港澳台全国联招补习班:数学-数列填空题4-8(含答案)北京博飞
- 格式:doc
- 大小:907.00 KB
- 文档页数:4
数列针对练习21.已知数列{}n a 的前n 项和11(22n n n S a -=--+(n 为正整数)。
(Ⅰ)令2nn n b a =,求证数列{}n b 是等差数列,并求数列{}n a 的通项公式;解析:(I )在11()22n n n S a -=--+中,令n=1,可得1112n S a a =--+=,即112a =当2n ≥时,21111111()2()22n n n n n n n n n S a a S S a a ------=--+∴=-=-++,,11n 1112a (),21n n n n n a a a ----∴=+=+n 即2.112,1,n 21n n n n n n b a b b b --=∴=+≥-= n 即当时,b .又1121,b a ==∴数列}{n b 是首项和公差均为1的等差数列.于是1(1)12,2nn n n nn b n n a a =+-⋅==∴=.2.设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+(I )设12n n n b a a +=-,证明数列{}n b 是等比数列(II )证明数列{}2nna 是等差数列,并求数列{}n a 的通项公式。
解:(I )由11,a =及142n n S a +=+,有12142,a a a +=+21121325,23a ab a a =+=∴=-=由142n n S a +=+,...①则当2n ≥时,有142n n S a -=+.....②②-①得111144,22(2)n n n n n n n a a a a a a a +-+-=-∴-=-又12n n n b a a +=- ,12n n b b -∴={}n b ∴是首项13b =,公比为2的等比数列.(II )由(I )可得11232n n n n b a a -+=-=⋅,113224n n n n a a ++∴-=∴数列{}n n a 是首项为1,公差为3的等比数列.∴1331(1)22444n na n n =+-=-,2(31)2n n a n -=-⋅3.已知数列{}n a 满足,*11212,,n n n a a a a a n N ++=∈’+2==.()I 令1n n n b a a +=-,证明:{}n b 是等比数列;(Ⅱ)求{}n a 的通项公式。
等差等比数列1.等差数列}{n a 中,n S 为前项n 和,已知20162016=S ,且2000162016162016=-S S ,则1a 等于()A .2016-B .2015-C .2014-D .3201-2.设{}n a 为递减等比数列,1121=+a a ,1021=⋅a a 则1210lg lg lg a a a ++⋅⋅⋅+=()A.35B.-35C.55D.-553.下面是关于公差0d >的等差数列{}n a 的四个命题:1:p 数列{}n a 是递增数列;2:p 数列{}n na 是递增数列;3:p 数列n a ⎧⎫⎨⎬⎩⎭是递增数列;4:p 数列{}3n a nd +是递增数列;其中的真命题为()A.12,p pB.34,p pC.23,p pD.14,p p 4.设n S 是等差数列{}n a 的前n 项和,()5283S a a =+,则53a a 的值为()A.16 B.13 C.35 D.565.设n S 为等比数列{}n a 的前项和,已知2343-=a S ,2332S a =-,则公比q =()A.3B.4C.5D.66.等差数列{}n a 的前n 项和为n S ,若25,352==S a ,则=8a ()A .13B .14C .15D .167.已知等差数列的前三项依次为1,1,23a a a -++,则此数列的第n 项为()A .25n -B .23n -C .21n -D .21n +8.等比数列{}n a 中,已知对任意正整数n ,12321n n a a a a +++⋅⋅⋅+=-,则2222123n a a a a +++⋅⋅⋅+等于()A.2(21)n -B.1(21)3n - C.1(41)3n - D.41n -9.已知等差数列{}n a 的前n 项和为n S ,若85=S ,2010=S ,则15S 等于()A .16B .18C .36D .3810.已知11n n a n -=+,那么数列{}n a 是()A .递减数列B .递增数列C .常数列D .摆动数列11.若n S 为数列{}n a 的前n 项和,且1n nS n =+,则51a =()A .56B .65C .130D .3012.数列{}n a 满足11a =,且对任意的*n N ∈都有11n n a a a n +=++,则1{}n a 的前100项和为()A .100101B .99100C .101100D .20010113.在各项都不相等的等差数列{a n }中,a 1,a 2是关于x 的方程x 2-7a 4x +18a 3=0的两个实根.(1)试判断-22是否在数列{a n }中;(2)求数列{a n }的前n 项和S n 的最大值.14.在等差数列{a n }中,a 1=1,S 5=-15.