =(-2,0,0),∴μ=-32v ,∴μ∥v ,∴α∥β. (3)①∵μ=(2,2,-1),a =(-6,8,4),∴μ·a =-12+16-4=0,∴μ⊥a ,∴l ⊂α或l ∥α.②∵μ=(2,-3,0),a =(8,-12,0).∴μ=14a ,∴μ∥a ,∴l ⊥α. 反思与感悟 利用直线的方向向量与平面的法向量判断直线与直线、直线与平面、平面与平面的位置关系是直线的方向向量与平面的法向量的基本应用,解决此类问题时需注意以下几点:(1)能熟练的判断两向量的共线与垂直;(2)搞清直线的方向向量,平面的法向量和直线、平面位置关系之间的内在联系;(3)将向量问题转化为几何问题时的等价性.跟踪训练1 根据下列条件,判断相应的线、面位置关系:(1)直线l 1与l 2的方向向量分别是a =(2,3,-1),b =(-6,-9,3);(2)直线l 1与l 2的方向向量分别是a =(-2,1,4),b =(6,3,3);(3)平面α与β的法向量分别是μ=(2,-3,4),v =(4,-2,1);(4)直线l 的方向向量,平面α的法向量分别是a =(0,-8,12),μ=(0,2,-3).解 (1)∵a =(2,3,-1),b =(-6,-9,3)∴a =-13b ,∴a ∥b ,∴l 1∥l 2. (2)∵a =(-2,1,4),b =(6,3,3),∴a ·b ≠0且a ≠k b (k ∈R ),∴a ,b 既不共线也不垂直,即l 1与l 2相交或异面,但不垂直.(3)∵μ=(2,-3,4),v =(4,-2,1),∴μ·v ≠0且μ≠k v (k ∈R ),∴μ与v 既不共线也不垂直,即α和β相交但不垂直.(4)∵a =(0,-8,12),μ=(0,2,-3),∴μ=-14a , ∴μ∥a ,即l ⊥α.类型二 求平面的法向量例2 如图,ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB=BC =1,AD =12,求平面SCD 与平面SBA 的法向量. 解 ∵AD 、AB 、AS 是三条两两垂直的线段,∴以A 为原点,以AD →、AB →、AS →的方向分别为x 轴,y 轴,z 轴的正方向建立坐标系,则A (0,0,0),D ⎝⎛⎭⎫12,0,0,C (1,1,0),。
第3课时 用向量方法求空间中的角课时过关·能力提升基础巩固1若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A.120° B.60°C.30°D.以上均错l 的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l 与平面α所成的角为90°-60°=30°.2设四边形ABCD ,ABEF 都是边长为1的正方形,FA ⊥平面ABCD ,则异面直线AC 与BF 所成的角等于 ( )A.45°B.30°C.90°D.60°,则A (0,0,0),F (0,0,1),B (0,1,0),C (1,1,0), ∴AC⃗⃗⃗⃗⃗ =(1,1,0),BF ⃗⃗⃗⃗⃗ =(0,-1,1). ∴AC ⃗⃗⃗⃗⃗ ·BF⃗⃗⃗⃗⃗ =-1. 设异面直线AC 与BF 所成的角为θ, ∴cos θ=|cos <AC ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ >|=12. 又∵θ∈(0°,90°],∴θ=60°.3若a =(λ,1,2)与b =(2,-1,-2)的夹角为钝角,则实数λ的取值范围为( ) A.λ<52B.λ<52,且λ≠-2C.λ≥52,且λ≠4D.λ≥52,得a ·b =2λ+(-1)-4<0,即λ<52.而|a |=√5+λ2,|b |=3,又<a ,b >为钝角,∴3√5+λ≠-1,即λ≠-2.4若斜线段与它在平面α内射影的长之比是2∶1,则AB 与平面α所成角为( ) A.π6 B.π3C.23πD.56πAB 与平面α所成角为θ,由题意知cos θ=12,则AB 与平面α所成角为π3.5若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的余弦值为 ( )A.-√11B.√11C.-√110D.√913<a ,n >=√4+9+9√16+1+1=3√11=-4√1133, 故l 与α所成角的余弦值为√1-(-4√1133)2=√91333.6在正方体ABCD-A 1B 1C 1D 1中,二面角A-BD 1-B 1的大小为 .,以点C 为原点建立空间直角坐标系.设正方体的边长为a ,则A (a ,a ,0),B (a ,0,0),D 1(0,a ,a ),B 1(a ,0,a ), ∴BA ⃗⃗⃗⃗⃗ =(0,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,a ,a ),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,a ). 设平面ABD 1的法向量为n =(x ,y ,z ), 则n ·BA ⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,a ,0)=ay=0, n ·BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,a )=-ax+ay+az=0. ∵a ≠0,∴y=0,x=z.令x=z=1,则n =(1,0,1),同理,求得平面B 1BD 1的法向量m =(1,1,0),∴cos <n ,m >=n ·m |n ||m |=12,∴<n ,m >=60°.而二面角A-BD 1-B 1为钝角,故为120°.°7在正四棱锥P-ABCD 中,高为1,底面边长为2,E 为BC 的中点,则异面直线PE 与DB 所成的角为 .,则B (1,1,0),D (-1,-1,0),E (0,1,0),P (0,0,1),∴DB⃗⃗⃗⃗⃗⃗ =(2,2,0),PE ⃗⃗⃗⃗⃗ =(0,1,-1). ∴cos <DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=DB ⃗⃗⃗⃗⃗⃗ ·PE ⃗⃗⃗⃗⃗⃗|DB ⃗⃗⃗⃗⃗⃗ ||PE ⃗⃗⃗⃗⃗⃗|=√8×√2=12.∴<DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=π.∴PE 与DB 所成的角为π.8在长方体ABCD-A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值为 .9如图,在长方体ABCD-A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 是棱AB 上的动点.若异面直线AD 1与EC 所成角为60°,试确定此时动点E 的位置.DA 所在直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴,建立空间直角坐标系.设E (1,t ,0)(0≤t ≤2),则A (1,0,0),D (0,0,0),D 1(0,0,1),C (0,2,0),D 1A ⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(1,t-2,0), 根据数量积的定义及已知得:1+0×(t-2)+0=√2×√1+(t -2)2·cos 60°, 所以t=1.所以点E 的位置是AB 的中点. 10如图,在四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC=∠BAD=π,PA=AD=2,AB=BC=1.求平面PAB 与平面PCD 所成二面角的余弦值.{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ }为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).因为AD ⊥平面PAB ,所以AD ⃗⃗⃗⃗⃗ 是平面PAB 的一个法向量,AD ⃗⃗⃗⃗⃗ =(0,2,0).因为PC⃗⃗⃗⃗⃗ =(1,1,-2),PD ⃗⃗⃗⃗⃗ =(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC ⃗⃗⃗⃗⃗ =0,m ·PD ⃗⃗⃗⃗⃗ =0. 即{x +y -2z =0,2y -2z =0. 令y=1,解得z=1,x=1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos <AD ⃗⃗⃗⃗⃗ ,m >=AD ⃗⃗⃗⃗⃗⃗·m |AD ⃗⃗⃗⃗⃗⃗ ||m |=√33,所以平面PAB 与平面PCD 所成二面角的余弦值为√33.能力提升1已知E ,F 分别是棱长为1的正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( ) A.23B.√23C.√53D.2√33D 为坐标原点,以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图,则A (1,0,0),E (12,1,0),F (0,1,12),D 1(0,0,1),∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AE ⃗⃗⃗⃗⃗ =(-12,1,0). 设平面AEFD 1的法向量为n =(x ,y ,z ),则 {n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗⃗ =0⇒{-x +z =0,-x 2+y =0,∴x=2y=z. 取y=1,则n =(2,1,2),而平面ABCD 的一个法向量为u =(0,0,1),∴cos <n ,u >=2,∴sin <n ,u >=√5.2在棱长为1的正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是A 1B 1,BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A.√32B.√1010C.35D.25,建立空间直角坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12),∴AM ⃗⃗⃗⃗⃗⃗ =(0,12,1),CN ⃗⃗⃗⃗⃗ =(1,0,12).∴AM ⃗⃗⃗⃗⃗⃗ ·CN ⃗⃗⃗⃗⃗ =12,|AM ⃗⃗⃗⃗⃗⃗ |=|CN ⃗⃗⃗⃗⃗ |=√52. ∴cos <AM ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ >=1252×52=25.3在正方体ABCD-A 1B 1C 1D 1中,EF ⊥AC ,EF ⊥A 1D ,则EF 与BD 1所成的角是( ) A.90°B.60°C.30°D.0°,以D 为原点建立空间直角坐标系,设正方体的棱长为a ,则A 1(a ,0,a ),D (0,0,0),A (a ,0,0),C (0,a ,0),B (a ,a ,0),D 1(0,0,a ), ∴DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(a ,0,a ),AC ⃗⃗⃗⃗⃗ =(-a ,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,-a ,a ). ∵EF ⊥AC ,EF ⊥A 1D ,设EF ⃗⃗⃗⃗⃗ =(x ,y ,z ), ∴EF ⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(a ,0,a )=ax+az=0, EF ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,0)=-ax+ay=0.∵a ≠0,∴x=y=-z (x ≠0).∴EF ⃗⃗⃗⃗⃗ =(x ,x ,-x ).∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-aEF ⃗⃗⃗⃗⃗ . ∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF ⃗⃗⃗⃗⃗ ,即BD 1∥EF. 