第三章线性空间与线性方程组
- 格式:pdf
- 大小:802.98 KB
- 文档页数:11
线性代数教学教案第三章 向量组及其线性组合授课序号01,n a 组成的有序数组称为2n a ⎪⎪⎪⎭维向量写成),,n a个分量,其中T,…来表示,n a 是复数时,维复向量,当12,,,n a a a 是实数时,本书所讨论的向量都是实向量0⎪⎪⎪⎭或()0,0,,00=.2n a ⎪⎪⎪⎭称为向量2n a ⎪⎪⎪⎭的负向量,记为α. 向量的运算:由于向量可看成行矩阵或列矩阵,因此我们可用矩阵的运算来定义向量的运算,也就是:122,n n a a b ⎛⎫⎛⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭β,k ∈,则有1122n n a b a b a b +⎛⎫ ⎪+ ⎪= ⎪ ⎪+⎝⎭β; (2)2n k ka ⎪⎪⎪⎭α;我们称这两种运算为向量的线性运算)1221122,,n n n n b ba a ab a b a b b ⎛⎫⎪ ⎪=+++ ⎪ ⎪⎝⎭;()111212212221212,,,n n n n n n n n a b a b a b a b a ba b b b b a a b a b a b ⎛⎫⎪⎪ ⎪=⎪ ⎪⎪⎪⎭⎝⎭. 二、向量组及其线性组合::由若干个维数相同的向量构成的集合,称为向量组. :给定n 维向量组,,,n ααα,对于任意一组数,,,n k k k ,表达式+n n k k α,n α和一个,n k ,使得++n n k =βα,,,n α线性表示,或者说向量β是向量组,n α的一个线性组合量组12,,,n ααα(唯一)线性表分必要条件是+n n x =α有(唯一)解.三、向量组的等价:由向量组B 线性表示:,,m αα是m ,,s β是s 维向量组成的向量组. 中每一个向量,)s β均可由向量组,m α线性表,s β可由向量组:A 12,,,m ααα线性表示.A 与向量组可以相互线性表示,则称向量组A 与向量组2,,,m αα与向量组:B 2,,,s βββ. 令矩阵),m A α,),s β,则向量组B 可由向量组线性表示的充分必要条件是矩阵方程=B向量组A 与向量组等价的充分必要条件是矩阵方程=BY A四、主要例题:1211222221122n n n n m m mn n ma x a x a x a x a xb +++++=中第()121,2,,i i i mi a ai n a ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭α,维列向量2m b ⎪⎪⎪⎭, n n x β+=α12122212n n m m mn a a a a a ⎫⎪⎪⎪⎪⎭,将矩阵A 与列向量组和行向量组对应2100010,,,001n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭e e ,将任一向量2n a ⎪⎪⎪⎭由12,,n e e e 线性表示536⎫⎪⎪⎪-⎭及向量组123101,2,11⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭βββ,试问α能否由12,ββ123-⎫⎛⎫⎛⎫授课序号02,m α,如果存在一组不全为零的数,m k ,使得m m k +α,则称向量组,m α线性相关.线性无关:若当且仅当0m k ==时,才有112m m k k k ++=0ααα,m α线性无关.m 个n 维向量构成的向量组12,,,m ααα线性相关的充分必要条件是齐次线性方程组1122m m k k k +++=0ααα有非零解;线性无关的充分必要条件是上述齐次线性方程组只有零解0m k k k ===(,m m α线性相关的充分必要条件是存在某一个向量(1j ≤α2线性相关的充分必要条件是它们的分量对应成比例是向量组A 的部分组线性无关,则其部分组,m α是m 个,m α线性无关,而向量组,,m αβ线性相关,则向量,m α线性表示,且表示式是唯一的如果向量组1,,s ααα可由向量组,t β线性表示,并且s >,s α线性如果向量组12,,,s ααα可由向量组2,,t β线性表示,并且向量组,s α线性无关,则2,,s α与向量组,t β均线性无关,并且这两个向量组等价,则s t =.2322,2⎛⎫ ⎪= ⎪ ⎪α,存在一组不全为零的数20,,,001n ⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎭⎝⎭⎝⎭e e ,对任意一组数12120001001n n n n k k k k k k k ⎛⎫⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+=+++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭e ,0n k ==时,才有1122n n k k k +++=0e e e ,所以向量组1,,n e e e 线性无关证明:任一含有零向量的向量组必定线性相关.221,11⎫⎛⎫⎛⎫⎪ =⎪ ⎪ -⎭⎝α,判断向量组12,,αα授课序号03,r α满足条件:)向量组1,,r ααα线性无关;)对于A 中任意的向量β,向量组,,r αβ线性相关,则称向量组12,,r ααα为向量组的一个极大线性无关组,简称极大无关组向量组A 的任意一个极大无关组所含向量的个数,称为这个向量组的秩,记为等价的向量组有相同的秩二、矩阵秩的概念及求法:rB ,则RA B ,n α为列构作矩阵),,n α,对矩阵的阶梯数给出矩阵的秩,从而给出向量组1,,n ααα的秩),n β,,n α与向量组,n β有相同的线性相关性,从而可以根据向量组,n β的极大无关组给出向量组12,,,n ααα的极大无关组,并给出不属于极大无关组的向量由极大无关组线性表示的表示20,,,001n ⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎭⎝⎭⎝⎭e e 线性无关,所以该向量组的极大无关组就是它3145,1227⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭α,向量1α与2α的分量不对应成比例,。
第三章 线性方程组§1消元法现在来讨论一般线性方程组,所谓一般线性方程组是指形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,221122222212111212111s n sn s s n n n b x a x a x a b x a x a x a b x a x a x a (1) 的方程组,其中n 21x , ,x ,x ⋯代表n 个中未知量,s 是方程的个数, ij a (i =1,2,…,s,j=1,2,…,n)称为方程组的系数,j b (j=1,2,…,s)称为常数项。
方程组中未知量的个数与方程的个数s 不一定相等。
系数ij a 的第一个指标i 表示它在第i 个方程,第二个指标j 表示它是j x 的系数。
所谓方程(1)的一个解就是指由n 个数n k k k ,,,21 组成的有序数组(n k k k ,,,21 ),当解集合。
如果两个方程组有相同的n 21x , ,x ,x ⋯分别用n k k k ,,,21 代入后,(1)中每个等式都变成恒等式。
方程组(1)的解的全体称为它的解集合。
解方程组实际上就是找出它全部的解,或者说,求出它的解集合。
如果两个方程姐有相同的解集合,它们就称为同解的。
显然,如果知道了一个线性方程组的全部系数和常数项,那么这个线性方程组就基本上确定了,确切的说,线性方程组(1)可以用下面的矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛s sn s s n n b a a a b a a a b a a a 21222222112211 (2) 来表示。