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-48,求k 的值.15.已知公差不为零的等差数列{}n a 的前n 项和为n S ,若10110S =,且124,,a a a 成等比数列(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 满足()()111n n n b a a =-+,若数列{}n b 前n 项和n T .16.等差数列{}n a 中,其前n 项和为n S ,且212n n a S +⎛⎫= ⎪⎝⎭,(Ⅰ)求n a ;17.在等差数列{}n a 中,1122,20a a =-=.(1)求数列{}n a 的通项n a ;(2)若12...n n a a a b n +++=,求数列{}3n b 的前n 项和.18.已知数列满足,前项和为,若.(1)求数列的通项公式;(2)设,若,求的通项.19.已知等差数列的前项和为,且满足,.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.20.在等差数列中,.(1)求数列的通项公式;(2)设,求的值.21.已知数列{}n a的前n项和,232nn nS-=.(1)求{}n a的通项公式;(2)设11nn nba a+=,数列{}n b的前n项和为n T,.22.已知数列{}n a 的通项公式为1,32n a n N n *=∈-.(1)求数列2n n a a ⎧⎫+⎨⎬⎩⎭的前n 项和n S ;(2)设1n n n b a a +=,求{}n b 的前n 项和n T .23.设数列{}n a 的前n 项和为n S ,点(,)()n S n n N n +∈均在函数32y x =+的图象上.(1)求证:数列{}n a 为等差数列;(2)设n T 是数列13{}n n a a +的前n 项和,求使20n m T <对所有n N +∈都成立的最小正整数m .24.已知等差数列{}n a 的公差不为零,且满足16a =,2a ,6a ,14a 成等比数列.(1)求数列{}n a 的通项公式;(2)记2(1)n nb n a =+,求数列{}n b 的前n 项和n S .25.已知正项数列{}n a 的前n 项和为n S ,且n S 是1与n a 的等差中项.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列12n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .26.已知等差数列{a n }满足:a 1=2,且2215a a a =.(1)求数列{a n }的通项公式;(2)记S n 为数列{}21n a -的前n 项和,求S n27.已知数列{}n a 的各项为正数,其前n 项和为n S 满足21()2n n a S +=,设10()n n b a n N =-∈.(1)求证:数列{}n a 是等差数列,并求{}n a 的通项公式;(2)设数列{}n b 的前n 项和为n T ,求n T 的最大值.28.数列{}n a 满足11a =,22a =,2122n n n a a a ++=-+.(1)设1n n n b a a +=-,证明{}n b 是等差数列;(2)求{}n a 的通项公式参考答案1.C 2.B 3.D 4.D 5.B 6.C 7.B 8.C.9.C 10.B 11.D 12.D 13.(1)-22不在数列{a n }中;(2)30.14.(1)a n =3-2n ;(2)k =8.15.(Ⅰ)2n a n =;(Ⅱ)21n n T n =+.16.(1)2 1.n a n ∴=-;17.(1)24n a n =-;(2)3118n n S -=.18.(1);(2).19.(Ⅰ);(Ⅱ).20.(1);(2)21.(1)32n a n =-;(2)1.22.(1)23n S n =;(2)31n n T n =+.23.(1)详见解析(2)1024.(1)24n a n =+;(2)2(2)n n +.25.(I )21n a n =-;(II )11.21n T n =-+26.(1)a n =2或a n =4n -2,(2)2n S n =或242n S n n=-27.(1)证明见解析,12-=n a n ;(2)25.28.(1)证明见解析;(2)()211n a n =-+.。
数列综合题1.已知数列{}n a 是公差不为0的等差数列,12a =,且2a ,3a ,41a +成等比数列.(1)求数列{}n a 的通项公式;(2)设()22n n b n a =+,求数列{}n b 的前n 项和n S .2.设数列{}n a 的前n 项和为n S ,且()...,2,112=-=n a S n n .(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()2,...,2,111==+=+b n b a b n n n ,求数列{}n b 的通项公式.3.已知等差数列{}n a 的公差0> d ,其前n 项和为n S , 11=a ,3632=S S ;(1)求出数列{}n a 的通项公式n a 及前n 项和公式nS (2)若数列{}n b 满足)2(,211≥=-=-n d b b b nn n ,求数列{}n b 的通项公式nb4.