故EF 与BD 1所成的角是0°.4二面角α-l-β内有一点P ,若点P 到平面α,β的距离分别是5,8,且点P 在平面α,β内的射影间的距离为7,则二面角的度数是( ) A.30°B.60°C.120°D.150°,PA ⊥α,PB ⊥β,∠ADB 为二面角α-l-β的平面角.由题意知PA=5,PB=8,AB=7, 由余弦定理,可得cos ∠APB=52+82-72=1,则∠APB=60°,故∠ADB=120°.5在空间中,已知平面α过点(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a>0),若平面α与平面xOy 的夹角为45°,则a= .6在长方体ABCD-A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为 .,可知∠CB 1C 1=60°,∠DC 1D 1=45°.设B 1C 1=1,则CC 1=√3=DD 1.∴C 1D 1=√3,则有B 1(√3,0,0),C (√3,1,√3),C 1(√3,1,0),D (0,1,√3).∴B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3),C 1D ⃗⃗⃗⃗⃗⃗⃗ =(-√3,0,√3). ∴cos <B 1C ⃗⃗⃗⃗⃗⃗⃗ ,C 1D ⃗⃗⃗⃗⃗⃗⃗ >=B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·C 1D⃗⃗⃗⃗⃗⃗⃗⃗⃗ |B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||C 1D ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2√6=√64.7如图,在三棱锥P-ABC 中,PA=PB=PC=BC ,且∠BAC=π2,则PA 与底面ABC 所成角的大小为 .,∵PA=PB=PC ,∴P 在底面上的射影O 是△ABC 的外心.又∠BAC=π2,∴O 在BC 上且为BC 的中点.∴AO 为PA 在底面上的射影,∠PAO 即为所求的角.在△PAO 中,PO=√32PB=√32PA ,∴sin ∠PAO=PO =√3.∴∠PAO=π3.8在正方体ABCD-A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值是 .,设棱长为1,则B (1,1,0),C 1(0,1,1),A 1(1,0,1),D (0,0,0). BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-1),BD ⃗⃗⃗⃗⃗⃗ =(-1,-1,0). 设平面A 1BD 的一个法向量为n =(1,x ,y ),设BC 1与平面A 1BD 所成的角为θ,n ⊥A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,n ⊥BD⃗⃗⃗⃗⃗⃗ , 所以n ·A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0, 所以{-1-y =0,-1-x =0,解得{x =-1,y =-1.所以n =(1,-1,-1),则cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,n >=BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|·|n |=-√63,所以sin θ=√63.所以cos θ=√1-(√63)2=√33.9如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.,则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2).设AC 的中点为M ,连接BM.∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥平面AA 1C 1C ,即BM ⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面AA 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n =(x ,y ,z ).A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0),∴n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y-2z=0,令z=1,解得x=0,y=1.∴n =(0,1,1).设法向量n 与BM⃗⃗⃗⃗⃗⃗ 的夹角为φ,二面角B 1-A 1C-C 1为θ,显然θ为锐角.∴cos θ=|cos φ|=|n ·BM ⃗⃗⃗⃗⃗⃗⃗ ||n ||BM ⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3.∴二面角B 1-A 1C-C 1的大小为π3.★10四棱柱ABCD-A 1B 1C 1D 1的侧棱AA 1垂直于底面,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=AB=AA 1=2BC ,E 为DD 1的中点,F 为A 1D 的中点. (1)求证:EF ∥平面A 1BC ;(2)求直线EF 与平面A 1CD 所成角θ的正弦值.E ,F 分别是DD 1,DA 1的中点,∴EF ∥A 1D 1.又A 1D 1∥B 1C 1∥BC ,∴EF ∥BC ,且EF ⊄平面A 1BC ,BC ⊂平面A 1BC , ∴EF ∥平面A 1BC.AB ,AD ,AA 1两两垂直,以AB 所在直线为x 轴,以AD 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,如图.设BC=1,则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),D 1(0,2,2),F (0,1,1),E (0,2,1), 故FE ⃗⃗⃗⃗⃗ =(0,1,0),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-2,1,0). 设平面A 1CD 的法向量n =(x ,y ,z ), 则{n ·A 1D⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,2,-2)=2y -2z =0,n ·CD ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-2,1,0)=-2x +y =0.取n =(1,2,2),则sin θ=|cos <n ,FE ⃗⃗⃗⃗⃗ >|=|n ·FE ⃗⃗⃗⃗⃗⃗|n ||FE ⃗⃗⃗⃗⃗⃗ || =|√1+4+4·√0+1+0|=23,故直线EF 与平面A 1CD 所成角θ的正弦值等于23.。
空间向量与立体几何一.空间向量及其运算1.空间向量及有关概念(1)共线向量定理:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
a 平行于b 记作a ∥b。
推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式 A O P O =a t+①其中向量a叫做直线l 的方向向量。
在l 上取a AB =,则①式可化为.)1(OB t OA t OP +-=②当21=t 时,点P 是线段AB 的中点,则 ).(21OB OA OP += ③①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式。
(2)向量与平面平行:如果表示向量a 的有向线段所在直线与平面α平行或a在α平面内,我们就说向量a 平行于平面α,记作a ∥α。
注意:向量a∥α与直线a ∥α的联系与区别。
共面向量:我们把平行于同一平面的向量叫做共面向量。
共面向量定理:如果两个向量a 、b 不共线,则向量p与向量a 、b 共面的充要条件是存在实数对x 、y ,使.b y a x p+=①推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y ,使,MB y MA x MP +=④或对空间任一定点O ,有.MB y MA x OM OP ++=⑤在平面MAB 内,点P 对应的实数对(x, y )是唯一的。
①式叫做平面MAB 的向量表示式。
又∵.,OM OA MA -=.,OM OB MB -=代入⑤,整理得.)1(OB y OA x OM y x OP ++--= ⑥由于对于空间任意一点P ,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P 就在平面MAB 内;对于平面MAB 内的任意一点P ,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量MA 、MB (或不共线三点M 、A 、B )确定的空间平面的向量参数方程,也是M 、A 、B 、P 四点共面的充要条件。
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.l 1的方向向量为v 1=(1,2,3),l 2的方向向量v 2=(λ,4,6),若l 1∥l 2,则λ=( )A .1B .2C .3D .4 【解析】 ∵l 1∥l 2,∴v 1∥v 2,则1λ=24,∴λ=2.【答案】 B2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A .相交 B .平行C .在平面内D .平行或在平面内【解析】 ∵AB→=λCD →+μCE →,∴AB →,CD →,CE →共面,则AB 与平面CDE 的位置关系是平行或在平面内.【答案】 D3.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1) B.⎝ ⎛⎭⎪⎫1,3,32 C.⎝⎛⎭⎪⎫1,-3,32 D.⎝⎛⎭⎪⎫-1,3,-32【解析】 对于B ,AP →=⎝⎛⎭⎪⎫-1,4,-12,则n ·AP →=(3,1,2)·⎝⎛⎭⎪⎫-1,4,-12=0, ∴n ⊥AP →,则点P ⎝⎛⎭⎪⎫1,3,32在平面α内.【答案】 B4.已知直线l 的方向向量是a =(3,2,1),平面α的法向量是u =(-1,2,-1),则l 与α的位置关系是( )A .l ⊥αB .l ∥αC .l 与α相交但不垂直D .l ∥α或l ⊂α【解析】 因为a ·u =-3+4-1=0,所以a ⊥u .所以l ∥α或l ⊂α.【答案】 D5.若u =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是( )A .(0,-3,1)B .(2,0,1)C .(-2,-3,1)D .(-2,3,-1)【解析】 同一个平面的法向量平行,故选D. 【答案】 D 二、填空题6.若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.【解析】 因为α⊥β,那么它们的法向量也互相垂直,则有-x-2-8=0,所以x =-10.【答案】 -107.若a =(2x ,1,3),b =(1,-2y ,9),且a 与b 为共线向量,则x =________,y =________.【解析】 由题意得2x 1=1-2y =39,∴x =16,y =-32.【答案】 16 -328.已知A (4,1,3),B (2,3,1),C (3,7,-5),点P (x ,-1,3)在平面ABC 内,则x =________.【解析】 AB→=(-2,2,-2),AC →=(-1,6,-8), AP→=(x -4,-2,0),由题意知A ,B ,C ,P 四点共面, ∴AP→=λAB →+μAC →=(-2λ,2λ,-2λ)+(-μ,6μ,-8μ)=(-2λ-μ,2λ+6μ,-2λ-8μ).