概率论与数理统计复习资料
- 格式:doc
- 大小:432.50 KB
- 文档页数:6
概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
《概率论与数理统计》复习资料一、复习提纲注:以下是考试的参考内容,不作为实际考试范围,仅作为复习参考之用。
考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考。
1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质。
5、理解随机变量的概念,了解(0—1)分布、二项分布、泊松分布的分布律。
6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质。
7、掌握指数分布(参数 )、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度。
9、会求分布中的待定参数。
10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性。
11、掌握连续型随机变量的条件概率密度的概念及计算。
12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率。
13、了解求二维随机变量函数的分布的一般方法。
14、会熟练地求随机变量及其函数的数学期望和方差。
会熟练地默写出几种重要随机变量的数学期望及方差。
15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念。
会用独立正态随机变量线性组合性质解题。
17、了解大数定理结论,会用中心极限定理解题。
18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握2分布(及性质)、t分布、F分布及其分位点概念。
19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数。
第一章 随机事件及其概率知识点:概率的性质 事件运算 古典概率事件的独立性 条件概率 全概率与贝叶斯公式常用公式)()()()()()2(加法定理AB P B P A P B A P -+= ),,()()(2111有限可加性两两互斥设n ni i ni i A A A A P A P ∑===),(0)()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==)()()()()5(AB P A P B A P B A P -==-)()()()()(时当A B B P A P B A P B A P ⊂-==-))0(,,()()/()()()6(211>Ω=∑=i n ni i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ),,()](1[1)(2111相互独立时n ni i n i i A A A A P A P ∏==--=)/()()/()()()4(B A P B P A B P A P AB P ==)(/)()/()3(A P AB P A B P =)()/()()/()()/()7(1逆概率公式∑==ni iii i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L AP nr A P ==应用举例1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。
2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。
3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。
4、若,3.0)(=A P===)(,5.0)(,4.0)(B A B P B A P B P ()。
5、,,A B C 是三个随机事件,C B ⊂,事件()A C B -与A 的关系是( )。
概率论与数理统计 复习资料第一章随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃). (2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =. (3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,nA A A 中至少有一事件发生”这一事件称为1,2,,nA A A 的和,记作12nA A A ⋃⋃⋃(简记为1nii A =). (4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,nA A A 同时发生”这一事件称为1,2,,nA A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12nA A A 或1nii A =). (5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B互不相容(或互斥),若n 个事件1,2,,nA A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件 1,2,,n A A A 互不相容. (6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .2.