【北京理工大学 大学物理实验数据处理】杨氏弹性模量
- 格式:xlsx
- 大小:13.18 KB
- 文档页数:2
实验二杨氏弹性模量的测定实验报告一、实验目的1、学会用伸长法测量金属丝的杨氏弹性模量。
2、掌握光杠杆测量微小长度变化的原理和方法。
3、学会用逐差法处理实验数据。
二、实验原理杨氏弹性模量是描述固体材料抵抗形变能力的物理量。
假设一根粗细均匀的金属丝,长度为 L,横截面积为 S,受到外力 F 作用时伸长了ΔL。
根据胡克定律,在弹性限度内,应力(F/S)与应变(ΔL/L)成正比,比例系数即为杨氏弹性模量 E,其表达式为:\E =\frac{F \cdot L}{S \cdot \Delta L}\在本实验中,F 由砝码的重力提供,S 可通过测量金属丝的直径 d计算得出(\(S =\frac{\pi d^2}{4}\)),ΔL 是微小长度变化量,难以直接测量,采用光杠杆法进行测量。
光杠杆是一个带有可旋转支脚的平面镜,其前足尖放在固定平台上,后足尖置于待测金属丝的测量端,平面镜与金属丝平行。
当金属丝伸长ΔL 时,光杠杆后足尖随之下降ΔL,带动平面镜转过一个小角度θ。
设从望远镜中看到的标尺刻度的变化为Δn,光杠杆常数(即光杠杆前后足尖的垂直距离)为 b,望远镜到平面镜的距离为 D,则有:\(\tan\theta \approx \theta =\frac{\Delta L}{b}\)\(\tan 2\theta \approx 2\theta =\frac{\Delta n}{D}\)由上述两式可得:\(\Delta L =\frac{b \cdot \Delta n}{2D}\)将其代入杨氏弹性模量的表达式,可得:\E =\frac{8FLD}{\pi d^2 b \Delta n}\三、实验仪器杨氏弹性模量测定仪、光杠杆、望远镜、标尺、砝码、千分尺、游标卡尺等。
四、实验步骤1、调整仪器调节杨氏弹性模量测定仪底座的水平调节螺丝,使立柱铅直。
将光杠杆放在平台上,使平面镜与平台面垂直,前、后足尖位于同一水平面内。
杨氏模量的测量【实验目的】1.1.掌握螺旋测微器的使用方法。
2.学会用光杠杆测量微小伸长量。
3.学会用拉伸法金属丝的杨氏模量的方法。
【实验仪器】杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。
1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。
这圆形夹头可以在支架的下梁的圆孔内自由移动。
支架下方有三个可调支脚。
这圆形的气泡水准。
使用时应调节支脚。
由气泡水准判断支架是否处于垂直状态。
这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。
2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。
当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。
图1 图2 图33、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。
使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。
这是表明标尺通过物镜成像在分划板平面上。
由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。
标尺是一般的米尺,但中间刻度为0。
【实验原理】1、胡克定律和杨氏弹性模量固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。
如果外力后仍有残余形变,这种形变称为塑性形变。
应力:单位面积上所受到的力(F/S )。
应变:是指在外力作用下的相对形变(相对伸长∆L/L )它反映了物体形变的大小。
用公式表达为:24F L FL Y S L d L π=⋅=∆∆ (1)2、光杠杆镜尺法测量微小长度的变化在(1)式中,在外力的F 的拉伸下,钢丝的伸长量∆L 是很小的量。
用一般的长度测量仪器无法测量。
在本实验中采用光杠杆镜尺法。
初始时,平面镜处于垂直状态。
标尺通过平面镜反射后,在望远镜中呈像。
杨氏弹性模量的测定实验报告杨氏弹性模量的测定实验报告引言:弹性模量是材料力学性能的重要指标之一,它描述了材料在受力后恢复原状的能力。
杨氏弹性模量是最常用的弹性模量之一,它用来衡量材料在拉伸或压缩过程中的变形程度。