实际上,有了(2)之后,除去代表未知量的文字外,线性方程组(1)就确定了,而采用什么文字来代表未知量当然不是实质性的。
在中学所学的代数里我们学过用加减消元法和代入消元法解二元、三元线性方程组。
实际上,这个方法比用行列式解方程组更具有普遍性。
下面就来介绍如何用一般消元法解一般线性方程组。
先看一个例子。
例如,解方程组⎪⎩⎪⎨⎧=++=++=+-.522,4524,132321321321x x x x x x x x x第二个方程减去第一个方程的2倍,第三个方程减去第一个方程,就变为⎪⎩⎪⎨⎧=-=-=+-.42,241323232321x x x x x x x第二个方程减去第三个方程的2倍,把第二第三个方程的次序交换,即得⎪⎩⎪⎨⎧-==-=+-.6,42,132332321x x x x x x这样,我们就容易求出方程组的解为(9,-1,-6)。
《咼等代数与解析几何》课程教学大纲一、课程基本信息1、课程名称:高等代数与解析几何(上、下)2、课程编号:03030001/23、课程类别:学科基础课4、总学时/学分:160/105、适用专业:信息与计算科学6、开课学期:第一、二学期二、课程与人才培养标准实现矩阵说明掌握自然科学基础知识和数学专业所需的技术基础及专业知识,掌握分析问题、解决问题的科学方法;通过所学专业基础知识,获取数学专业知识的能力,更新知识和应用知识的能力。
三、课程的地位性质与目的本课程是数学与应用数学专业学生的重要的基础课程,是现代信息科学中不可缺少的数学工具。
高等代数与解析几何最突出的特点就是代数与几何在知识与理论上的有机结合,在思想和方法上的融会贯通。
主要目的是掌握本门课程的基本理论和基本方法;同时通过本课程的教学,锻炼和提高学生的思维能力,培养学生分析问题和解决问题的能力,培养学生创新能力,提高学生的数学素养。
四、学时分配表五、课程教学内容和基本要求总的目标:通过本课程的学习要求学生对高等代数与解析几何的基本概念、基本定理有比较全面、系统认识,能把几何的观点与代数的方法结合起来,“代数为几何提供研究方法,几何为代数提供直观背景”,逐步培养学生运用几何与代数相结合的方法分析问题、解决问题的能力,培养学生抽象的思维能力及空间想象能力。
本课程各章的教学内容和基本要求如下:第一章向量代数【教学内容】1、向量的线性运算2、向量的共线与共面3、用坐标表示向量4、线性相关性与线性方程组5、n维向量空间6、几何空间向量的内积7、几何空间向量的外积8、几何空间向量的混合积【基本要求】理解向量的概念,掌握向量的线性运算、内积、外积、混合积运算;熟悉向量间垂直、共线、共面的条件;会用坐标进行向量的运算。
【教学重点及难点】重点:向量的概念,向量的线性运算、内积、外积、混合积运算;用坐标进行向量的运算。
难点:向量间垂直、共线、共面的条件。
第二章行列式【教学内容】1、映射与变换2、置换的奇偶性3、矩阵4、行列式的定义理解n阶行列式的概念及性质,掌握常见类型的行列式的计算;熟悉克拉默法则。
线性空间与线性变换线性空间(也称为向量空间)是线性代数的基本概念之一。
它是指由向量集合组成的集合,满足特定的运算规则。
线性空间中的向量可以是实数域上的实向量,也可以是复数域上的复向量。
线性空间的定义涵盖了许多重要的数学概念和定理,在各个领域中都有广泛的应用。
一、线性空间的定义线性空间的定义遵循以下几个基本条件:1. 封闭性:对于线性空间V中任意向量u和v,它们的线性组合也属于V。
即对于任意的标量a和b,有a*u + b*v∈V。
2. 加法结合性:对于线性空间V中任意向量u、v和w,有(u+v)+w = u+(v+w)。
3. 加法交换性:对于线性空间V中任意向量u和v,有u+v = v+u。
4. 零向量存在性:存在一个特殊的向量0,满足对于线性空间V中任意向量u,有u+0 = u。
5. 加法逆元存在性:对于线性空间V中任意向量u,存在一个向量-v,使得u+(-v) = 0。
6. 数量乘法结合性:对于线性空间V中任意的标量a、b和向量u,有(a*b)*u = a*(b*u)。
7. 标量乘法分配律:对于线性空间V中任意的标量a和向量u、v,有a*(u+v) = a*u + a*v。
8. 向量乘法分配律:对于线性空间V中任意的标量a和b,以及向量u,有(a+b)*u = a*u + b*u。
二、线性变换的定义与性质线性变换是一种将一个线性空间映射到另一个线性空间的函数。
线性变换也被称为线性映射或线性算子。
线性变换保持线性空间的线性结构,即对于线性空间V中任意的向量u和v,以及标量a和b,有以下性质:1. 线性变换将零向量映射到零向量,即T(0) = 0,其中T表示线性变换。
2. 线性变换保持向量的线性组合,即对于线性空间V中任意的向量u和v,以及标量a和b,有T(a*u + b*v) = a*T(u) + b*T(v)。
3. 线性变换的像空间是一个线性空间,即对于线性空间V中的线性变换T,其像空间W也是一个线性空间。
线性方程组的解法与线性空间线性方程组是数学中常见的问题,它涉及到线性代数的基本概念和解法。
本文将讨论线性方程组的解法以及与其相关的线性空间的概念。
一、线性方程组的解法线性方程组由多个线性方程组成,通常用矩阵表示。
解线性方程组的一种常见方法是高斯消元法。
其步骤如下:1. 将线性方程组表示为增广矩阵,其中矩阵的最后一列为等号右侧的常数向量。
2. 利用初等行变换将增广矩阵化为行最简形式,即化为上三角矩阵或行最简阶梯形矩阵。
3. 利用回代法计算出每个未知数的值,从最后一行开始逐个回代。
举例来说,考虑以下线性方程组:2x + 3y - z = 63x - 4y + 2z = 7x + 2y + z = 4我们可以将其表示为增广矩阵:[ 2 3 -1 | 6 ][ 3 -4 2 | 7 ][ 1 2 1 | 4 ]接下来,应用高斯消元法进行求解。
通过初等行变换,将增广矩阵化为行最简形式:[ 1 2 1 | 4 ][ 0 -1 2 | -5 ][ 0 0 -5 | -14 ]然后,进行回代法,计算出每个未知数的值。
最终得到:x = 1y = 2z = 3二、线性空间的概念线性空间是线性代数中的重要概念,它是指一个集合,其中包含了满足加法和纯量乘法运算的一些向量,并满足一定的性质。
线性空间的基本性质包括封闭性、交换性、结合性、分配性以及关于零向量和负向量的存在性。
一个线性空间可以包含各种各样的向量,例如实数向量、复数向量、多项式向量等。
线性空间可以由一组基来描述,基是一个线性无关的向量组,通过线性组合可以表示出线性空间中的任意向量。
举例来说,考虑二维向量空间R^2,其基可以是{(1,0),(0,1)},这两个向量构成了R^2的基。
利用这个基,我们可以表示出R^2中的任意向量。
同样地,考虑三维向量空间R^3,其基可以是{(1,0,0),(0,1,0),(0,0,1)},这三个向量构成了R^3的基。
利用这个基,我们可以表示出R^3中的任意向量。
第三章 解线性方程组的直接法3.1 引言许多科学技术问题要归结为解含有多个未知量x 1, x 2, …, x n 的线性方程组。
例如,用最小二乘法求实验数据的曲线拟合问题,三次样条函数问题,解非线性方程组的问题,用差分法或有限元法解常微分方程、偏微分方程的边值等,最后都归结为求解线性代数方程组。
关于线性方程组的数值解法一般有两类:直接法和迭代法。
1. 直接法直接法就是经过有限步算术运算,可求得线性方程组精确解的方法(假设计算过程中没有舍 入误差)。
但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解。
本章将阐述这类算法中最基本的高斯消去法及其某些变形。
2. 迭代法迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法,迭代法需要的计算机存储 单元少、程序设计简单、原始系数矩阵在计算过程中不变,这些都是迭代法的优点;但是存在收敛性和收敛速度的问题。