运算规则 (1)交换律:BA AB A B B A =⋃=⋃(2)结合律:)()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃ (3)分配律))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)德摩根(De Morgan )法则:B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率: 如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|((5)贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k n k -⎛⎫=-= ⎪⎝⎭,7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)下列四个命题是等价的:(i) 事件A 与B 相互独立;(ii) 事件A 与B 相互独立;(iii) 事件A 与B 相互独立;(iv) 事件A 与B 相互独立.8、思考题1.一个人在口袋里放2盒火柴,每盒n 支,每次抽烟时从口袋中随机拿出一盒(即每次每盒有同等机会被拿到)并用掉一支,到某次他迟早会发现:取出的那一盒已空了.问:“这时另一盒中恰好有m 支火柴”的概率是多少?2.设一个居民区有n 个人,设有一个邮局,开c 个窗口,设每个窗口都办理所有业务.c 太小,经常排长队;c 太大又不经济.现设在每一指定时刻,这n 个人中每一个是否在邮局是独立的,每个人在邮局的概率是p .设计要求:“在每一时刻每窗口排队人数(包括正在被服务的那个人)不超过m ”这个事件的概率要不小于a (例如,0.8,0.9.95a o =或),问至少须设多少窗口? 3.设机器正常时,生产合格品的概率为95%,当机器有故障时,生产合格品的概率为50%,而机器无故障的概率为95%.某天上班时,工人生产的第一件产品是合格品,问能以多大的把握判断该机器是正常的?第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P3. 几个常用随机变量名称与记号分布列或密度数学期望 方差0—1分布 两点分布 ),1(p B p X P ==)1(,p q X P -===1)0(p pq二项式分布),(p n Bn k q p C k X P k n k kn ,2,1,0,)(===-,np npq泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P kp1 2p q 均匀分布),(b a Ub x a a b x f ≤≤-= ,1)(,2ba + 12)(2a b - 指数分布)(λE 0 ,)(≥=-x e x f x λλλ1 21λ正态分布),(2σμN222)(21)(σμσπ--=x ex fμ2σ标准正态分布的分布函数记作()x Φ,即()x Φ221()2t xx e dtπ--∞Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; 特别的 ()()(0)P X a F a F a ==-- (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
《概率论与数理统计(本科)》期末考试复习题一、选择题1、以A 表示甲种产品畅销,乙种产品滞销,则A 为( ).(A) 甲种产品滞销,乙种产品畅销 (B) 甲、乙产品均畅销(C) 甲种产品滞销 (D) 甲产品滞销或乙产品畅销2、假设事件,A B 满足(|)1P B A =,则( ).(A) A 是必然事件 (B) (|)0P B A =(C) A B ⊃ (D) A B ⊂3、设()0P AB =, 则有( ).(A) A 和B 不相容 (B) A 和B 独立 (C) P(A)=0或P(B)=0 (D) P(A-B)=P(A)4、设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是()(A )A 与B 不相容 (B )A 与B 相容(C )()()()P AB P A P B = (D )()()P A B P A -=5、设,A B 为两个随机事件,且0()1P A <<,则下列命题正确的是( )。
(A) 若()()P AB P A = ,则B A ,互不相容;(B) 若()()1P B A P B A += ,则B A ,独立;(C) 若()()1P AB P AB +=,则B A ,为对立事件;(D) 若()()()1P B P B A P B A =+=,则B 为不可能事件;6、设A,B 为两随机事件,且B A ⊂,则下列式子正确的是( )(A )()()P A B P A ⋃=; (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -7、设A ,B 为任意两个事件,0)(,>⊂B P B A ,则下式成立的为( )(A )B)|()(A P A P < (B )B)|()(A P A P ≤(C )B)|()(A P A P > (D )B)|()(A P A P ≥8、设A 和B 相互独立,()0.6P A =,()0.4P B =,则()P A B =( )(A )0.4 (B )0.6 (C )0.24 (D )0.59、设(),(),()P A a P B b P A B c ==⋃=,则()P AB 为( ).