∴⎩⎪⎨⎪⎧2λ+6μ=-2,-2λ-8μ=0,∴⎩⎪⎨⎪⎧λ=-4,μ=1,而x -4=-2λ-μ,∴x =11. 【答案】 11 三、解答题9.已知O ,A ,B ,C ,D ,E ,F ,G ,H 为空间的9个点(如图3-2-6所示),并且OE→=kOA →,OF →=kOB →,OH →=kOD →,AC →=AD →+mAB →,EG →=EH→+mEF →.求证: 【导学号:18490106】图3-2-6(1)A ,B ,C ,D 四点共面,E ,F ,G ,H 四点共面; (2)AC →∥EG →; (3)OG→=kOC →. 【解】 (1)由AC→=AD →+mAB →,EG →=EH →+mEF →,知A ,B ,C ,D 四点共面,E ,F ,G ,H 四点共面.(2)∵EG→=EH →+mEF →=OH →-OE →+m (OF →-OE →) =k (OD→-OA →)+km (OB →-OA →)=kAD →+kmAB → =k (AD →+mAB →)=kAC →, ∴AC→∥EG →. (3)由(2)知OG →=EG →-EO →=kAC →-kAO → =k (AC →-AO →)=kOC →. ∴OG→=kOC →. 10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,DC 的中点,求证:AE →是平面A 1D 1F 的法向量. 【证明】 设正方体的棱长为1,建立如图所示的空间直角坐标系,则A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,12,D 1(0,0,1),F ⎝ ⎛⎭⎪⎫0,12,0,A 1(1,0,1),AE →=⎝⎛⎭⎪⎫0,1,12,D 1F →=⎝⎛⎭⎪⎫0,12,-1,A 1D 1→=(-1,0,0).∵AE →·D 1F →=⎝⎛⎭⎪⎫0,1,12·⎝⎛⎭⎪⎫0,12,-1=12-12=0, 又AE →·A 1D 1→=0, ∴AE →⊥D 1F →,AE →⊥A 1D 1→. 又A 1D 1∩D 1F =D 1, ∴AE ⊥平面A 1D 1F , ∴AE →是平面A 1D 1F 的法向量. [能力提升]1.已知平面α的一个法向量是(2,-1,1),α∥β,则下列向量可作为平面β的一个法向量的是( )A .(4,2,-2)B .(2,0,4)C .(2,-1,-5)D .(4,-2,2)【解析】 ∵α∥β,∴β的法向量与α的法向量平行,又∵(4,-2,2)=2(2,-1,1),解得应选D.【答案】 D2.已知直线l 过点P (1,0,-1),平行于向量a =(2,1,1),平面α过直线l 与点M (1,2,3),则平面α的法向量不可能...是( )A .(1,-4,2) B.⎝ ⎛⎭⎪⎫14,-1,12 C.⎝ ⎛⎭⎪⎫-14,1,-12 D .(0,-1,1)【解析】 因为PM→=(0,2,4),直线l 平行于向量a ,若n 是平面α的法向量,则必须满足⎩⎪⎨⎪⎧n·a =0,n ·PM →=0,把选项代入验证,只有选项D不满足,故选D.【答案】 D3.若A ⎝⎛⎭⎪⎫0,2,198,B ⎝⎛⎭⎪⎫1,-1,58,C ⎝⎛⎭⎪⎫-2,1,58是平面α内的三点,设平面α的法向量a =(x ,y ,z ),则x ∶y ∶z =________.【解析】 因为AB →=⎝⎛⎭⎪⎫1,-3,-74,AC →=⎝⎛⎭⎪⎫-2,-1,-74,又因为a ·AB →=0,a ·AC →=0, 所以⎩⎪⎨⎪⎧x -3y -74z =0,-2x -y -74z =0,解得⎩⎪⎨⎪⎧x =23y ,z =-43y .所以x ∶y ∶z =23y ∶y ∶⎝ ⎛⎭⎪⎫-43y =2∶3∶(-4).【答案】 2∶3∶(-4)4.如图3-2-7,四棱锥P -ABCD 中,P A ⊥平面ABCD ,PB 与底面所成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,P A =BC =12AD =1.问:在棱PD 上是否存在一点E ,使得CE ∥平面P AB ?若存在,求出E 点的位置;若不存在,请说明理由. 【导学号:18490107】图3-2-7【解】 分别以AB ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系,如图,则P (0,0,1),C (1,1,0),D (0,2,0), 设E (0,y ,z ),则PE→=(0,y ,z -1), PD→=(0,2,-1), ∵PE→∥PD →,∴y (-1)-2(z -1)=0, ①∵AD→=(0,2,0)是平面P AB 的法向量, CE→=(-1,y -1,z ), ∴由CE ∥平面P AB, 可得CE→⊥AD →, ∴(-1,y -1,z )·(0,2,0)=2(y -1)=0, ∴y =1,代入①式得z =12.∴E 是PD 的中点, 即存在点E 为PD 中点时,CE ∥平面P AB .。
第三章 空间向量与立体几何空间向量的数乘运算 测试题姓名:_________班级:________ 得分:_______ 1. 下列命题中不正确的命题个数是( )①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 与不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 与b 所在直线平行。
A .1B .2C .3D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且P A ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB y AD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 与1CD 所形成角的余弦值为( ) A .1010 B . 15 C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的_ C _ D _ A _ P_ N _ B_ M3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.;221111111①(A A+A D +A B )=3(A B )()0;C ⋅-=1111②A A B A A 60;︒11向量与向量的夹角为AD A B ③ ⋅⋅11111立方体ABCD-A B C D 的体积为|AB AA AD |;④4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ; (2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a =-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( ) A .可构成直角三角形 B .可构成锐角三角形 C .可构成钝角三角形 D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( )A .[0,5]B .[1,5]C .(1,5)D .[1,25] 4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 . 5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1与侧面ABB 1A 1所成的角.3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=C 1 B 1 A 1B A2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值为( ) A .42 B .32 C .33 D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ; (2)求1C 到平面1A AB 的距离; (3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,13AC AA ==,∠ABC =60°. (1)证明:1AB A C ⊥;(2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面P AC .若存在,求S E :EC 的值; 若不存在,试说明理由.参考答案第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算§3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-.∵1122EN CD BA ===12AB -,CBA C 1B 1 A1 D 1C 1B 1A 1DABC_ C_ D_ A_S_ F_ B_ P_ N_ EEN PM PE =-=211326PC PC PC -=,连结AC ,则PC AC AP AB AD AP =-=+- ∴11()26MN AB AB AD AP =--+-=211366AB AD AP --+,∴211,,366x y z =-=-=.§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ;(2)1,2,CD x CD CC ==1设则 2CC =x, 111,BD AA C C BD A C ⊥∴⊥ 面 ,11:0x AC CD ∴⋅= 只须求满足, 设1,,A A a AD b DC c ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-, 令24260x x+-=,则2320x x --=,解得1x =,或23x =-(舍去),111,.A C C BD ∴=⊥1CD时能使平面CC §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.A2.D3.B4.165. (1)建系如图,则A (0,0,0) B (0,a ,0)A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1 则有1(,0,0)2MC =-(0,,0)AB a=,1)AA =, ∴10MC AB ⋅=,110MC AA ⋅=,所以,MC 1⊥平面ABB 1A 1.因此,AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.1(,)2a AC =-,(0,)2aAM =,A∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°.∴AC 1与侧面ABB 1A 1所成的角为30°.3.2立体几何中的向量方法1.A2.C3.(1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥, 所以DE AC ⊥,又1A D ⊥平面ABC , 以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()10,0,A t ,()10,2,C t ,()10,3,AC t =,()12,1,BA t =--,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得3t = 设平面1A AB 的法向量为(),,n x y z =,(13AA =,()2,2,0AB =,所以130220n AA y z n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,3,1n =-, 所以点1C 到平面1A AB 的距离1AC n d n⋅==221. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,3CA =-,()2,0,0CB =, 所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =, 故cos ,m n m n m n⋅<>==⋅77-,根据法向量的方向, 可知二面角1A A B C --7. 4.