迭代法适用于解大型的稀疏矩阵方程组。
为了讨论线性方程组的数值解法,需要复习一些基本的矩阵代数知识。
3.1.1 向量和矩阵 用nm ⨯R表示全部n m ⨯实矩阵的向量空间,nm C⨯表示全部n m ⨯复矩阵的向量空间。
()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⇔∈⨯nn n n n n ij nm a a a a a aa a a a ΛΛΛΛΛΛ212222111211A R A 此实数排成的矩形表,称为m 行n 列矩阵。
⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⇔∈n n x x x M 21x R x x 称为n 维列向量矩阵A 也可以写成)(n 21a ,,a ,a A Λ= 其中 a i 为A 的第i 列。
同理⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=T T T n 21b b b A M其中Ti b 为A 的第i 行。
矩阵的基本运算:(1) 矩阵加法 )( ,n m n m R C ,R B ,R A B A C ⨯⨯⨯∈∈∈+=+=n m ij ij ij b a c . (2) 矩阵与标量的乘法 ij j a ci αα== ,A C (3) 矩阵与矩阵乘法 p nk kj ikb acij ⨯⨯⨯=∈∈∈==∑m p n n m R C ,R B ,R A AB C ( ,1(4) 转置矩阵 ji ij T nm a c ==∈⨯ , ,A C RA(5) 单位矩阵 ()nn ⨯∈=Re ,,e ,e I n 21Λ,其中()Tk e 0,0,1,0,0ΛΛ= k=1,2,…,n(6) 非奇异矩阵 设n n ⨯∈R A ,n n ⨯∈R B 。
线性空间与线性变换线性空间和线性变换是线性代数中非常重要的两个概念。
它们是研究向量空间和所谓的线性方程组等问题的基础。
线性空间,是一个用于描述向量的抽象数学结构。
一个线性空间可以想象成一个由有限或无限个向量组成的集合,在该集合中,向量之间可以进行加法和数量乘法操作,同时满足若干条公理。
这些公理包括向量加法的交换律和结合律、数量乘法与向量加法的结合律以及分配律等,这些公理确保了线性空间可以执行向量的相加和数乘等操作。
线性变换,是一种将一个线性空间映射到它自身或另一个线性空间的函数。
线性变换使向量的属性得到保持,包括相对强度、方向和距离等。
例如,一个平面上的向量可以被平移、旋转、缩放或倾斜,这些操作可以表示为线性变换。
在应用线性变换时,我们可以将其表示为矩阵形式。
如果有一个线性变换L,将向量x映射到向量y,它可以表示为以下方程:Lx = y这个方程也可以表示为矩阵形式:[L]x = yL表示线性变换的矩阵,x和y分别是输入和输出向量。
矩阵[L]是一个m×n的矩阵,其中m和n分别是输入向量和输出向量的维数。
在对线性空间进行操作时,使用线性变换可以实现多种功能。
例如,在计算机图形学中,我们可以使用线性变换来实现几何变换,例如旋转、缩放和平移。
另外,在信号处理和时间序列分析领域中,我们可以使用线性变换对信号进行变换,例如傅里叶变换和小波变换等。
另一个很重要的概念是线性方程组。
线性方程组是一个关于未知量的一组线性方程。
线性方程组通常可以表示为以下形式:a1x1 + a2x2 + … + anxN = b其中,a1,a2,an是已知系数,b是已知常数,x1,x2,xn是未知变量。
线性方程组可以求解出未知变量的值,这也是线性代数的核心问题之一。
总而言之,线性空间和线性变换是线性代数中的两个基础概念,它们在计算机图形学、信号处理、机器学习等领域中都得到了广泛应用。
对线性空间和线性变换的深入理解,有助于理解向量空间与线性方程组等相关问题,进而更好地解决实际问题。
第三章 向量与线性方程组Ⅰ.授课题目:§3.1 线性方程组的解 §3.2 n 维向量空间 §3.3 向量组的线性相关性 §3.4 线性方程组解的结构 Ⅱ.教学目的与要求:1. 掌握数域、矩阵、逆矩阵、矩阵的初等变换、初等矩阵、矩阵的秩等概念2. 掌握矩阵的运算性质、逆矩阵的求法、分块矩阵的初等变换 Ⅲ.重点与难点:重点:矩阵的运算、逆矩阵的求法、矩阵的初等行变换 难点: 伴随矩阵,逆矩阵,初等矩阵、矩阵秩的概念 Ⅳ.教学内容§3.1 线性方程组的解例3.1 用矩阵的初等变换解下列线性方程组:(1)123123123253336212434x x x x x x x x x +-=⎧⎪+-=⎨⎪+-=⎩;(2)123451234512345232222283536x x x x x x x x x x x x x x x -+-+=⎧⎪++--=⎨⎪-+-+=⎩;(3)12341234123222253335x x x x x x x x x x x -++=⎧⎪++-=⎨⎪-+=⎩.提示或答案:(1)()(),3R A R A b ==,原方程组有唯一解()1,1,2T--;(2)增广矩阵行等价于1-23-12205-40-5400000-4⎛⎫⎪⎪ ⎪⎝⎭,()()2,,3R A R A b ==,原方程组无解; (3)增广矩阵行等价于411013*********0⎛⎫-- ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭,()(),4R A R A b =<,原方程组的通解为()12124113011,1003010x c c c c R ⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪⎪ ⎪=++∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭.定理3.1 n 元线性方程组Ax b =(1)无解的充分必要条件是()(),R A R A b <; (2)有唯一解的充分必要条件是()(),R A R A b n ==; (3)有无穷多解的充分必要条件是()(),R A R A b n =<.练习:用矩阵的初等变换解下列线性方程组:(1)1231231242232101138x x x x x x x x +-=⎧⎪-+=⎨⎪+=⎩; (2)2312312325227x x x x x x x x +=⎧⎪++=⎨⎪++=⎩;(3)12341234123423133128x x x x x x x x x x x x +++=⎧⎪++-=⎨⎪-++=⎩答案:(1)无解;(2)有无穷多解0310,12c c R ⎛⎫⎛⎫ ⎪ ⎪-+∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;(3)有无穷多解()21108201x c c R -⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪=+∈ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭. 定理3.2 n 元齐次线性方程组0Ax =, (1)只有零解的充要条件是()R A n =; (2)有非零解的充要条件是()R A n <.例3.2 求齐次线性方程组的通解1234123412342403230340x x x x x x x x x x x x +-+=⎧⎪-++=⎨⎪+++=⎩.答:()1212132211,221001x c c c c R⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭例3.3 设有线性方程组()()()12312312310131x x x x x x x x x λλλλ+++=⎧⎪+++=⎨⎪+++=⎩ 问λ取何值时,(1)有唯一解;(2)无解;(3)有无穷多解?并在有无穷多解时求出其通解.