(A) a b - (B) c b - (C) (1)a b - (D) b a -10、袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球,则第二人在第一次就取到黄球的概率是 ( )(A )1/5 (B )2/5 (C )3/5 (D )4/511、一部五卷的选集,按任意顺序放到书架上,则第一卷及第五卷分别在两端的概率是( ). (A) 110 (B) 18 (C) 15 (D) 1612、甲袋中有4只红球,6只白球;乙袋中有6只红球,10只白球.现从两袋中各取1球,则2球颜色相同的概率是( ). (A) 640 (B) 1540 (C) 1940 (D) 214013、设在10个同一型号的元件中有7个一等品,从这些元件中不放回地连续取2次,每次取1个元件.若第1次取得一等品时,第2次取得一等品的概率是( ). (A) 710 (B) 610 (C) 69 (D) 7914、在编号为1,2,,n 的n 张赠券中采用不放回方式抽签,则在第k 次(1)k n ≤≤抽到1号赠券的概率是( ). (A) 1n k + (B) 11n k -+ (B) 1n (D) 11n k ++ 15、随机扔二颗骰子,已知点数之和为8,则二颗骰子的点数都是偶数的概率为( )。
《概率论与数理统计》复习资料《概率论与数理统计》复习资料李裕奇一、作业习题解答参见《概率论与数理统计习题详解》(李裕奇赵联文刘海燕编西南交通大学出版社2005年第2版)第一章(1) §1.1, §1.2, §1.3, §1.4, §1.5 基本练习前8题;(2)第一章自测题(3)综合练习一1,2,3,4,5,6,8,13第二章(1) §2.1, §2.2, §2.3, §2.4基本练习前8题;(2) 第二章自测题(3) 综合练习二1,2,3,4,5,7,17,18第三章(1) §3.1,§3.3,基本练习前8题;(2) 第三章自测题(3) 综合练习三1, 2, 7第四章(1) §4.1,§4.2,基本练习前8题;(2) 第四章自测题(3) 综合练习四1, 2, 3,4,5,6第六章(1) §6.1,§6.2,§6.3基本练习前6题;(2) 第六章自测题(3) 综合练习六1, 2, 3,4,5,7,8第七章(1) §7.1,§7.2,§7.3基本练习前6题;(2) 综合练习六1, 2, 3,10,15,16,17,18二、考试重点1、古典概型公式运用,注意抽球问题;2、全概率公式与贝叶斯公式运用;3、离散型随机变量的概率分布求法,分布函数,数学期望,方差的求法;4、连续性随机变量的分布, 分布函数,数学期望,方差的求法;常见分布,特别是正态分布的有关计算;5、已知X 的概率密度函数,X 的函数的概率密度求法;6、离散型随机变量(X,Y)的数字特征求法,特别注意相关系数的求法;7、极差,经验分布函数,总体概率的近似计算;8、单个正态总体均值与方差的置信区间的求法。
三、模拟试题概率论与数理统计模拟试题1一、(12分)某商店有4桶油漆,分别为红漆,白漆、蓝漆与黑漆,在搬运过程中所有的标签脱落,售货员随意将这些油漆卖给需要红漆,白漆,蓝漆与黑漆的4位顾客,试求:(1)至少有一位顾客买到所需颜色的油漆的概率;(2)恰有一位顾客买到所需颜色的油漆的概率。
江苏省考研数学复习资料概率论与数理统计核心公式速记一、概率论核心公式1. 事件与概率公式:(1) 事件的概率:P(A) = N(A) / N(S),其中,N(A)表示事件A发生的样本点个数,N(S)表示样本空间S中的样本点个数。
(2) 互斥事件的加法公式:P(A ∪ B) = P(A) + P(B),其中,A与B 为互斥事件。
(3) 非互斥事件的加法公式:P(A ∪ B) = P(A) + P(B) - P(A ∩ B),其中,A与B为非互斥事件。
2. 条件概率公式:(1) 事件A在事件B已经发生的条件下发生的概率:P(A|B) = P(A ∩B) / P(B),其中,P(B) ≠ 0。
(2) 事件B在事件A已经发生的条件下发生的概率:P(B|A) = P(A ∩B) / P(A),其中,P(A) ≠ 0。
(3) 乘法公式:P(A ∩ B) = P(A|B) * P(B),其中,P(B) ≠ 0。
(4) 全概率公式:P(A) = ∑[P(Bi) * P(A|Bi)],其中,{Bi}为样本空间S的一个划分。
(5) 贝叶斯公式:P(Bj|A) = [P(A|Bj) * P(Bj)] / ∑[P(A|Bi) * P(Bi)],其中,{Bi}为样本空间S的一个划分。
3. 独立事件的条件:事件A与事件B相互独立的条件为:P(A ∩ B) = P(A) * P(B),或P(A|B) = P(A),P(B|A) = P(B)。
二、数理统计核心公式1. 随机变量的概率分布:(1) 二项分布:P(X = k) = C(n, k) * p^k * (1 - p)^(n-k),其中,n为试验次数,k为事件发生的次数,p为事件发生的概率。
(2) 泊松分布:P(X = k) = (λ^k * e^(-λ)) / k!,其中,λ为单位时间/空间内随机事件的平均发生率,k为事件发生的次数。