(1)三棱柱111ABC A B C -为直三棱柱,11AB AA AC AA ∴⊥⊥,,Rt ABC ∆,1,3,60AB AC ABC ==∠=︒,由正弦定理030ACB ∠=.090BAC ∴∠=AB AC ⊥即 .如右图,建立空间直角坐标系,则 1(0,0,0),(1,0,0)(0,3,0),(0,0,3)A B C A1(1,0,0),(0,3,3)AB AC ∴==, 110030(3)0AB AC ⋅=⨯+⨯+⨯-=, 1AB A C ∴⊥.(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量, 设平面1A BC 的法向量为(,,)n l m n =, 则10,0,130BC n AC n BC ⋅=⋅==-又(,,), 303,330l m l m n m m n ⎧-+=⎪∴∴==⎨-=⎪⎩. 不妨取1,(3,1,1)m n ==则,22222231101015cos ,5(3)11100m n m n m n ⋅⨯+⨯+⨯<>===⋅++⋅++.1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)2SD a =-,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. _ C_ A_S_ F_ BO(2)由题设知,平面PAC 的一个法向量(,0,)22DS a a =,平面DAC 的一个法向量002OS =(,,),设所求二面角为θ,则cos 2OS DS OS DSθ⋅==,得所求二面角的大小为30°. (3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且,0,),(0,,)2222DS a a CS a a ==-(.设,CE tCS = 则(,(1),)222BE BC CE BC tCS a t at =+=+=--,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面.(完)。
§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
描述:例题:高中数学选修2-1(人教B版)知识点总结含同步练习题及答案第三章 空间向量与立体几何 3.2 空间向量在立体几何中的应用一、学习任务1. 理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.2. 能用向量语言表述线线、线面、面面的垂直和平行关系.3. 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);能用向量方法判断一些简单的空间线面的平行和垂直关系.4. 能用向量方法解决线线、线面、面面的夹角的计算问题;体会向量方法在研究几何问题中的作用.二、知识清单异面直线所成的角线面角 二面角空间向量的应用三、知识讲解1.异面直线所成的角设直线 是异面直线,过空间一点 分别作直线 的平行线 ,我们把直线 所成的锐角或直角叫做异面直线 所成的角,或异面直线 的夹角.a ,b O a ,b ,a ′b ′,a ′b ′a ,b a ,b 如图,在正方体 中,求:(1)异面直线 与 所成的角;(2) 与 所成的角.解:(1)因为 ,而 ,所以 ,即 与 所成角为 .(2)如下图,连接 ,,因为 ,所以 与 所成的角即为与 所成的角.又 ,所以 为正三角形,所以 和 所成的角为ABCD −A 1B 1C 1D 1AB A 1D 1A D 1D C 1∥AB A 1B 1⊥A 1D 1A 1B 1⊥AB A 1D 1AB A 1D 190∘A B 1B 1D 1A ∥D B 1C 1A B 1A D 1D C 1A D 1A =A =D 1B 1B 1D 1△A B 1D 1A D 1A B 1A平面平行,或在平面内,则称直线和平面所成的角是,即 与 60A D 1D C 求直线 与 平面 AP P ∠AP B =∠AP Rt△AP D描述:例题:3.二面角从一条直线出发的两个半平面所组成的图形叫做二面角(dihedral angle).这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱 、面分别为 , 的二面角记作二面角.有时为了方便,也可在 , 内(棱以外的半平面部分)分别取点 , ,将这个二面角记作二面角.如果棱记作 ,那么这个二面角记作二面角或.在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线和,则射线和构成的叫做二面角的平面角.两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.AB αβα−AB −βαβP Q P −AB −Q l α−l −βP −l −Q α−l −βl O O αβl OA OB OA OB ∠AOB 如图,在正方体 中,,,, 分别是 ,, 和 的中点.(1)求证:;(2)求二面角 的平面角的正切值.解:(1)因为 , 均为所在棱的中点,所以 .而 ,所以 .又因为 , 均为所在棱的中点,所以 和 均为等腰直角三角形.所以 ,所以 , ,故.而 ,所以 .(2)在平面 中,过点 作 于点 ,连接 .由(1)知 ,又 ,所以 .ABCD −A 1B 1C 1D 1E F M N A 1B 1BC C 1D 1B 1C 1平面 MNF ⊥平面 ENF M −EF −N N F NF ⊥平面 A 1B 1C 1D 1MN ⊂平面 A 1B 1C 1D 1NF ⊥MN M E △MN C 1△NE B 1∠MN =∠NE =C 1B 145∘∠MNE =90∘MN ⊥NE MN ⊥平面 NEF MN ⊂平面 MNF 平面 MNF ⊥平面 NEF NEF N NG ⊥EF G MG MN ⊥平面 NEF EF ⊂平面 NEF MN ⊥EFEF ⊥ MNGM −EF −N ,并且 交坐标平面 AD ∥BC AD(2)求证:证明:建立如图所示的空间直角坐标系.平面 BDP ⊥使 和 成 角,求 、 间的距离.AB CD 60B D −→−−→−−→−22A−CD−E (3)求二面角立空间直角坐标系.()∴d=63 2。
高中数学人教a 版高二选修2-1_第三章_空间向量与立体几何_3.2第3课时 有答案(建议用时:45分钟)[学业达标]一、选择题1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( )A .30°B .150°C .30°或150°D .以上均不对【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且异面直线所成角的范围为⎝⎛⎦⎥⎤0,π2.应选A.【答案】 A2.已知A (0,1,1),B (2,-1,0),C (3,5,7),D (1,2,4),则直线AB 与直线CD 所成角的余弦值为( )A.52266B .-52266 C.52222D .-52222【解析】 AB→=(2,-2,-1),CD →=(-2,-3,-3), ∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=53×22=52266,∴直线AB ,CD 所成角的余弦值为52266. 【答案】 A3.正方形ABCD 所在平面外一点P ,P A ⊥平面ABCD ,若P A =AB ,则平面P AB 与平面PCD 的夹角为( )A .30°B .45°C .60°D .90°【解析】 如图所示,建立空间直角坐标系,设P A =AB =1.则A (0,0,0),D (0,1,0),P (0,0,1).于是AD→=(0,1,0).取PD 中点为E ,则E ⎝⎛⎭⎪⎫0,12,12,∴AE →=⎝ ⎛⎭⎪⎫0,12,12, 易知AD →是平面P AB 的法向量,AE →是平面PCD 的法向量,∴cos AD →,AE→=22, ∴平面PAB 与平面PCD 的夹角为45°. 【答案】 B4.如图3-2-28,在空间直角坐标系Dxyz 中,四棱柱ABCD -A 1B 1C 1D 1为长方体,AA 1=AB =2AD ,点E ,F 分别为C 1D 1,A 1B 的中点,则二面角B 1A 1B E 的余弦值为( )图3-2-28A .-33B .-32C.33D.32 【解析】 设AD =1,则A 1(1,0,2),B (1,2,0),因为E ,F 分别为C 1D 1,A 1B 的中点,所以E (0,1,2),F (1,1,1),所以A 1E →=(-1,1,0),A 1B →=(0,2,-2),设m =(x ,y ,z )是平面A 1BE 的法向量,则⎩⎪⎨⎪⎧A 1E →·m =0,A 1B →·m =0,所以⎩⎨⎧-x +y =0,2y -2z =0,所以⎩⎨⎧y =x ,y =z ,取x =1,则y =z =1,所以平面A 1BE 的一个法向量为m =(1,1,1),又DA ⊥平面A 1B 1B ,所以DA →=(1,0,0)是平面A 1B 1B 的一个法向量,所以cos 〈m ,DA →〉=m ·DA →|m ||DA →|=13=33,又二面角B 1A 1B E 为锐二面角,所以二面角B 1A 1B E 的余弦值为33,故选C. 【答案】 C5.如图3-2-29,空间正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是CD ,CC 1的中点,则异面直线A 1M 与DN 所成角的大小是( )图3-2-29A.π6B.π4C.π3D.π2【解析】 以D 为原点,DA ,DC ,DD 1所在直线为坐标轴建系,则A 1M →=⎝ ⎛⎭⎪⎫-1,12,-1,DN →=⎝⎛⎭⎪⎫0,1,12, cos 〈A 1M →,DN →〉=A 1M →·DN →|A 1M →||DN →|=0. ∴〈A 1M →,DN →〉=π2.【答案】 D 二、填空题6.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为A 1B 1,BB 1的中点,则异面直线AM 与CN 所成角的余弦值是________.【解析】 依题意,建立如图所示的坐标系,则A (1,0,0),M ⎝ ⎛⎭⎪⎫1,12,1,C (0,1,0),N ⎝⎛⎭⎪⎫1,1,12,∴AM →=⎝⎛⎭⎪⎫0,12,1, CN →=⎝⎛⎭⎪⎫1,0,12, ∴cos 〈AM→,CN →〉=1252·52=25, 故异面直线AM 与CN 所成角的余弦值为25.【答案】257.在空间直角坐标系Oxyz 中,已知A (1,-2,0),B (2,1,6),则向量AB →与平面xOz 的法向量的夹角的正弦值为________.【解析】 设平面xOz 的法向量为n =(0,t ,0)(t ≠0),AB→=(1,3, 6),所以cos 〈n ,AB →〉=n ·AB →|n |·|AB →|=3t 4|t |,因为〈n ,AB→〉∈[0,π],所以sin 〈n ,AB →〉=1-⎝ ⎛⎭⎪⎫3t 4|t |2=74. 【答案】748.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值等于________.【解析】 如图,建立空间直角坐标系.设正方体的棱长为1,平面ABC 的法向量为n 1=(0,0,1),平面AEF 的法向量为n 2=(x ,y ,z ).所以A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,13,F ⎝ ⎛⎭⎪⎫0,1,23, 所以AE →=⎝⎛⎭⎪⎫0,1,13,EF →=⎝⎛⎭⎪⎫-1,0,13, 则⎩⎪⎨⎪⎧n 2·AE→=0,n 2·EF →=0,即⎩⎪⎨⎪⎧y +13z =0,-x +13z =0.取x =1,则y =-1,z =3.故n 2=(1,-1,3). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=31111. 所以平面AEF 与平面ABC 所成的二面角的平面角α满足cos α=31111,sin α=2211,所以tan α=23. 【答案】 23三、解答题9.如图3-2-30所示,在四面体ABCD 中,O ,E 分别是BD ,BC 的中点,CA =CB =CD =BD =2,AB =AD = 2.