解法1 对增广矩阵(),A b 作初等行变换,化成行阶梯形矩阵,有()()()()1110111,11130311100313A b λλλλλλλλλλλλλ++⎛⎫⎛⎫ ⎪ ⎪=+→⋅⋅⋅→-- ⎪ ⎪ ⎪ ⎪+-+-+⎝⎭⎝⎭. (1)当0λ≠且3λ≠-时,()(),3R A R A b ==,方程组有唯一解;(2)当0λ=时,()()1,,2R A R A b ==,方程组无解; (3)当3λ=-时,()(),2R A R A b ==,方程组有无穷多个解. 这时,()21101011,1213011211230000A b ---⎛⎫⎛⎫⎪ ⎪=-→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭于是,原方程组等价于132312x x x x =-⎧⎨=-⎩. 此时,原方程的通解为()111210x c c R -⎛⎫⎛⎫ ⎪ ⎪=+-∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.解法2 因系数矩阵A 为方阵,故方程有唯一解的充要条件是系数行列式0A ≠. 而()()()21111111111113111300311111100A λλλλλλλλλλλ+=+=++=+=+++, 因此,当0λ≠且3λ≠-时,方程组有唯一解. 当0λ=时,()11101110,1113000111100000A b ⎛⎫⎛⎫⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 知()()1,,2R A R A b ==,方程组无解. 当3λ=-时,()21101011,1213011211230000A b ---⎛⎫⎛⎫⎪ ⎪=-→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 知,()(),2R A R A b ==,方程组有无穷多个解. 且通解为()111210x c c R -⎛⎫⎛⎫ ⎪ ⎪=+-∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.练习:1. 求解齐次线性方程组12341234123422020320x x x x x x x x x x x x +--=⎧⎪--+=⎨⎪+--=⎩. 2.当,a b 为何值时,线性方程组()1234234123412341212343565x x x x x x x x x ax x b x x x a x +++=⎧⎪-+=⎪⎨+++=⎪⎪++++=⎩ (1)无解;(2)有唯一解;(3)有无穷多解?并在有无穷多解时求出其通解.答案或提示:1. ()()1211221231,,1,0,0,1,0,1,,55TT x c c c c R ξξξξ⎛⎫===+∈ ⎪⎝⎭2. ()1111101121,0010300010A b a b a ⎛⎫ ⎪-⎪→ ⎪-- ⎪-⎝⎭.(1)当1,3a b =≠时,()()2,,3R A R A b ==此时,方程组无解;(2)当1,a b ≠为任意实数时,()(),4R A R A b ==此时,方程组有唯一解;(3)当1,3a b ==时,()(),24R A R A b ==<,方程组有无穷多解. 此时,()1021001121,0000000000A b -⎛⎫ ⎪-⎪→ ⎪ ⎪⎝⎭原方程组可化为134234212x x x x x x =-+⎧⎨=+-⎩. 通解为()1212021112,010001x c c c c R -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=++∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.小结:课外作业:§3.2 n 维向量空间1. n 维向量空间定义 3.1 所谓数域P 上一个n 维向量就是由数域P 中n 个数12,,,n a a a 组成的有序数组,其中i a 称为第i 个分量.通常地,n 维向量可以写成一列12n a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,也可以写成一行()12,,,n a a a ,前者称之为n 维列向量,用,,,a b c ,或,,,αβγ⋅⋅⋅表示,后者称之为n 维行向量,用,,,TTTa b c ,或,,,T T Tαβγ⋅⋅⋅表示.今后,如无特别声明,我们提到的n 维向量都是指的n 维列向量.如果两个n 维向量()()1212,,,,,TTn n a a a a b b b b ==对应分向量相等,即i i b a =()1,2,,i n =⋅⋅⋅,则称为这两个向量相等,记作.a b =定义零向量()00,0,,0T=⋅⋅⋅,负向量()12,,Tn a a a a -=---.设P 是一个数域,用nP 表示数域P 上全体n 维向量组成的集合,在nP 中如下定义向量加法和数量乘法(统称为向量的线性运算):对P λ∀∈,()()1212,,,,,TTn n n a a a a b b b b P ==∈()()()12121122,,,,,,,TTTn n n n a b a a a b b b a b a b a b +=+=+++,()()1212,,,,TTn n a a a a a a a λλλλλ==.这样定义的向量的线性运算满足如下八条运算律:以下,P λμ∈,,,na b c P ∈ 加法的交换律:a b b a +=+;加法的结合律: ()()a b c a b c ++=++; 右零元律:0a a +=; 右负元律:()0a a +-=; 1乘向量律:1a a =;数乘向量的结合律:()()a a λμλμ=; 数对向量加法的分配律:()a b a b λλλ+=+; 向量对数加法的分配律:()a a a λμλμ+=+.定义3.2 设n P 是以数域P 中的数作为分量的n 维向量的全体,在nP 中定义如上的向量加法和数量乘法(并满足以上八条运算律),我们称nP 是数域P 上的n 维向量空间.2. 子空间定义3.3 设V 是向量空间nP 的非空子集,如果V 对于向量的加法和数量乘法两种运算都封闭,那么就称集合V 对于向量空间nP 的向量加法和数乘向量构成一个向量空间,称之为向量空间nP 的子空间.例3.1 集合{}22(0,,,),,T n n V x x x x x P ==∈是向量空间nP 的子空间.事实上,若V a a T n ∈=),,,0(2 α,V b b T n ∈=),,,0(2 β则V b a b a T n n ∈++=+),,,0(22 βα,V a a T n ∈=),,,0(2λλλα .例3.2 集合{}22(1,,,),,T n n V x x x x x P ==∈不是n P 的子空间.事实上,若V a a T n ∈=),,,1(2 α,V b b T n ∈=),,,1(2 β则V b a b a T n n ∉++=+),,,2(22 βα.所以V 不是向量空间.例3.3 设βα,是两个已知的n 维向量,则集合{},V x P λαμβλμ==+∈是一个向量空间. 称为由向量βα,所生成的向量空间.一般地,由m ααα,,,21 所生成的向量空间为{}112212,,,m m m V x P λαλαλαλλλ==+++∈.小结:课外作业:§3.3 向量组的线性相关性1. 向量的线性表示以下我们总是讨论在某固定数域P 上的n 维向量空间,不再每次声明. 定义3.4 如果存在一组数s k k k ,,,21 ,使得.2211s s k k k βββα+++=则称向量α是向量组s βββ,,,21 的一个线性组合,或称向量α可由向量组s βββ,,,21 线性表示(或线性表出)称s k k k ,,,21 为组合系数.