本实验旨在通过测量金属杆的伸长量和受力情况,来确定杨氏弹性模量。
实验装置和步骤:本实验使用的装置主要包括一根金属杆、一个测力计、一个游标卡尺和一个螺旋拉伸装置。
实验步骤如下:1. 将金属杆固定在螺旋拉伸装置上,并调整装置使其与地面平行。
2. 在金属杆上选择两个固定点,分别用游标卡尺测量它们的距离,并记录下来。
3. 在金属杆上选择一个测量点,用游标卡尺测量它距离固定点的距离,并记录下来。
4. 将测力计挂在金属杆上,使其与测量点对齐,并记录下测力计示数。
5. 逐渐旋转螺旋拉伸装置,使金属杆受到拉伸力,并记录下拉伸力和测量点的位移。
6. 根据测力计示数和位移的变化,计算金属杆的应力和应变。
实验结果和数据处理:根据实验步骤所得到的数据,我们可以计算出金属杆的应力和应变,并绘制应力-应变曲线。
然后,我们可以通过应力-应变曲线的斜率来计算杨氏弹性模量。
在实验中,我们选择了铜杆进行测定。
测得的数据如下:固定点距离:L = 50 cm测量点距离固定点:x = 30 cm测力计示数:F = 100 N位移:ΔL = 0.5 cm根据上述数据,我们可以计算出金属杆的应力和应变:应力σ = F / A应变ε = ΔL / L其中,A是金属杆的横截面积。
通过测量金属杆的直径,我们可以计算出其横截面积。
假设金属杆的直径为d = 1 cm,则横截面积A = π * (d/2)^2 = 0.785 cm^2。
根据上述公式,我们可以计算出金属杆的应力和应变:应力σ = 100 N / 0.785 cm^2 ≈ 127.39 N/cm^2应变ε = 0.5 cm / 50 cm = 0.01接下来,我们可以绘制应力-应变曲线,并通过曲线的斜率来计算杨氏弹性模量。
物理实验杨氏模量的数据处理
杨氏模量实验报告数据处理可以按照以下步骤进行:
1.整理实验数据:将实验中测得的长度、直径、质量等数据整理成表格形式。
2.计算应变:根据实验数据计算每个试样的应变。
应变可以通过公式ε=ΔL/L0计算得到,其中ΔL为试样受力后的长度变化,L0为试样的初始长度。
3.绘制应力-应变曲线:根据实验数据计算每个试样的应力,并绘制应力-应变曲线。
应力可以通过公式σ=F/A计算得到,其中F 为试样受到的外力,A为试样的横截面积。
4.计算杨氏模量:根据应力-应变曲线的斜率计算杨氏模量。
杨氏模量可以通过公式E=σ/ε计算得到,其中E为杨氏模量,σ为应力,ε为应变。
5.分析实验结果:根据计算得到的杨氏模量,对实验结果进行分析和讨论,比较不同试样的杨氏模量大小,探讨可能的原因。
在数据处理过程中,需要注意数据的准确性和精确度,避免实验误差对结果的影响。
同时,还可以进行统计分析,计算平均值、标准差等指标,以评估实验结果的可靠性。
大学物理实验金属杨氏模量实验报告一、实验目的1、学会用伸长法测量金属丝的杨氏模量。
2、掌握用光杠杆放大原理测量微小长度变化的方法。
3、学会用逐差法处理实验数据。
二、实验原理1、杨氏模量的定义杨氏模量是描述固体材料抵抗形变能力的物理量。
对于一根长度为L、横截面积为 S 的金属丝,在受到沿长度方向的拉力 F 作用时,伸长量为ΔL。
根据胡克定律,在弹性限度内,应力与应变成正比,即:\F/S = Y \times \Delta L/L\其中,Y 为杨氏模量。
2、光杠杆放大原理光杠杆是一个带有可旋转平面镜的支架。
将金属丝的微小伸长量ΔL 转化为光杠杆平面镜的转角θ,再通过测量平面镜反射光线在标尺上的移动距离Δn,就可以计算出微小伸长量ΔL。
根据几何关系,有:\\Delta L = b \times \Delta n / 2D \其中,b 为光杠杆前后脚的距离,D 为平面镜到标尺的距离。
三、实验仪器杨氏模量测量仪、光杠杆、望远镜、直尺、砝码、螺旋测微器、游标卡尺等。
四、实验步骤1、调整仪器(1)将杨氏模量测量仪的底座调水平,使金属丝竖直。
(2)调整光杠杆平面镜与平台垂直,望远镜与平面镜等高,并使望远镜水平对准平面镜。
2、测量金属丝长度 L用直尺测量金属丝的长度,重复测量三次,取平均值。
3、测量金属丝直径 d用螺旋测微器在金属丝的不同位置测量直径,共测量六次,取平均值。
4、测量光杠杆前后脚距离 b用游标卡尺测量光杠杆前后脚的距离,测量一次。
5、测量平面镜到标尺的距离 D用直尺测量平面镜到标尺的距离,测量一次。
6、加砝码测量依次增加砝码,每次增加相同质量,记录对应的标尺读数。
7、减砝码测量依次减少砝码,记录对应的标尺读数。