图3-2-30(1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值. 【解】 (1)证明:连接OC ,由题意知BO =DO ,AB =AD ,∴AO ⊥BD .又BO =DO ,BC =CD ,∴CO ⊥BD .在△AOC 中,由已知可得AO =1,CO =3, 又AC =2,∴AO 2+CO 2=AC 2, ∴∠AOC =90°,即AO ⊥OC . ∵BD ∩OC =O ,∴AO ⊥平面BCD . (2)以O 为坐标原点建立空间直角坐标系,则B (1,0,0),D (-1,0,0),C (0, 3,0),A (0,0,1),E ⎝ ⎛⎭⎪⎫12,32,0, ∴BA→=(-1,0,1),CD →=(-1,-3,0), ∴cos 〈BA →,CD →〉=BA →·CD →|BA →|·|CD →|=24.∴异面直线AB 与CD 所成角的余弦值为24. 10.四棱锥P -ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上. (1)求证:平面AEC ⊥平面PDB ;(2)当PD =2AB 且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小. 【解】 如图,以D 为原点建立空间直角坐标系Dxyz ,设AB =a ,PD =h ,则A (a ,0,0),B (a ,a ,0),C (0,a ,0),D (0,0,0),P (0,0,h ), (1)∵AC→=(-a ,a ,0),DP →=(0,0,h ),DB →=(a ,a ,0), ∴AC→·DP →=0,AC →·DB →=0, ∴AC ⊥DP ,AC ⊥DB ,又DP ∩DB =D ,∴AC ⊥平面PDB ,又AC ⊂平面AEC ,∴平面AEC ⊥平面PDB .(2)当PD =2AB 且E 为PB 的中点时,P (0,0,2a ),E ⎝ ⎛⎭⎪⎫12a ,12a ,22a ,设AC ∩BD =O ,O ⎝⎛⎭⎪⎫a 2,a 2,0,连接OE ,由(1)知AC ⊥平面PDB 于O ,∴∠AEO 为AE 与平面PDB 所成的角,∵EA →=⎝ ⎛⎭⎪⎫12a ,-12a ,-22a ,EO →=⎝⎛⎭⎪⎫0,0,-22a ,∴cos ∠AEO =EA →·EO →|EA→|·|EO →|=22,∴∠AEO =45°,即AE 与平面PDB 所成的角的大小为45°.[能力提升]1.已知在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为( )A .60°B .90°C .45°D .以上都不对【解析】 以点D 为原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,如图.由题意知,A 1(1,0,2),E (1,1,1),D 1(0,0,2),A (1,0,0),所以A 1E →=(0,1,-1),D 1E →=(1,1,-1),EA →=(0,-1,-1).设平面A 1ED 1的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·A 1E →=0,n ·D 1E →=0,得⎩⎨⎧y -z =0,x +y -z =0. 令z =1,得y =1,x =0,所以n =(0,1,1), cos 〈n ,EA →〉=n ·EA →|n ||EA →|=-22·2=-1.所以〈n ,EA→〉=180°. 所以直线AE 与平面A 1ED 1所成的角为90°. 【答案】 B2.在三棱柱ABC -A 1B 1C 1中,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )图3-2-31A.55B.53C.255 D.35【解析】 不妨设CA =CC 1=2CB =2, 则AB 1→=(-2,2,1),C 1B →=(0,-2,1), 所以cos 〈AB 1→,C 1B →〉=AB 1→·C 1B →|AB 1→||C 1B →|=(-2)×0+2×(-2)+1×19×5=-55.因为直线BC 1与直线AB 1的夹角为锐角,所以所求角的余弦值为55.【答案】 A3.在空间中,已知平面α过(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a >0),如果平面α与平面xOy 的夹角为45°,则a =________.【解析】 平面xOy 的法向量为n =(0,0,1),设平面α的法向量为u =(x ,y ,z ),则⎩⎨⎧-3x +4y =0,-3x +az =0,即3x =4y =az ,取z =1,则u =⎝⎛⎭⎪⎫a 3,a 4,1.而cos 〈n ,u 〉=1a 29+a 216+1=22, 又∵a >0,∴a =125. 【答案】1254.如图3-2-32,在直三棱柱A 1B 1C 1ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.图3-2-32(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.【解】 (1)以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4) ,C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010. (2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD →=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC 1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=29×1=23,得sin θ=53. 因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.。
3.1.3 两个向量的数量积学习目标 1.掌握空间向量夹角概念及表示方法.2.掌握两个向量的数量积的概念、性质、计算方法及运算规律.3.掌握两个向量的数量积的主要用途,能运用数量积求向量夹角和判断向量的共线与垂直.知识点一 两个向量的夹角1.定义:已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.2.范围:〈a ,b 〉∈[0,π].特别地:当〈a ,b 〉=π2时,a ⊥b .知识点二 两个向量的数量积1.定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积(或内积),记作a ·b . 规定:零向量与任何向量的数量积都是0. 2.数量积的运算律注意:空间向量的数量积不满足结合律。
知识点三 两个向量的数量积的性质1.向量AB →与CD →的夹角等于向量AB →与DC →的夹角.( × ) 2.对于非零向量b ,由a ·b =b ·c ,可得a =c .( × )3.对于向量a ,b ,c ,有(a ·b )·c =a ·(b ·c ).( × )4.若非零向量a ,b 为共线且同向的向量,则a ·b =|a ||b |.( √ ) 5.对任意向量a ,b ,满足|a ·b |≤|a ||b |.( √ )题型一 数量积的计算例1 如图所示,在棱长为1的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求:(1)EF →·BA →; (2)EF →·BD →; (3)EF →·DC →; (4)AB →·CD →.考点 空间向量数量积的概念与性质 题点 用定义求数量积 解 (1)EF →·BA →=12BD →·BA →=12|BD →||BA →|·cos 〈BD →,BA →〉 =12cos 60°=14. (2)EF →·BD →=12BD →·BD →=12|BD →|2=12.(3)EF →·DC →=12BD →·DC →=12|BD →|·|DC →|cos 〈BD →,DC →〉 =12cos 120°=-14. (4)AB →·CD →=AB →·(AD →-AC →) =AB →·AD →-AB →·AC →=|AB →||AD →|cos 〈AB →,AD →〉-|AB →||AC →|cos 〈AB →,AC →〉=cos 60°-cos 60°=0.反思感悟 (1)已知a ,b 的模及a 与b 的夹角,直接代入数量积公式计算.(2)如果要求的是关于a 与b 的多项式形式的数量积,可以先利用数量积的运算律将多项式展开,再利用a ·a =|a |2及数量积公式进行计算.跟踪训练1 已知长方体ABCD-A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AB 1的中心,F 为A 1D 1的中点.试计算: (1)BC →·ED 1→;(2)BF →·AB 1→;(3)EF →·FC 1→. 考点 空间向量数量积的概念与性质 题点 用定义求数量积 解 如图,设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|c |=2,|b |=4, a ·b =b ·c =c ·a =0. (1)BC →·ED 1→=b ·⎣⎡⎦⎤12(c -a )+b =|b |2=42=16. (2)BF →·AB 1→=⎝⎛⎭⎫c -a +12b ·(a +c )=|c |2-|a |2 =22-22=0.(3)EF →·FC 1→=⎣⎡⎦⎤12(c -a )+12b ·⎝⎛⎭⎫12b +a =12(-a +b +c )·⎝⎛⎭⎫12b +a =-12|a |2+14|b |2=2. 题型二 利用数量积证明垂直问题例2 如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .求证:P A ⊥BD .考点 空间向量数量积的应用 题点 数量积的综合应用证明 由底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,知DA ⊥BD ,则BD →·DA →=0. 由PD ⊥底面ABCD ,知PD ⊥BD ,则BD →·PD →=0. 又P A →=PD →+DA →,所以P A →·BD →=(PD →+DA →)·BD →=PD →·BD →+DA →·BD →=0,即P A ⊥BD .反思感悟 (1)由数量积的性质a ⊥b ⇔a ·b =0可知,要证两直线垂直,可构造与两直线分别平行的向量(a ,b 是非零向量),只要证明这两个向量的数量积为0即可.(2)用向量法证明线面(面面)垂直,离不开线面(面面)垂直的判定定理,需将线面(面面)垂直转化为线线垂直,然后利用向量法证明线线垂直即可.跟踪训练2 如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点,求证:A 1O ⊥平面GBD .考点 空间向量数量积的应用 题点 数量积的综合应用证明 设A 1B 1—→=a ,A 1D 1—→=b ,A 1A →=c , 则a ·b =0,b ·c =0,a ·c =0,|a |=|b |=|c |. ∵A 1O →=A 1A →+AO →=A 1A →+12(AB →+AD →)=c +12a +12b ,BD →=AD →-AB →=b -a ,OG →=OC →+CG →=12(AB →+AD →)+12CC 1→=12a +12b -12c , ∴A 1O →·BD →=⎝⎛⎭⎫c +12a +12b ·(b -a )=c ·b -c ·a +12a ·b -12a 2+12b 2-12b ·a=12(b 2-a 2) =12(|b |2-|a |2)=0. 于是A 1O →⊥BD →,即A 1O ⊥BD . 同理可证A 1O →⊥OG →,即A 1O ⊥OG .又∵OG ∩BD =O ,OG ⊂平面GBD ,BD ⊂平面GBD , ∴A 1O ⊥平面GBD .题型三 数量积求解空间角与距离命题角度1 求解角度问题例3 在空间四边形OABC 中,连接AC ,OB ,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求向量OA →与BC →所成角的余弦值. 