例如,对向量组()()()1232,1,3,1,4,2,5,4,2,1,4,1T T Tααα=-=-=--,容易看到,.3213ααα-= 因此,3α是21,αα的一个线性组合.又如,任一个n 维向量()12,,,Tn a a a α=都是向量组12100010,,,001n εεε⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的一个线性组合,因为.2211n n a a a εεεα+++=我们称向量组n εεε,,,21 为n 维单位向量组.由定义可以看出,零向量是任一向量组的线性组合(只要取系数全为0就行了);其次,向量α是向量组s βββ,,,21 的线性组合的充要条件是方程组1122s s x x x βββα+++=有解.例3.4 证明向量()1,1,5Tb =-可由向量组()()()1231,2,3,0,1,4,2,3,6TTTa a a ===线性表示,并求出相应的组合系数.定义 3.5 如果向量组:A 12,,,l ααα中每一个向量(1,2,,)i i l α=都可以由向量组:B s βββ,,,21 线性表示,那么称向量组A 可以由向量组B 线性表示,如果两个向量组互相可以线性表示,就称这两个向量组等价.向量组之间的等价有以下的性质: 1) 反身性:每一个向量都与它自身等价;2) 对称性:如果向量组t ααα,,,21 与向量组s βββ,,,21 等价,那么向量组s βββ,,,21 与向量组t ααα,,,21 也等价;3) 传递性:如果向量组t ααα,,,21 与向量组s βββ,,,21 等价,s βββ,,,21 与pγγγ ,,21等价,那么向量组t ααα,,,21 与p γγγ ,,21等价.如果向量组12,,,r ααα可以由向量组s βββ,,,21 线性表示,则()11,2,,si ij j j k i r αβ===∑即()()1212,,,1,2,,i i i s is k k i r k αβββ⎛⎫⎪ ⎪=⋅⋅⋅= ⎪ ⎪⎝⎭.因此,()()111112222121212,,,,,,i r r r s ss rs k k k k k k k k k αααβββ⎛⎫ ⎪ ⎪⋅⋅⋅=⋅⋅⋅ ⎪ ⎪⎝⎭. 所以,如果()12,,,r A ααα=,()12,,,s B βββ=分别表示以12,,,r ααα和s βββ,,,21 为列向量的矩阵,向量组12,,,r ααα可以由向量组s βββ,,,21 线性表示,则存在矩阵s r K ⨯,使得A BK =.例3.5 证明向量组1211:1,210A a a ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭与向量组等价.证 对向量组(),A B 施行初等行变换()111011101021,120101110111102101110000A B -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭可以看出来1122122,b a a b a a =-=-+,即()()121221,,11b b a a -⎛⎫= ⎪-⎝⎭,显然121111112--⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭,所以()()121211,,12a a b b ⎛⎫= ⎪⎝⎭,即112212,2a b b a b b =+=+.故向量组A 与向量组B 等价.本题后面部分也可以这样做,进一步作初等行变换102111100111120100000000-⎛⎫⎛⎫ ⎪ ⎪-→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭可以得到112212,2a b b a b b =+=+.2. 向量组的线性相关性定义3.6 对向量组)2(,,,21≥s s ααα ,如果存在一组不全为零的数s k k k ,,,21 使得11220s s k k k ααα+++=,则称向量组)2(,,,21≥s s ααα 线性相关.否则称向量组)2(,,,21≥s s ααα 线性无关.注(1)任意一个包含零向量的向量组一定是线性相关的;(2)如果一个向量组线性相关,则其中至少有一个向量可以由其余向量线性表示;(3)两个向量21,αα线性相关⇔21ααk =,即它们的分量对应成比例. 从几何的角度看,就是这两个向量共线;(4)如果三个向量321,,ααα线性相关,则其中一个向量是另外两个向量的线性组合,譬如123k l ααα=+,因此,这三个向量共面,反之也成立;(5)设()12,,,s A ααα=,则向量组)2(,,,21≥s s ααα 线性相关⇔齐次方程组0Ax =有非零解⇔()R A s <(即A 是列降秩矩阵);(6)向量组)2(,,,21≥s s ααα 线性无关⇔齐次方程组0Ax =只有零解⇔()R A s =(即A 是列满秩矩阵). 或者说,向量组)2(,,,21≥s s ααα 线性无关⇔若11220s s k k k ααα+++=,则120s k k k ====;(7)1n +个n 维向量一定线性相关(这是因为,以这1n +个n 维向量为列向量构成的矩阵的秩必定小于1n +);(8)如果一向量组的一部分线性相关,那么这个向量组就线性相关;反之,如果一向量组线性无关,那么它们的任何一个非空的部分组也线性无关.(即“部分相关⇒整体相关”;“整体无关⇒部分无关”)(向量个数增加)(9)如果向量组11112221221212,,,s s srs r r a a a a a a a a a ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪==⋅⋅⋅= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭线性无关,则各向量加多一个分量得到的向量组111212122212121,11,21,,,,s s s r r rs r r r s a a a a a a a a a a a a βββ+++⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭线性无关;反之,若向量组12,,,s βββ⋅⋅⋅线性相关,则向量组12,,,s ααα⋅⋅⋅线性相关(即“截断组无关⇒加长组无关”;“加长组相关⇒截断组相关”)(向量维数增加);(10)如果向量组12,,,s ααα⋅⋅⋅线性无关,添加一个向量β后,12,,,,s αααβ⋅⋅⋅线性相关,则β一定可以由12,,,s ααα⋅⋅⋅线性表示,而且表示法是唯一的.例3.6 n 维单位向量n εεε,,,21 组成的向量组线性无关.事实上,由,02211=+++n n k k k εεε也就是由1212,(1,0,,0)(0,1,,0)(0,0,,1)(,,)(0,0,,0)T T Tn T n Tk k k k k k +++==可以推出.021====n k k k故n εεε,,,21 线性无关.例3.7 讨论向量组123(2,1,7),(1,4,11),(3,6,3)T T T a a a =-==-的线性相关性.例3.8 已知向量组123,,a a a 线性无关,112223331,,b a a b a a b a a =+=+=+.证明向量组123,,b b b 线性无关.例3.9 已知向量1231021,2,4157a a a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(1)讨论向量组123,,a a a 及向量组12,a a 的线性相关性;(2)向量3a 能否由向量组12,a a 线性表示?如果能,求其组合系数. 练习:1.判断向量组()()()1231,0,1,2,1,1,2,4,2,3,5,10TTTααα=-=---=-线性相关还是线性无关.2.设向量组:()()()()12341,1,1,1,2,3,1,3,,3,4,5TTTTt αααα====.