五、实验数据记录与处理1、原始数据记录(1)金属丝长度 L =______ cm(2)金属丝直径 d(单位:mm)|测量次数|1|2|3|4|5|6||||||||||直径|_____|_____|_____|_____|_____|_____|(3)光杠杆前后脚距离 b =______ cm(4)平面镜到标尺的距离 D =______ cm(5)砝码质量 m =______ kg|砝码个数|0|1|2|3|4|5|6|7|8||||||||||||增加砝码时标尺读数 n1(单位:cm)|_____|_____|_____|_____|_____|_____|_____|_____||减少砝码时标尺读数 n2(单位:cm)|_____|_____|_____|_____|_____|_____|_____|_____|2、数据处理(1)计算金属丝直径的平均值\d_{平均} =\frac{d_1 + d_2 +\cdots + d_6}{6}\(2)计算金属丝横截面积 S\S =\frac{\pi d_{平均}^2}{4}\(3)计算增加砝码时的伸长量Δn1\\Delta n_1 =\frac{n_1 n_0}{8} \(4)计算减少砝码时的伸长量Δn2\\Delta n_2 =\frac{n_8 n_7}{8} \(5)计算平均伸长量Δn\\Delta n =\frac{\Delta n_1 +\Delta n_2}{2} \(6)计算杨氏模量 Y\ Y =\frac{8mgLD}{\pi d_{平均}^2 b \Delta n} \3、不确定度计算(1)测量金属丝长度 L 的不确定度\\Delta L =\frac{\Delta L_1 +\Delta L_2 +\Delta L_3}{3} \(2)测量金属丝直径 d 的不确定度\\Delta d =\sqrt{\frac{\sum_{i=1}^6 (d_i d_{平均})^2}{6(6 1)}}\(3)测量光杠杆前后脚距离 b 的不确定度\\Delta b =\Delta b_1 \(4)测量平面镜到标尺的距离 D 的不确定度\\Delta D =\Delta D_1 \(5)计算伸长量Δn 的不确定度\\Delta \Delta n =\sqrt{\frac{\sum_{i=1}^8 (n_i \overline{n})^2}{8(8 1)}}\(6)计算杨氏模量 Y 的不确定度\\Delta Y = Y \sqrt{(\frac{\Delta L}{L})^2 +(\frac{2\Delta d}{d})^2 +(\frac{\Delta b}{b})^2 +(\frac{\Delta D}{D})^2 +(\frac{\Delta \Delta n}{\Delta n})^2} \4、实验结果表达\ Y = Y_{平均} \pm \Delta Y \六、误差分析1、测量误差(1)测量金属丝长度、直径、光杠杆前后脚距离、平面镜到标尺的距离时存在读数误差。
杨氏模量实验报告数据处理实验目的:本实验旨在通过测量金属试样的应力-应变关系,计算出杨氏模量,并对实验数据进行处理和分析。
实验原理:杨氏模量是描述材料抗弯刚度的物理量,定义为单位面积内所受的拉应力与相应的拉应变之比。
实验中,我们采用了悬臂梁法来测量杨氏模量。
实验步骤:1. 准备工作:a. 清洁并测量金属试样的尺寸,记录下其长度L、宽度W和厚度H。
b. 将金属试样固定在实验台上,使其成为一个悬臂梁。
2. 实验测量:a. 在试样上标出若干个等距离的测量点,用游标卡尺测量每个测量点的位置距离试样固定点的距离x。
b. 使用力传感器测量每个测量点处的挠度d。
c. 记录下每个测量点处施加的力F。
3. 数据处理:a. 计算每个测量点处的应力σ,公式为:σ = F / (W * H)。
b. 计算每个测量点处的应变ε,公式为:ε = d / L。
c. 绘制应力-应变曲线图,横轴为应变ε,纵轴为应力σ。
d. 选择直线段,根据线性回归方法计算出斜率k,即弹性模量E。
e. 计算杨氏模量Y,公式为:Y = E / (1 - ν^2),其中ν为泊松比。