考点 空间向量数量积的应用 题点 利用数量积求角 解 ∵BC →=AC →-AB →, ∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|·cos 〈OA →,AC →〉-|OA →||AB →|·cos 〈OA →,AB →〉 =8×4×cos 135°-8×6×cos 120°=24-162, ∴cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.反思感悟 求两个空间向量a ,b 夹角的方法类同平面内两向量夹角的求法,利用公式cos 〈a ,b 〉=a ·b|a ||b |,在具体的几何体中求两向量的夹角时,可把其中一个向量的起点平移至与另一个向量的起点重合,转化为求平面中的角度大小问题.跟踪训练3 如图所示,在正方体ABCD -A 1B 1C 1D 1中,求异面直线A 1B 与AC 所成的角.考点 空间向量数量积的应用 题点 利用数量积求角 解 不妨设正方体的棱长为1, 设AB →=a ,AD →=b ,AA 1→=c , 则|a |=|b |=|c |=1, a ·b =b ·c =c ·a =0, A 1B →=a -c ,AC →=a +b . ∴A 1B →·AC →=(a -c )·(a +b ) =|a |2+a ·b -a ·c -b ·c =1, 而|A 1B →|=|AC →|=2, ∴cos 〈A 1B →,AC →〉=12×2=12, ∵〈A 1B →,AC →〉∈(0°,180°), ∴〈A 1B →,AC →〉=60°.∴异面直线A 1B 与AC 所成的角为60°. 命题角度2 求解距离或长度例4 平行四边形ABCD 中,AB =2AC =2且∠ACD =90°,将它沿对角线AC 折起,使AB 与CD 成60°角,求B ,D 间的距离.考点 空间向量数量积的应用 题点 利用数量积求线段长解 由已知得AC ⊥CD ,AC ⊥AB ,折叠后AB 与CD 所成角为60°,于是,AC →·CD →=0,BA →·AC →=0,且〈BA →,CD →〉=60°或120°.|BD →|2=(BA →+AC →+CD →)2=BA →2+AC →2+CD →2+2BA →·AC →+2AC →·CD →+2BA →·CD →=22+12+22+2×2×2cos 〈BA →,CD →〉,故|BD →|2=13或5, 解得|BD →|=13或5, 即B ,D 间的距离为13或 5.反思感悟 利用向量的数量积求两点间的距离,可以转化为求向量的模的问题,其基本思路是先选择以两点为端点的向量,将此向量表示为几个已知向量的和的形式,求出这几个已知向量的两两之间的夹角以及它们的模,利用公式|a |=a·a 求解即可.跟踪训练4 在平行六面体ABCD -A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,求AC 1的长. 考点 空间向量数量积的应用 题点 利用数量积求线段长 解 因为AC 1→=AB →+AD →+AA 1→, 所以AC →21=(AB →+AD →+AA 1→)2=AB →2+AD →2+AA →21+2(AB →·AD →+AB →·AA 1→+AD →·AA 1→). 因为∠BAD =90°,∠BAA 1=∠DAA 1=60°,所以AC →21=1+4+9+2×(1×3×cos 60°+2×3×cos 60°)=23. 因为AC →21=|AC 1→|2,所以|AC 1→|2=23, 则|AC 1→|=23,即AC 1=23.利用数量积探究垂直问题典例 如图所示,在矩形ABCD 中,AB =1,BC =a ,P A ⊥平面ABCD (点P 位于平面ABCD 的上方),则边BC 上是否存在点Q ,使PQ →⊥QD →?考点 空间向量数量积的应用 题点 数量积的综合应用解 假设存在点Q (点Q 在边BC 上),使PQ →⊥QD →, 即PQ ⊥QD .连接AQ ,因为P A ⊥平面ABCD ,所以P A ⊥QD . 又PQ →=P A →+AQ →,所以PQ →·QD →=P A →·QD →+AQ →·QD →=0.又P A →·QD →=0,所以AQ →·QD →=0,所以AQ →⊥QD →. 即点Q 在以边AD 为直径的圆上,圆的半径为a 2.又AB =1,所以当a2=1,即a =2时,该圆与边BC 相切,存在1个点Q 满足题意;当a2>1,即a >2时,该圆与边BC 相交,存在2个点Q 满足题意; 当a2<1,即a <2时,该圆与边BC 相离,不存在点Q 满足题意. 综上所述,当a ≥2时,存在点Q ,使PQ →⊥QD →; 当0<a <2时,不存在点Q ,使PQ →⊥QD →.[素养评析] 本例由条件PQ →⊥QD →,利用向量的数量积推知Q 点轨迹,从而转化为平面几何问题,解答此题,应具有较强的逻辑推理能力.1.对于向量a ,b ,c 和实数λ,下列命题中的真命题是( ) A .若a ·b =0,则a =0或b =0 B .若λa =0,则λ=0或a =0 C .若a 2=b 2,则a =b 或a =-b D .若a ·b =a ·c ,则b =c 答案 B解析 对于A ,可举反例:当a ⊥b 时,a ·b =0;对于C , a 2=b 2,只能推出|a |=|b |,而不能推出a =±b ; 对于D ,当a =0时,不能推出b =c .2.已知a ,b ,c 是两两垂直的单位向量,则|a -2b +3c |等于( ) A .14 B.14 C .4 D .2 答案 B解析 |a -2b +3c |2=|a |2+4|b |2+9|c |2-4a ·b +6a ·c -12b ·c =14. 3.在正方体ABCD -A 1B 1C 1D 1中,有下列命题: ①(AA 1→+AD →+AB →)2=3AB →2; ②A 1C →·(A 1B 1→-A 1A →)=0; ③AD 1→与A 1B →的夹角为60°. 其中真命题的个数为( ) A .1 B .2 C .3 D .0 答案 B解析 易知①②正确;AD 1→与A 1B →的夹角为120°, ∴③不正确.故选B.4.已知a ,b 为两个非零空间向量,若|a |=22,|b |=22,a ·b =-2,则〈a ,b 〉=________. 答案3π4解析 cos 〈a ,b 〉=a ·b |a ||b |=-22,∴〈a ,b 〉=3π4. 5.已知正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 答案2解析 |EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2×(1×2×cos 120°+0+2×1×cos 120°)=2, ∴|EF →|=2,∴EF 的长为 2.1.空间向量数量积性质的应用(a ,b 为非零向量) (1)a ⊥b ⇔a ·b =0,此结论用于证明空间中的垂直关系. (2)|a |2=a 2,此结论用于求空间中线段的长度.(3)cos 〈a ,b 〉=a·b |a ||b |,此结论用于求有关空间角的问题.(4)|b |cos 〈a ,b 〉=a·b|a |,此结论用于求空间中的距离问题.2.空间向量的数量积的三点注意 (1)数量积的符号由夹角的余弦值决定. (2)当a ≠0,由a ·b =0可得a ⊥b 或b =0.(3)空间向量没有除法运算:即若a ·b =k ,没有a =k b.一、选择题1.已知非零向量a ,b 不平行,并且其模相等,则a +b 与a -b 之间的关系是( ) A .垂直 B .共线 C .不垂直D .以上都可能考点 空间向量数量积的概念与性质 题点 数量积的性质 答案 A解析 由题意知|a |=|b |, ∵(a +b )·(a -b )=|a |2-|b |2=0, ∴(a +b )⊥(a -b ).2.已知|a |=1,|b |=2,且a -b 与a 垂直,则a 与b 的夹角为( ) A .60° B .30° C .135° D .45° 答案 D解析 ∵a -b 与a 垂直,∴(a -b )·a =0, ∴a ·a -a ·b =|a |2-|a ||b |cos 〈a ,b 〉 =1-1·2·cos 〈a ,b 〉=0,∴cos 〈a ,b 〉=22. ∵0°≤〈a ,b 〉≤180°,∴〈a ,b 〉=45°.3.已知空间向量a ,b ,c 两两夹角为60°,其模都为1,则|a -b +2c |等于( ) A. 5 B .5 C .6 D. 6 答案 A解析 ∵|a -b +2c |2=|a |2+|b |2+4|c |2-2a ·b +4a ·c -4b ·c=12+12+4×12-2·1·1·cos 60°+4·1·1·cos 60°-4·1·1·cos 60°=5, ∴|a -b +2c |= 5.4.如图,已知空间四边形每条边和对角线长都等于a ,点E ,F ,G 分别是AB ,AD ,DC 的中点,则下列向量的数量积等于a 2的是( )A .2BA →·AC →B .2AD →·DB →C .2FG →·AC →D .2EF →·CB →答案 C解析 2BA →·AC →=-a 2,故A 错;2AD →·DB →=-a 2,故B 错;2EF →·CB →=-12a 2,故D 错,只有C 正确.5.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a 与b 所成的角是( )A .30°B .45°C .60°D .90° 答案 C解析 ∵AB →=AC →+CD →+DB →,∴AB →·CD →=(AC →+CD →+DB →)·CD →=AC →·CD →+CD →2+DB →·CD →=0+12+0=1, 又|AB →|=2,|CD →|=1.∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=12×1=12.∵异面直线所成的角是锐角或直角, ∴a 与b 所成的角是60°.6.已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -b )·a 等于( ) A .12 B .8+13 C .4 D .13 答案 D解析 (2a -b )·a =2a 2-b ·a =2|a |2-|a ||b |cos 120°=2×4-2×5×⎝⎛⎭⎫-12=13. 7.已知在平行六面体ABCD -A 1B 1C 1D 1中,同一顶点为端点的三条棱长都等于1,且彼此的夹角都是60°,则此平行六面体的对角线AC 1的长为( ) A. 3 B .2 C. 5 D. 6 答案 D解析 ∵AC 1→=AB →+AD →+AA 1→,∴AC 1→2=(AB →+AD →+AA 1→)2=AB →2+AD →2+AA 1→2+2AB →·AD →+2AB →·AA 1→+2AD →·AA 1→=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|AC 1→|= 6.8.如图,在直三棱柱ABC -A 1B 1C 1中,若∠BAC =π2,AB =AC =AA 1,则异面直线A 1B 与C 1A所成的角等于( )A.π6B.π4 C.π3 D.π2答案 C解析 设AB →=a ,AC →=b ,AA 1→=c , 则A 1B →=a -c ,C 1A →=-b -c ,∴A 1B →·C 1A →=(a -c )·(-b -c )=-a ·b +b ·c -a ·c +c 2=|c |2,∴cos 〈A 1B →,C 1A →〉=A 1B →·C 1A →|A 1B →||C 1A →|=|c |22|c |2=12.∴A 1B 与C 1A 所成的角为π3.二、填空题9.已知空间向量a ,b ,c 满足a +b +c =0,|a |=3,|b |=1,|c |=4,则a ·b +b ·c +c ·a 的值为________. 答案 -13解析 ∵a +b +c =0, ∴(a +b +c )2=0,∴a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=0, ∴a ·b +b ·c +c ·a =-32+12+422=-13.10.