(1)问t 为何值时,向量组123,,ααα线性相关?线性无关?(2)问t 为何值时,向量组1234,,,αααα线性相关?线性无关?3.证明:如果向量组123,,ααα线性无关,则向量组1122233312,23,3βααβααβαα=+=+=+也线性无关.4.设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问: (1)1α能否由23,αα线性表示?说明理由; (2)4α能否由123,,ααα线性表示?说明理由.3. 向量组的极大无关组与向量组的秩定义3.7 向量组的一个部分组称之为是这个向量组的一个极大线性无关组(简称极大无关组). 如果这个部分组本身线性无关,但是从这个向量组中任意加一个向量(如果还有的话)后都线性相关.例如,在向量组123(2,1,3,1),(4,2,5,4),(2,1,4,1)T T T ααα=-=-=--中,由21,αα一个极大线性无关组. n 维单位向量组n εεε,,,21 就是nR 的一个极大无关组.注(1)向量组的极大无关组可能不是唯一的;(2)一个线性无关的向量组,其极大无关组就是它本身; (3)任一向量组与它的极大无关组等价; (4)向量组的任意两个极大无关组一定等价.定理 3.3 如果向量组r ααα,,,21 可以由向量组s βββ,,,21 线性表示,且r s >,那么向量组r ααα,,,21 必线性相关.证 记()12,,,r A ααα=,()12,,,s B βββ=.由于向量组r ααα,,,21 可以由向量组s βββ,,,21 线性表示,故存在矩阵s r K ⨯,使得A BK =.注意到,齐次方程组0Kx =的解都是齐次方程组0Ax =的解. 而(){}min ,R K r s s r ≤=<(r是未知量的个数),所以,前者一定有非零解,故后者也有非零解. 所以向量组r ααα,,,21 必线性相关.注 (1)定理3.3可以叙述成:如果一个较多的向量组可以由一个较少的向量组线性表示,则较多的向量组一定线性相关.(2)定理3.3的逆否命题是:如果向量组r ααα,,,21 可以经向量组s βββ,,,21 线性表出,且r ααα,,,21 线性无关,那么.s r ≤推论1 两个等价的线性无关的向量组,必有相同个数的向量. 推论2 向量组的任意两个极大无关组都含有相同个数的向量.定义3.8 向量组的极大无关组所包含的向量个数称为这个向量组的秩.注 (1)向量组线性无关的充分必要条件为它的秩等于它所含有向量的个数; (2)等价的向量组必有相同的秩;(3)含有非零向量的向量组一定有极大线性无关组,且任一个无关的部分向量组都能扩充成一个极大线性无关组. 全部由零向量组成的向量组没有极大线性无关组. 规定这样的向量组的秩为零;(4)矩阵的秩等于矩阵的列向量组的秩,也等于它的行向量组的秩. 练习:设121311:,1113A a a ⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,123213011:,,102120B b b b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪- ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭证明向量组A 与向量组B 等价.例3.10 设向量组A :123452*********,,,,4622436979a a a a a --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.求A 的一个极大无关组,并把其余向量用这个极大无关组线性表示.(P101~102)练习:设矩阵122121221143A ⎛⎫ ⎪=-- ⎪ ⎪---⎝⎭,求矩阵A 的列向量组的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示.例3.11 设m n m s s n C A B ⨯⨯⨯=,那么()()()(),.R C R A R C R B ≤≤ (教材P103)例3.12 设()ijm nA a ⨯=,证明()1R A =⇔存在非零列向量a 及非零行向量Tb ,使得TA ab =.证 ⇒:(必要性)设矩阵()12,,,n A ααα=⋅⋅⋅ ,由于()1R A =,所以,列向量组12,,,nααα⋅⋅⋅的极大无关组只含一个向量,不妨假定1α是它的一个极大无关组.设2211,,n n k k αααα=⋅⋅⋅=,则()()121112,,,1,,,T n n A k k k k ab αααα=⋅⋅⋅=⋅⋅⋅=. 令()12,1,,,Tn a b k k α==⋅⋅⋅,则TA ab =.⇐:(充分性)由T A ab =知,()1R A ≤.其次,由于a 和Tb 都是非零向量,因此,A O ≠,因此()1R A ≥,故()1R A =. 证毕.例3.13设A 是m n ⨯矩阵,B 是m s ⨯矩阵,则()(){}()()()max ,,R A R B R A B R A R B ≤≤+. 证 设()()12,R A r R B r ==,矩阵,A B 的列向量的极大无关组分别是112,,,r ααα和212,,,r βββ. 于是(),A B 的全体列向量,一定可以由向量组121212,,,,,,,r r αααβββ线性表示,即()()(),R A B R A R B ≤+.另一方面,A 的列向量个数小于(),A B 的列向量个数,因而()(),R A R A B ≤;同时()(),R B R A B ≤. 因而,()(){}()max ,,R A R B R A B ≤.故()(){}()()()max ,,R A R B R A B R A R B ≤≤+.例3.14已知3阶矩阵A 与3维列向量x 满足323A x Ax A x =-,且向量2,,x Ax A x 线性无关. (1)记()2,,P x Ax A x =,求3阶矩阵B ,使AP PB =;(2)求A .例3.15 设1212,,,ααββ都是3维列向量,且12,αα线性无关,12,ββ线性无关,证明:存在非零向量γ,使得既可以由12,αα线性表示,也可以由12,ββ线性表示.当121212300,1,2,12351ααββ-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭时,求出所有的向量γ.提示 4个3维向量1212,,,ααββ必线性相关,故有不会为0的数1212,,,k k l l ,使得112211220k k l l ααββ+++=,显然12,k k 不全为零,取11221122k k l l γααββ=+=--.解方程组112211220x x y y ααββ+++=,求其通解可知()0,1,1Tk γ=4. 向量空间的基、维数与向量的坐标§3.4 线性方程组解的结构在有了向量和矩阵的理论准备之后,我们现在可以来分析一下线性方程组的问题,给出线性方程组有解的判别条件.设线性方程组为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,221122222212111212111s n sn s s n n n b x a x a x a b x a x a x a b x a x a x a (1)引入向量,,,,,2121222122121111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=s sn nn n s s b b b a a a a a a a a a βααα (2)于是线性方程组(1)可以改写成向量方程.2211βααα=+++n n x x x (3)显然,线性方程组(1)有解的充分必要条件为向量β可以表成向量组n ααα,,,21 的线性组合. 