实验数据处理结果:根据实验测量数据和上述数据处理步骤,我们得到了以下结果:金属试样的尺寸:长度L = 50 cm宽度W = 2 cm厚度H = 0.5 cm实验测量数据:测量点位置距离试样固定点的距离x (cm) 挠度d (mm) 施加力F (N) ----------------------------------------------0.00 0.00 0.005.00 0.02 0.1010.00 0.05 0.2015.00 0.09 0.3020.00 0.14 0.4025.00 0.19 0.50数据处理:根据上述实验测量数据,我们可以计算得到应力σ和应变ε:测量点位置距离试样固定点的距离x (cm) 应力σ (MPa) 应变ε----------------------------------------------0.00 0.00 0.0005.00 0.50 0.000410.00 1.00 0.00115.00 1.50 0.001820.00 2.00 0.002625.00 2.50 0.0034根据上述数据,我们绘制了应力-应变曲线图如下:[插入应力-应变曲线图]根据线性回归方法,我们选择直线段进行计算,得到斜率k为1.25 MPa/mm。
杨氏模量实验报告数据一、实验目的本实验旨在测量金属材料的杨氏模量,了解材料在弹性范围内的力学性能,并通过实验数据的处理和分析,掌握实验原理和方法。
二、实验原理杨氏模量是描述材料在弹性限度内抵抗拉伸或压缩变形能力的物理量。
根据胡克定律,在弹性限度内,材料的应力与应变成正比,即:\\sigma = E\varepsilon\其中,\(\sigma\)为应力,\(\varepsilon\)为应变,\(E\)为杨氏模量。
在拉伸实验中,应力\(\sigma\)等于拉力\(F\)除以横截面积\(S\),应变\(\varepsilon\)等于伸长量\(\Delta L\)除以原始长度\(L\)。
因此,杨氏模量\(E\)可以表示为:\E =\frac{FL}{S\Delta L}\通过测量拉力\(F\)、横截面积\(S\)、原始长度\(L\)和伸长量\(\Delta L\),即可计算出杨氏模量\(E\)。
三、实验仪器1、杨氏模量测定仪:包括光杠杆、望远镜、标尺等。
2、砝码:用于提供拉力。
3、米尺:测量长度。
4、游标卡尺:测量金属丝的直径。
5、螺旋测微器:精确测量金属丝的直径。
四、实验步骤1、调节杨氏模量测定仪将光杠杆的后足尖放在固定平台的沟槽内,前足尖放在小圆柱体的下表面,调整望远镜和光杠杆的位置,使望远镜水平对准光杠杆平面镜,在望远镜中能看到清晰的标尺像。
调节望远镜的目镜和物镜,使标尺的像清晰且无视差。
2、测量金属丝的长度\(L\)用米尺测量金属丝的有效长度,测量多次取平均值。
3、测量金属丝的直径\(d\)用游标卡尺在不同位置测量金属丝的直径,测量多次取平均值。
用螺旋测微器在不同位置测量金属丝的直径,测量多次取平均值。
4、挂上砝码,测量伸长量\(\Delta L\)依次增加砝码,记录每次增加砝码后望远镜中标尺的读数。
再依次减少砝码,记录每次减少砝码后望远镜中标尺的读数。
5、数据处理计算每次增加和减少砝码时的伸长量平均值。
杨氏弹性模量的测定实验报告一、实验目的1、学习用拉伸法测定金属丝的杨氏弹性模量。
2、掌握用光杠杆法测量微小长度变化的原理和方法。
3、学会使用望远镜、标尺、螺旋测微器等测量长度的仪器。
4、学会用逐差法处理实验数据。
二、实验原理1、杨氏弹性模量杨氏弹性模量是描述固体材料抵抗形变能力的物理量。
设金属丝的原长为$L$,横截面积为$S$,在外力$F$ 的作用下伸长量为$\Delta L$,根据胡克定律,在弹性限度内,应力($F/S$)与应变($\Delta L/L$)成正比,其比例系数即为杨氏弹性模量$E$,数学表达式为:$E =\frac{F \cdot L}{S \cdot \Delta L}$2、光杠杆原理光杠杆装置由一个平面镜及固定在其一端的三足支架组成,三足尖构成等腰三角形。
当金属丝伸长时,光杠杆的后足随之下降,平面镜绕前足转动一个微小角度$\theta$,从而使反射光线偏转一个较大的角度$2\theta$。
通过望远镜和标尺可以测量出标尺像的位移$n$,设光杠杆前后足间距为$b$,镜面到标尺的距离为$D$,则有:$\Delta L =\frac{n \cdot b}{2D}$将上式代入杨氏弹性模量的表达式,可得:$E =\frac{8FLD}{S\pi d^2 n b}$其中,$d$ 为金属丝的直径。
三、实验仪器杨氏模量测定仪、光杠杆、望远镜及标尺、螺旋测微器、游标卡尺、砝码、米尺等。
四、实验步骤1、调节仪器(1)调节杨氏模量测定仪底座的水平调节螺丝,使立柱铅直。
(2)将光杠杆放在平台上,使平面镜与平台垂直,三足尖位于同一水平面,且三足尖与平台的接触点构成等边三角形。
(3)调节望远镜,使其与光杠杆平面镜等高,且望远镜光轴与平面镜中心等高。
然后通过望远镜目镜看清十字叉丝,再将望远镜对准平面镜,调节目镜和物镜,直至能在望远镜中看到清晰的标尺像。
(4)调节标尺的位置,使其零刻度线与望远镜中十字叉丝的横线重合。