(3) 正态分布:f(x) = (1/(σ * sqrt(2π))) * exp(-(x-μ)^2 / (2σ^2)),其中,μ为均值,σ为标准差。
i《概率论与数理统计》复习提要(1) 0 P(A) 1 ( 2)P( ) 1(1) 定义:若 P(B) 0,则 P(A| B)P(AB)P(B)(2)乘法公式:P(AB) P(B)P(A| B)若B 1, B 2, B n 为完备事件组,P(B i )0,则有n(3)全概率公式: P(A) P(B i )P(A| B i )i 1(4)Bayes 公式: P(B k | A)P(Bk)P(A|B k)P(B i )P(A|BJi 17.事件的独立性:A, B 独立 P( AB) P(A)P(B)(注意独立性的应用)第二章随机变量与概率分布1 •离散随机变量:取有限或可列个值,P(X x i ) p i 满足(1) p i 0 , (2) p i =11.事件的关系 AB A B AB A B AAB2.运算规则(1)A B BA ABBA(2) (AB) CA (BC)(AB)C A(BC)(3) (AB)C (AC) (BC) (AB) C (A C)(B(4) AB ABABAB第一章随机事件与概率3•概率P(A)满足的三条公理及性质: C)(4) P() 0 (5) P(A) 1 P(A)(6) P(A B) P(A) P(AB) ,若 A B , 则P(BA) P(B) P(A) ,P(A) P(B)(7) P(A B) P(A) P(B) P(AB)(8) P(ABC) P(A) P(B) P(C)P(AB)P(AC) P(BC)P(ABC)n(3)对互不相容的事件 A l , A 2, , A n ,有P( A k )k 1k 1(n 可以取)4. 古典概型:基本事件有限且等可能5. 几何概率6. 条件概率P(A k )(3)对任意D R, P(X D) p:X i D2.连续随机变量:具有概率密度函数f (x),满足(1) f (x) 0, f(x)dx 1 ;b(2) P(a X b) f (x)dx ; ( 3)对任意a R,P(X a) 0a4.分布函数F(x) P(X x),具有以下性质(1)F( ) 0, F( ) 1 ; (2)单调非降;(3)右连续;(4)P(a X b) F(b) F(a),特别P(X a) 1 F(a);(5)对离散随机变量,F(x) P i ;i:为x(6)对连续随机变量,F(x) x'f(t)dt为连续函数,且在f (x)连续点上,F (x) f (x)5.正态分布的概率计算以(x)记标准正态分布N (0,1)的分布函数,则有(1)(0) 0.5 ; (2)(2 x x) 1 (x) ; (3)若X ~ N(,),则F(x) ((4)以u记标准正态分布N(0,1)的上侧分位数,则P(X u ) 1 (u )6.随机变量的函数Y g(X)(1)离散时,求Y的值,将相同的概率相加;(2)X连续,g(x)在X的取值范围内严格单调,且有一阶连续导数,则f Y(y) f x(g 1(y)) |(g 1(y))' |单调,先求分布函数,再求导。
1 《概率论与数理统计》复习提要 第一章 随机事件与概率
1.事件的关系 ABABAABBABA 2.运算规则 (1)BAABABBA (2))()( )()(BCACABCBACBA
(3)))(()( )()()(CBCACABBCACCBA (4)BAABBABA 3.概率)(AP满足的三条公理及性质: (1)1)(0AP (2)1)(P
(3)对互不相容的事件nAAA,,,21,有nkknkkAPAP11)()( (n可以取) (4) 0)(P (5))(1)(APAP (6))()()(ABPAPBAP,若BA,则)()()(APBPABP,)()(BPAP (7))()()()(ABPBPAPBAP (8))()()()()()()()(ABCPBCPACPABPCPBPAPCBAP 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率
(1) 定义:若0)(BP,则)()()|(BPABPBAP
(2) 乘法公式:)|()()(BAPBPABP 若nBBB,,21为完备事件组,0)(iBP,则有
(3) 全概率公式: niiiBAPBPAP1)|()()( (4) Bayes公式: niiikkkBAPBPBAPBPABP1)|()()|()()|( 7.事件的独立性: BA ,独立)()()(BPAPABP (注意独立性的应用) 2
第二章 随机变量与概率分布 1. 离散随机变量:取有限或可列个值,iipxXP)(满足(1)0ip,(2)iip=1
(3)对任意RD,DxiiipDXP :)(
2. 连续随机变量:具有概率密度函数)(xf,满足(1)1)( ,0)(-dxxfxf; (2)badxxfbXaP)()(;(3)对任意Ra,0)(aXP 3. 几个常用随机变量 名称与记号 分布列或密度 数学期望 方差
两点分布),1(pB pXP)1(,pqXP1)0( p pq
二项式分布),(pnB nkqpCkXPknkkn,2,1,0,)(,
np npq
Poisson分布)(P ,2,1,0,!)(kkekXP
k
几何分布)(pG ,2,1 ,)(1kpqkXPk p
1
2p
q
均匀分布),(baU bxaabxf ,1)(, 2ba
12
)(2ab
指数分布)(E 0 ,)(xexfx
1
21
正态分布),(2N 222)( 21)(x