已知a +3b 与7a -5b 垂直,且a -4b 与7a -2b 垂直,则〈a ,b 〉=________. 考点 空间向量数量积的应用 题点 利用数量积求角 答案 60°解析 由条件知(a +3b )·(7a -5b )=7|a |2-15|b |2+16a ·b =0,(a -4b )·(7a -2b )=7|a |2+8|b |2-30a ·b =0,两式相减得46a ·b =23|b |2,所以a ·b =12|b |2,代入上面两个式子中的任意一个,得|a |=|b |,所以cos 〈a ,b 〉=a ·b |a ||b |=12|b |2|b |2=12,所以〈a ,b 〉=60°.11.(2018·大连高二检测)如图,平行六面体ABCD -A ′B ′C ′D ′中,AB =AD =1,AA ′=2,∠BAD =∠BAA ′=∠DAA ′=60°,则AC ′的长为________.考点 空间向量数量积的应用 题点 利用数量积求线段长答案11解析 |AC ′—→|2=|AB →+BC →+CC ′—→|2=AB →2+BC →2+CC ′—→2+2AB →·BC →+2BC →·CC ′—→+2AB →·CC ′—→=12+12+22+2×1×1×cos 60°+2×1×2×cos 60°+2×1×2×cos 60°=11, 则|AC ′—→|=11. 三、解答题12.如图所示,已知空间四边形ABCD ,连接AC ,BD ,若AB =CD ,AC =BD ,E ,F 分别是AD ,BC 的中点,试用向量方法证明EF ⊥AD 且EF ⊥BC .证明 连接AF ,∵点F 是BC 的中点,∴A F →=12(AB →+AC →),∴EF →=AF →-AE → =12(AB →+AC →)-12AD → =12(AB →+AC →-AD →), 又|AC →|=|BD →|=|AD →-AB →|, ∴AC 2=AD 2-2AD →·AB →+AB 2,①同理AB 2=CD 2=AD 2-2AC →·AD →+AC 2,② 将①代入②可得AB 2=AD 2-2AC →·AD →+AD 2 -2AB →·AD →+AB 2,∴2AD 2-2AD →·(AC →+AB →)=0, ∴AD →·(AC →+AB →-AD →)=0, ∴AD →·12(AB →+AC →-AD →)=0,∴AD →·EF →=0,∴EF →⊥AD →. 同理可得EF →⊥BC →. ∴EF ⊥AD 且EF ⊥BC .13.如图所示,在四棱锥P —ABCD 中,P A ⊥平面ABCD ,AB ⊥BC ,AB ⊥AD ,且P A =AB =BC =12AD =1,求PB 与CD 所成的角.解 由题意知|PB →|=2,|CD →|=2, PB →=P A →+AB →,DC →=DA →+AB →+BC →, ∵P A ⊥平面ABCD , ∴P A →·DA →=P A →·AB →=P A →·BC →=0. ∵AB ⊥AD , ∴AB →·DA →=0, ∵AB ⊥BC , ∴AB →·BC →=0,∴PB →·DC →=(P A →+AB →)·(DA →+AB →+BC →) =AB →2=|AB →|2=1, 又∵|PB →|=2,|CD →|=2,∴cos 〈PB →,DC →〉=PB →·DC →|PB →||DC →|=12×2=12,∵〈PB →,DC →〉∈[0,π], ∴〈PB →,DC →〉=π3,∵异面直线所成的角为锐角或直角, ∴PB 与CD 所成的角为π3.14.已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13,若n ⊥(t m +n ),则实数t 的值为________. 答案 -4解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t ·m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0,由已知得t ×34|n |2×13+|n |2=0,解得t =-4.15.如图,在正三棱柱ABC -A 1B 1C 1中,底面边长为 2.(1)设侧棱长为1,求证:AB 1⊥BC 1; (2)设AB 1与BC 1的夹角为π3,求侧棱的长.(1)证明 AB 1→=AB →+BB 1→, BC 1→=BB 1→+BC →. ∵BB 1⊥平面ABC , ∴BB 1→·AB →=0,BB 1→·BC →=0. 又△ABC 为正三角形,∴〈AB →,BC →〉=π-〈BA →,BC →〉=π-π3=2π3.∵AB 1→·BC 1→=(AB →+BB 1→)·(BB 1→+BC →) =AB →·BB 1→+AB →·BC →+BB 1→2+BB 1→·BC →=|AB →|·|BC →|·cos 〈AB →,BC →〉+BB 1→2=-1+1=0, ∴AB 1⊥BC 1.(2)解 结合(1)知AB 1→·BC 1→=|AB →|·|BC →|·cos 〈AB →,BC →〉+BB 1→2=BB 1→2-1. 又|AB 1→|=(AB →+BB 1→)2=2+BB 1→2=|BC 1→|,∴cos 〈AB 1→,BC 1→〉=BB 1→2-12+BB 1→2=12,∴|BB 1→|=2,即侧棱长为2.。
高二数学选修第三章空间向量与立体几知识点+习题+答案空间向量与立体几何1、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB 的大小称为向量的模(或长度),记作AB . ()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. ()5与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. ()6方向相同且模相等的向量称为相等向量.2、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.3、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.4、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.5、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.6、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.7、平行于同一个平面的向量称为共面向量.8、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA+OB+O ++=.9、已知两个非零向量a 和b ,在空间任取一点O ,作a O A=,b OB =,则∠A O B称为向量a ,b 的夹角,记作,a b ??.两个向量夹角的取值范围是:[],0,a b π??∈. 10、对于两个非零向量a 和b ,若,2a b π??=,则向量a ,b 互相垂直,记作a b ⊥.11、已知两个非零向量a 和b ,则c o s ,a b ab ??称为a ,b 的数量积,记作a b ?.即c o s ,a b a bab ?=??.零向量与任何向量的数量积为0.12、a b ?等于a 的长度a 与b 在a 的方向上的投影cos ,b a b ??的乘积. 13、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ?=?=??;()20a b a b ⊥??=;()3()()a b a b a b a b a b ??=?-??与同向与反向,2a a a ?=,a a a =?; ()4cos ,a b a b a b=;()5a b a b ?≤.14、向量数乘积的运算律:()1a b b a ?=?;()2()()()a b a b a b λλλ?=?=?;()3()a b c a c b c +?=?+?.15、若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p ,存在有序实数组{},,x y z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量.16、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.17、若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.18、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .19、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---.()3()111,,a x y z λλλλ=. ()4121212a b x x y y z z ?=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥??=?++=.()6若0b ≠,则121212//,,a b a b x x y y z z λλλλ?=?===. ()721a a a x =?=+()821cos ,a b a b a bx ==+.()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =20、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.21、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =,这样点A 和向量a 不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点. 22、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xayb OP =+,这样点O 与向量a ,b 就确定了平面α的位置. 23、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量. 24、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ??()a b R λλ=∈,0a b a b a b ⊥?⊥??=.25、若直线a 的方向向量为a ,平面α的法向量为n ,且a α?,则////a a αα? 0a n a n ?⊥??=,//a a a n a n ααλ⊥?⊥??=.26、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ??a b λ=,0a b a b αβ⊥?⊥??=.27、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为?,则有cos cos a b a bθ??==.28、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为?,则有sin cos l n l nθ??==.29、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ?=.30、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算. 31、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA ?=PA ?PA ?=.32、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA ?=PA ?PA ?=.空间向量与立体几何练习题1一、选择题(每小题5分,共50分)1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a ,11D A =b ,A A1=c ,则下列向量中与M B 1相等的向量是A.-21a +21b +c B.21a +21b +c C.21a -21b +c D.-21a -21b +c2.