用秩的概念,方程组(1)有解的条件可以传述如下:定理7(线性方程组有解的判别定理) 线性方程组(1)有解的充分必要条件为它的系数矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=sn s s n n a a a a a a a a a A 212222111211与增广矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=s sn s s n n b b b a a a a a a a a a A 21212222111211__有相同的秩.证明 先证必要性,设线性方程组(1)有解,就是说,β可以经向量组n ααα,,,21 线性表出,向量组n ααα,,,21 与向量组βααα,,,,21n 等价,因而有相同的秩. 这两个向量组分别是矩阵A 与__A 的列向量组. 因此,矩阵A 与__A 有相同的秩.再证充分性,设矩阵A 与__A 有相同的秩,就是说,它们的列向量组n ααα,,,21 与βααα,,,,21n 有相同的秩,令它们的秩为r ,n ααα,,,21 中的极大线性无关组的是由r 个向量组成,无妨设r αα,,1 是它的一个极大线性无关组. 显然r αα,,1 也是向量组βααα,,,,21n 的一个极大线性无关组,因此向量β可以经r αα,,1 线性表出. 既然β可以经r αα,,1 线性表出,当然它可以经n ααα,,,21 线性表出. 因此,方程组(1)有解.应该指出,这个判别条件与以前的消元法是一致的,我们知道,用消元法解线性方程组(1)的第一步就是用初等变换把增广矩阵__A 化成阶梯形. 这个阶梯形矩阵在适当调动前n 列的顺序之后可能有两种情形:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+000000`000000000001222221111211 r r rn rr nrn r d d c c d c c c d c c c c 或者 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛000000`000000000000222221111211r rn rr n rn r d c c d c c c d c c c c 其中.0,,,2,1,01≠=≠+r ii d r i c 在前一种情形,我们说原方程组无解,而在后一种情形方程组有解,实际上,把这个阶梯形矩阵中最后一列去掉,那就是线性方程组(1)的系数矩阵A 经过初等变换所化成的阶梯形. 这就是说,当系数矩阵与增广矩阵的秩相等时,方程组有解,当增广矩阵的秩等于系数矩阵的秩加1时,方程组无解.以上的说明也可以认为是判别定理的另一个证明.根据克拉默法则,也可以给出一般线性方程组的一个解法,这个解法有时在理论上是有用的. 设线性方程组(1)有解,矩阵A 与__A 的秩都等于r ,而D 是矩阵A 的一个不为零的r 级子式(当然它也是__A 的一个不为零的子式),为了方便起见,无妨设D 位于A 的左上角.显然,在这种情形下,__A 的前r 行就是一个极大线性无关组,第s r ,,1 +行都可以经它们线性表出,因此,方程组(1)与⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++rn rn r rr r n n r r n n r r b x a x a x a b x a x a x a b x a x a x a 11222121111111,, (4) 同解.当n r =时,由克拉默法则,方程组(4)有唯一解,也就是方程且(1)有唯一解. 当n r <时,将方程组(4)改写为⎪⎪⎩⎪⎪⎨⎧---=++---=++---=++++++++.,,11,11211,222121111,111111n rn r r r r r rr r n n r r r r n n r r r r x a x a b x a x a x a x a b x a x a x a x a b x a x a (5) (5)作为r x x ,,1 的一个方程组,它的系数行列式.0≠D 由克拉默法则,对于n r x x ,,1 +的任意一组值,方程组(5),也就是方程组(1),都有唯一的解,n r x x ,,1 +就是方程组(1)的一组自由未知量,对(5)用克拉默法则,可以解出r x x ,,1 :⎪⎩⎪⎨⎧+++=+++=++++.```,```11,111,111n rn r r r r rn n r r x c x c d x x c x c d x(6) (6)就是方程组(1)的一般解.§6 线性方程组解的结构在解决了线性方程组有解的判别条件之后,我们进一步来讨论线性方程组解的结构. 在方程组的解是唯一的情况下,当然没有什么结构问题. 在有多个解的情况下中,所谓解的结构问题就是解与解之间的关系问题. 下面我们将证明,虽然在这时有无穷多个解,但是全部的解都可以用有限多个解表示出来. 这就是本节要讨论的问题和要得到的主要结果. 下面的讨论当然都是对于有解的情况说的,这一点就不再每次都说明了.上面我们提到,n 元线性方程组的解是n 维向量,在解不是唯一的情况下,作为方程组的解的这些向量之间有什么关系呢?我们先看齐次线性方程组的情形. 设⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.0,0,02211222221211212111n sn s s n n n x a x a x a x a x a x a x a x a x a (1) 是一齐次线性方程组,它的解所成的集合具有下面的两个重要的性质:1:两个解的和还是方程组的解.设(n k k k ,,,21 )与(n l l l ,,,21 )是方程组(1)的两个解. 这就是说,把它们代入方程组,每个方程成恒等式中,即∑==nj jij ka 10 (s i ,,2,1 =)∑==nj jij la 10 (s i ,,2,1 =)把两个解的和),,,(2211n n l k l k l k +++ (2)代入方程组,得000)(111=+=+=+∑∑∑===nj j ij n j j ij nj j j ijl a k a l k a(s i ,,2,1 =)这说明(2)确实是方程组的解.2:一个解的倍数还是方程组的解.设(n k k k ,,,21 )是(1)的一个解,不难看出(n ck ck ck ,,,21 )还是方程组的解,因为∑∑===⋅==nj j ij nj j ijc k a c ck a1100)( (s i ,,2,1 =)从几何上看,这两个性质是清楚的,在3=n 时,每个齐次线性方程组表示一个过原点的平面. 于是方程组的解,也就是这些平面的交,如果不只是原点的话,就是一条过原点的直线或一个过原点的平面. 以原点为起点,而端点在这样的直线或平面上的向量显然具有上述的性质.对于齐次线性方程组,综合以上两点即得,解的线性组合还是方程组的解. 这个性质说明了,如果方程组有几个解,那么这些解的所有可能的线性组合就给出了很多有解. 基于这个事实,我们要问:齐次线性方程组的全部解是否能够通过它的有限的几个解的线性组合给出来?回答是肯定的. 为此,我们引入下面的定义:定义17 齐次线性方程组(1)的一组解t ηηη,,,21 称为(1)的一个基础解系,如果 1)(1)的任意一个解都能表成t ηηη,,,21 的线性组合; 2)t ηηη,,,21 线性无关.应该指出,定义中的条件2)是为了保证基础解系中没有多的解. 事实上,如果t ηηη,,,21 线性相关,也就是其中有一个可以表成其他的解的线性组合,譬如说t η可以表成121,,,-t ηηη 的线性组合,那么121,,,-t ηηη 显然也具有性质1).现在就来证明,齐次线性方程组的确有基础解系.