exf 2
4. 分布函数 )()(xXPxF,具有以下性质 (1)1)( ,0)(FF;(2)单调非降;(3)右连续; (4))()()(aFbFbXaP,特别)(1)(aFaXP; (5)对离散随机变量,xxiiipxF :)(;
(6)对连续随机变量,xdttfxF)()(为连续函数,且在)(xf连续点上,)()('xfxF 5. 正态分布的概率计算 以)(x记标准正态分布)1,0(N的分布函数,则有 (1)5.0)0(;(2))(1)(xx;(3)若),(~2NX,则)()(xxF; 3
(4)以u记标准正态分布)1,0(N的上侧分位数,则)(1)(uuXP 6. 随机变量的函数 )(XgY (1)离散时,求Y的值,将相同的概率相加; (2)X连续,)(xg在X的取值范围内严格单调,且有一阶连续导数,则
|))((|))(()('11ygygfyfXY,若不单调,先求分布函数,再求导。
第三章 随机向量 1. 二维离散随机向量,联合分布列ijjipyYxXP),(,边缘分布列
iipxXP)(,jjpyYP)(有
(1)0ijp;(2)ijijp1;(3)jijipp,iijjpp
2. 二维连续随机向量,联合密度),(yxf,边缘密度)( ),(yfxfYX,有 (1)0),(yxf;(2)1),(yxf;(3)GdxdyyxfGYXP),()),((; (4)dyyxfxfX),()(,dxyxfyfY),()(
3. 二维均匀分布其它 0, ),( ,)(1),(GyxGmyxf,其中)(Gm为G的面积 4. 二维正态分布),,,,(~) ,(222121NYX,其密度函数(牢记五个参数的含义)
2222212121212221)())((2)()1(21exp121),(yyxx
yxf
且),(~ ),,(~222211NYNX; 5. 二维随机向量的分布函数 ),(),(yYxXPyxF有 (1)关于yx,单调非降;(2)关于yx,右连续; (3)0),(),(),(FyFxF;
(4)1),(F,)(),(xFxFX,)(),(yFyFY; (5)),(),(),(),() ,(111221222121yxFyxFyxFyxFyYyxXxP;
(6)对二维连续随机向量,yxyxFyxf),(),(2 4
6.随机变量的独立性 YX,独立)()(),(yFxFyxFYX (1) 离散时 YX,独立jiijppp (2) 连续时 YX,独立)()(),(yfxfyxfYX (3) 二维正态分布YX,独立0,且),(~222121NYX 7.随机变量的函数分布 (1) 和的分布 YXZ的密度dxxzxfdyyyzfzfZ),(),()( (2) 最大最小分布 第四章 随机变量的数字特征 1.期望
(1) 离散时 iiipxXE)(,iiipxgXgE)())(( ;
(2) 连续时dxxxfXE)()(,dxxfxgXgE)()())((; (3) 二维时jiijjipyxgYXgE,),()),((,dydxyxfyxgYXgE),(),()),(( (4)CCE)(;(5))()(XCECXE; (6))()()(YEXEYXE; (7)YX,独立时,)()()(YEXEXYE 2.方差 (1)方差222)()())(()(EXXEXEXEXD,标准差)()(XDX;
(2))()( ,0)(XDCXDCD; (3))()(2XDCCXD; (4)YX,独立时,)()()(YDXDYXD 3.协方差 (1))()()())]())(([(),(YEXEXYEYEYXEXEYXCov;
(2)),(),( ),,(),(YXabCovbYaXCovXYCovYXCov; (3)),(),(),(2121YXCovYXCovYXXCov; (4)0),(YXCov时,称YX,不相关,独立不相关,反之不成立,但正态时等价; 5
(5)),(2)()()(YXCovYDXDYXD 4.相关系数 )()(),(YXYXCovXY;有1||XY,1)( ,,1||baXYPbaXY 5.k 阶原点矩)(kkXE,k 阶中心矩kkXEXE))(( 第五章 大数定律与中心极限定理 1.Chebyshev不等式 2)(}|)({|XDXEXP 或2)(1}|)({|XDXEXP 2.大数定律 3.中心极限定理
(1)设随机变量nXXX,,,21独立同分布2)( ,)(iiXDXE,则
) ,(~21nnNXnii近似, 或) ,(~121nNXnnii近似 或)0,1(~ 1NnnXnii近似,
(2)设m是n次独立重复试验中A发生的次数,pAP)(,则对任意x,有)(}{limxxnpqnpmPn或理解为若),(~pnBX,则),(~npqnpNX近似
第六章 样本及抽样分布 1.总体、样本 (1) 简单随机样本:即独立同分布于总体的分布(注意样本分布的求法); (2) 样本数字特征:
样本均值niiXnX11()(XE,nXD2)();
样本方差niiXXnS122)(11(22)(SE)样本标准差niiXXnS12)(
1
1
样本k阶原点矩nikikXn11,样本k阶中心矩nikikXXn1)(1 2.统计量:样本的函数且不包含任何未知数 3.三个常用分布(注意它们的密度函数形状及分位点定义)
(1)2分布 )(~2222212nXXXn,其中nXXX,,,21
独立同分布于标
准正态分布)1,0(N,若)(~ ),(~2212nYnX且独立,则)(~212nnYX;