下列等式中,使点M 与点A 、B 、C 一定共面的是A.OM --=23B.OC OB OA OM 513121++=C.0=+++OC OB OA OMD.0=++MC MB MA3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则?等于A.41B.41- C.43 D.43-4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为A.17或-1B.-17或1C.-1D.15.设)2,1,1(-=,)8,2,3(=,)0,1,0(=,则线段AB 的中点P 到点C 的距离为 A.213 B.253 C.453 D.453 6.下列几何体各自的三视图中,有且仅有两个视图相同的是①正方体②圆锥③三棱台④正四棱锥A .①②B .①③C .①④D .②④7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A.9πB.10πC.11πD.12π8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是A.BD ∥平面CB 1D 1B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1所成的角为60°9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为A.3 B.552C.5D.510.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为A.5B.41C.4D.52二、填空题(每小题5分,共20分)11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy .12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为. 14.如图,P —ABCD 是正四棱锥,1111ABCD A B C D -是正方体,其中2,AB PA ==,则1B 到平面PAD的距离为 .俯视图正(主)视图侧(左)视图三、解答题(共80分)15.(本小题满分12分)如图,在四棱锥P-ABCD 中,底面ABCD 是边长为1的正方形,侧棱PA 的长为2,且PA 与AB 、AD 的夹角都等于600,M 是PC 的中点,设c b a ===AP AD AB ,,.(1)试用c b a ,,表示出向量BM ;(2)求BM 的长.16.(本小题满分14分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC ,证明:'BC ∥面EFG..正视图MPD C BA17.(本小题满分12分)如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点.求证:(1)直线//EF 面ACD ;(2)平面EFC ⊥面BCD .18.(本小题满分14分)如图,已知点P 在正方体''''D C B A ABCD -的对角线'BD 上,∠PDA=60°.(1)求DP 与'CC 所成角的大小;(2)求DP 与平面D D AA ''所成角的大小.D 'C 'B'A'PD C BA俯视图侧视图正视图ED CBA P 19.(本小题满分14分)已知一四棱锥P -ABCD 的三视图如下,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积;(2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论; (3)若点E 为PC 的中点,求二面角D -AE -B 的大小.20.(本小题满分14分)如图,已知四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=,E F ,分别是BC PC ,的中点.(1)证明:AE PD ⊥;(2)若H 为PD 上的动点,EH 与平面PAD面角E AF C --的余弦值.PBECDFA参考答案一、选择题1.)(21111BC BA A A BM B B M B ++=+==c +21(-a +b )=-21a +21b +c ,故选A.2.1),,(=++∈++=?z y x R z y x z y x C B A M 且四点共面、、、由于MC MB MA MC MB MA C B A --=?=++∴0由于都不正确、、选项.)()()(共面使所以存在MC MB MA MC y MB x MA y x ,,,1,1∴+==-= 四点共面,、、、为公共点由于C B A M M ∴故选D. 3.∵的中点分别是AD AB F E ,,,BD EF BD EF BD EF 21,21//=∴=∴且, 41120cos 1121,210-=>=<=?=∴ 故选B.4.B5.B6.D7.D8.D9.D 10.4,cos ==><=,5==,故选A二、填空题 11.9 12.313.作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则++= θθcos 6)180,0,0,2530-=-=?=?=?===0022222120,1800 .21cos ),cos 600(2253)112()(2)(=∴≤≤-=∴--+++=∴?+?+?+++=++=θθθθ由于14.以11B A 为x 轴,11D A 为y 轴,A A 1为z 轴建立空间直角坐标系设平面PAD 的法向量是(,,)m x y z =,(0,2,0),(1,1,2)AD AP ==,∴02,0=++=z y x y ,取1=z 得(2,0,1)m =-,1(2,0,2)B A =-,∴1B 到平面PAD 的距离15B A m d m==三、解答题15.解:(1)∵M 是PC 的中点,∴)]([21)(21AB AP AD BP BC BM -+=+=c b a a c b 212121)]([21++-=-+= (2)2,1,2,1===∴===c b a PA AD AB 由于160cos 12,0,60,00=??=?=?=?∴=∠=∠⊥c b c a b a PAD PAB AD AB 由于1c b a ++-=由于23)]110(2211[41)](2[41)(412222222=+-+++=?+?-?-+++=++-=c b c a b a c b a c b a2626的长为,BM ∴=. 16.解:(1)如图(2)所求多面体体积V V V =-长方体正三棱锥1144622232??=??-???? ???2284(cm )3=.(3)证明:在长方体ABCD A B C D ''''-中,连结AD ',则AD BC ''∥.因为E G ,分别为AA ',A D ''中点,所以AD EG '∥,从而EG BC '∥.又BC '?平面EFG ,所以BC '∥面EFG .17.证明:(1)∵E,F 分别是AB BD ,的中点,∴EF 是△ABD 的中位线,∴EF ∥AD ,∵AD ?面ACD ,EF ?面ACD ,∴直线EF ∥面ACD ;(2)∵AD ⊥BD ,EF ∥AD ,∴EF ⊥BD ,∵CB=CD ,F 是BD的中点,∴CF ⊥BD 又EF ∩CF=F, ∴BD ⊥面EFC ,A C D E F GA 'C 'D '∵BD ?面BCD ,∴面EFC ⊥面BCD .18.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -.则(100)DA =,,,(001)CC '=,,.连结BD ,B D ''.在平面BB D D ''中,延长DP 交B D ''于H .设(1)(0)DH m m m =>,,,由已知60DH DA <>=,,由cos DA DH DA DH DA DH =< >,,可得2m =.解得m=21DH ??= ??.(1)因为0011cos DH CC +?'<>==,所以45DH CC '<>=,,即DP 与CC '所成的角为45.(2)平面AA D D ''的一个法向量是(010)DC =,,.因为01101cos 2DH DC ++?<>==,,所以60DH DC <>=,,可得DP 与平面AA D D ''所成的角为30. 19.解:(1)由该四棱锥的三视图可知,该四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC=2.∴1233P ABCD ABCD V S PC -=?=(2)不论点E 在何位置,都有BD ⊥AE证明如下:连结AC ,∵ABCD 是正方形,∴BD ⊥AC∵PC ⊥底面ABCD 且BD ?平面ABCD ∴BD ⊥PC又ACPC C =∴BD ⊥平面PAC∵不论点E 在何位置,都有AE ?平面PAC ∴不论点E 在何位置,都有BD ⊥AE(3)解法1:在平面DAE 内过点D 作DG ⊥AE 于G ,连结BG∵CD=CB,EC=EC ,∴Rt ECD ?≌Rt ECB ?,∴ED=EB ∵AD=AB ,∴△EDA ≌△EBA ,∴BG ⊥EA ∴DGB ∠为二面角D -EA -B 的平面角∵BC ⊥DE ,AD ∥BC ,∴AD ⊥DE在R t△ADE 中AD DE DG AE ?==BG在△DGB 中,由余弦定理得212cos 222-=?-+=∠BG DG BD BG DG DGB∴DGB ∠=23π,∴二面角D -AE -B 的大小为23π. 解法2:以点C 为坐标原点,CD 所在的直线为x轴建立空间直角坐标系如图示:则(1,0,0),(1,1,0),(0,1,0),(0,0,1)D A B E ,从而(1,0,1),(0,1,0),(1,0,0),(0,DE DA BA BE =-===-设平面ADE 和平面ABE 的法向量分别为(,,),(',',')m a b c n a b c ==由法向量的性质可得:0,0a c b -+==,'0,'a b =-令1,'1c c ==-,则1,'1a b ==-,∴(1,0,1),(0,1,1)m n ==-- 设二面角D -AE -B 的平面角为θ,则1cos 2||||m n m n θ?==-?∴23πθ=,∴二面角D -AE -B 的大小为23π. 20.(1)证明:由四边形ABCD 为菱形,60ABC ∠=,可得ABC △为正三角形.因为E 为BC 的中点,所以AE BC ⊥.又BC AD ∥,因此AE AD ⊥.因为PA ⊥平面ABCD ,AE ?平面ABCD ,所以PA AE ⊥.而PA ?平面PAD ,AD ?平面PAD 且PAAD A =,所以AE ⊥平面PAD .又PD ?平面PAD ,所以AE PD ⊥.(2)解:设2AB =,H 为PD 上任意一点,连接AH EH ,.由(1)知AE ⊥平面PAD ,则EHA ∠为EH 与平面PAD 所成的角.在Rt EAH △中,AE = 所以当AH 最短时,EHA∠最大,即当AHPD ⊥时,EHA ∠最大.此时tan AE EHA AH ∠=== 因此AH=2AD =,所以45ADH ∠=,所以2PA =.解法一:因为PA⊥平面ABCD,PA?平面PAC,所以平面PAC⊥平面ABCD.过E作EO AC⊥于O,则EO⊥平面PAC,过O作OS AF⊥于S,连接ES,则ESO∠为二面角E AF C--的平面角,在Rt AOE△中,3sin302EO AE==,3cos302AO AE==,又F是PC的中点,在Rt ASO △中,32sin454 SO AO==,又SE===Rt ESO△中,cos SOESOSE∠===,即所求二面角的余弦值为5.解法二:由(1)知AE AD AP,,两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E F,分别为BC PC,的中点,所以(000)10)0)(020)A B C D-,,,,,,,,,,1(002)0)122P E F,,,,,,,,所以31(300)12AE AF== ??,,,,,.设平面AEF的一法向量为111()x y z=,,m,则AEAF==,mm因此111112x y z=++=,.取11z=-,则(021)=-,,m,因为BD AC⊥,BD PA⊥,PAAC A=,所以BD⊥平面AFC ,故BD为平面AFC的一法向量.又(0)BD=,,所以cos5BDBDBD<>===,mmm.因为二面角E AF C --.B。