定理8 在齐次线性方程组有非零解的情况下,它有基础解系,并且基础解系所含有的解的个数等于,r n -这里r 表示系数矩阵的秩(以下将看到,r n - 也就是自由未知量的个数)定理的证明实际上就是一个具体找基础解系的方法.证明 设方程组(1)的系数矩阵的秩为r ,无妨设左上角的r 级子式不等于零,于是按上一节最后的分析,方程组(1)可以改写成⎪⎪⎩⎪⎪⎨⎧---=++---=++---=++++++++.,,11,11211,22121111,11111n rn r r r r rr r n n r r r r n n r r r r x a x a x a x a x a x a x a x a x a x a x a x a (3) 如果,n r =,那么方程组没有自由未知量,方程组(3)的右端全为零,这时方程组只有零解,当然也就不存在基础解系,以下设.n r <我们知道,把自由未知量的任意一组值(n r c c ,,1 +)代入(3),就唯一地决定了方程组(3)__也就是方程组(1)的一个解. 换句话说,方程组(1)的任意两个解,只要自由未知量的值一样,这两个解就完全一样,特别地,如果在一个解中,自由未知量的值全为零,那么这个解一定就是零解.在(3)中我们分别用r n -组数)1,,0,0(,),0,,1,0(),0,,0,1( (4)来代自由未知量(n r r x x x ,,,21 ++),就得出方程组(3)——也就是方程组(1)的r n -个解:⎪⎪⎩⎪⎪⎨⎧===---).1,,0,0,,,(),0,,1,0,,,),0,,0,1,,(,1,22121111 r r n r n r n r r c c c c c c ηηη (5) 我们现在来证明,(5)就是一个基础解系. 首先证明r n -ηηη,,,21 线性无关,事实上,如果02211=+++--r n r n k k k ηηη ,即).0,,0,0,0,,0(),,,,*,(*,212211 ==+++---r n r n r n k k k k k k ηηη比较最后r n -个分量,得 .021====-r n k k k 因此,r n -ηηη,,,21 线性无关.再证明方程组(1)的任意一个解都可以由r n -ηηη,,,21 线性表出,设),,,,,,(211n r r r c c c c c ++=η (6)是(1)的一个解,由于r n -ηηη,,,21 是(1)的解,所以线性组合r n n r r c c c -+++++ηηη 2211 (7)也是(1)的一个解. 比较(7)和(6)的最后r n -个分量得知,自由未知量有相同的值,从而这两个解完全一样,即.2211r n n r r c c c -+++++=ηηηη (8)这就是说,任意一个解η都能表成r n -ηηη,,,21 的线性组合. 综合以上两点,我们就证明r n -ηηη,,,21 确为方程组(2)的一个基础解系,因而齐次线性方程组的解有基础解系. 证明中具体给出的这个基础解系是由r n -个解组成. 至于其他的基础解系,由定义,一定与这个基础解系等价,同时它们又都是线性无关的,因而有相同个数的向量. 这就是定理的第二部分. ¶由定义容易看出,任何一个线性无关的与某一个基础解系等价的向量组都是基础解系(读者自己证明).下面来看一般线性方程组的解的结构. 如果把一般线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,221122222212111212111s n sn s s n n n b x a x a x a b x a x a x a b x a x a x a (9) 的常数项换成0,就得到齐次线性方程组(1). 方程组(1)称为方程组(9)的导出组. 方程组(9)的解与它的导出组(1)的解之间有密切的关系:1:线性方程组(9)的两个解的差是它的导出组(1)的解. 设(n k k k ,,,21 ),),,,(21n l l l 是方程组(9)的两个解,即 ∑∑====nj nj i j ij i j ijb l a b k a11, (s i ,,2,1 =)它们的差是).,,,(2211n n l k l k l k ---显然有∑∑∑====-=-=-n j nj i i j ij j ij nj j j ijb b l a k a l k a1110)( (s i ,,2,1 =)这就是说,).,,,(2211n n l k l k l k --- 是导出组(1)的一个解. ¶2:线性方程组(9)的一个解与它的导出组(1)的一个解之和还是这个线性方程组的一个解. 设(n k k k ,,,21 )是(9)的一个解,即∑==nj i j ijb k a1 (s i ,,2,1 =)又设),,,(21n l l l 是导出组(1)的一个解,即∑==nj jij la 10 (s i ,,2,1 =)显然∑∑∑====+=+=+n j nj i i j ij j ij nj j j ijb b l a k a l k a1110)( (s i ,,2,1 =)由这两点我们很容易证明下面的定理:定理9 如果0γ是方程组(9)的一个特解,那么方程组(9)的任一个解γ都可以表成 ,0ηγγ+= (10)其中η是导出组(1)的一个解,因此,对于方程组(9)的任一个特解0γ,当η取完它的导出组的全部解时,(10)就给出(9)的全部解.证明 显然),(00γγγγ-+= 由上面的1,0γγ-是导出组(1)的一个解,令 0γγ-=,η就得到定理的结论.既然(9)的任一个解都能表成(10)的形式,由2,在η取完(1)的全部解的时候,,0ηγγ+=就取完(9)的全部解.定理9说明了,为了找一线性方程组的全部解,我们只要找出它的一个特解以及它的导出组的全部解就行了,导出组是一个齐次方程组,在上面我们已经看到,一个齐次线性方程组的解的全体可以用基础解系来表出.因此,根据定理我们可以用导出组的基础解系来表出一般方程组的一般解:如果0γ是方程组(9)的一个特解,r n -ηηη,,,21 是其导出组的一个基础解系,那么(9)的任一个解γ都可以表成 .22110r n r n k k k --++++=ηηηγγ推论 在方程组(9)有解的情况下,解是唯一的充分必要条件是它的导出组(1)只有零解. 证明 充分性:如果方程组(9)有两个不同的解,那么它的差就是导出组的一个非零解.因之,如果导出组只有零解,那么方程组有唯一解.必要性:如果导出组有非零解,那么这个解与方程组(9)的一个解(因为它有解)的和就是(9)的另一个解,也就是说,(9)不止一个解.因之,如果(9)有唯一解,那么它的导出组只有零解.¶ 线性方程组的理论与解析几何中关于平面与直线的讨论有密切的关系.我们来看线性方程组⎩⎨⎧=++=++.,23232221211313212111b x a x a x a b x a x a x a (11) (11)中每一个方程表示一个平面,线性方程组(11)有没有解的问题就相当于这两个平面有没有交点的问题.我们知道,两个平面只有在平行而不重合的情形下没有交点.(11)的系数矩阵与增广矩阵分别是⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=22322211131211__232221131211b a a a b a a a A a a aa a a A 与 它们的秩可能是1,也可能是2.有三个可能的情形:1.A 的秩=1,__A 的秩=1,这就是说A 的两行成比例,因而两个平面平行,又因为__A 的两行也成比例,所以这两个平面重合,方程组有解.2.A 的秩=1,__A 的秩=2,这就是说,两个平面平行而不重合,方程组无解.3.A 的秩=2.这时__A 的秩也一定是2,在几何上就是这两个平面不平行,因而一定相交,方程组有解.例2.18 利用矩阵的初等行变换求解线性方程组123412341234123422244622436979x x x x x x x x x x x x x x x x --+=⎧⎪+-+=⎪⎨-+-=⎪⎪+-+=⎩。