等差数列{}n a 中,11-=a ,公差0≠d 且632,,a a a 成等比数列,前n 项的和为n S .(1)求n a 及n S ;(2)设11+=n n n a a b ,n n b b b T +++= 21,求n T .5.已知数列{}n a 满足22a =,n S 为其前n 项和,且(1)(1,2,3,)2n n a n S n +== .(1)求1a 的值;(2)求证:1(2)1n n na a n n -=≥-;(3)判断数列{}n a 是否为等差数列,并说明理由.6.已知等比数列{}n a 的前n 项和为n S ,且满足()122n n S p n N +*=+∈.(I )求p 的值及数列{}n a 的通项公式;(II )若数列{}n b 满足()132n n a bn a p +=+,求数列{}n b 的前n 项和n T .7.在数列}{n a 中,c c a a a n n (,111+==+为常数,)*∈N n ,521,,a a a 构成公比不等于1的等比数列.记11+=n n n a a b ()*∈N n .(Ⅰ)求c 的值;(Ⅱ)设}{n b 的前n 项和为n R ,是否存在正整数k ,使得kk R 2≥成立?若存在,找出一个正整数k ;若不存在,请说明理由.8.已知数列{}n a 的前n 项和为n S ,()()*31N n a S n n ∈-=.(Ⅰ)求21,a a ;(Ⅱ)求证:数列{}n a 是等比数列.9.设数列{}n a 的前n 项和122n n S +=-,数列{}n b 满足21(1)log n nb n a =+.(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n T .10.已知数列{}n a 的前n 项和为n S ,且2n n S n +=2.(1)求数列}{n a 的通项公式;(2)若*)(,1211N n a b n n n n ∈-+=+求数列}{n b 的前n 项和n S .11.在数列{}n a 中,,31=a )n n 2,n 2-n 21*-∈≥+=且(n n a a (1)求32,a a 的值;(2)证明:数列{}n a n +是等比数列,并求{}n a 的通项公式;(3)求数列{}n a 的前n 项和n S .12.若数列{}n a 的前n 项和为n S ,对任意正整数n 都有612n n S a =-,记12log n n b a =.(1)求1a ,2a 的值;(2)求数列{}n b 的通项公式;(3)若11,0,n n n c c b c +-==求证:对任意*2311132,4n n n N c c c ≥∈+++< 都有.13.设数列{a n }是等差数列,数列{b n }的前n 项和S n 满足3(1)2n n S b =-且2152,.a b a b ==(Ⅰ)求数列{a n }和{b n }的通项公式:(Ⅱ)设T n 为数列{S n }的前n 项和,求T n .14.在数列}{n a 和等比数列}{n b 中,01=a ,23=a ,1*2()n a n b n N +=∈.(Ⅰ)求数列{}n b 及}{n a 的通项公式;(Ⅱ)若n n n b a c ⋅=,求数列{}n c 的前n 项和n S .15.设等比数列{n a }的前n 项和为n S ,已知对任意的+∈N n ,点(,)n n S ,均在函数r y x+=2的图像上.(Ⅰ)求r 的值;(Ⅱ)记n na a ab 2log 2log 2log 22212+++= 求数列⎭⎬⎫⎩⎨⎧n 1的前n 项和n T .16.设数列{}n a 满足:11,a =()121*n n a a n N +=+∈.(I )证明数列{1}n a +为等比数列,并求出数列{}n a 的通项公式;(II )若2log (1)n n b a =+,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n S .17.已知数列{}n a 是一个递增的等比数列,前n 项和为n S ,且42=a ,143=S ,①求{}n a 的通项公式;②若n n a C 2log =,求数列⎭⎬⎫⎩⎨⎧+11n n 的前n 项和nT 18.数列{}n a 中,12a =,1n n a a cn +-=(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列.(Ⅰ)求c 的值;(Ⅱ)求{}n a 的通项公式.19.已知数列{}n a 的前n 项和n S 满足21n n S a =-,等差数列{}n b 满足11b a =,47b =.(1)求数列{}n a 、{}n b 的通项公式;(2)设11n n n c b b +=,数列{}n c 的前n 项和为n T ,求证12n T <.20.已知数列{}n a 的各项都是正数,前n 项和是n S ,且点(),2n n a S 在函数2y x x =+的图像上.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设121,2n n n nb T b b b S ==+++ ,求n T .21.已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ;(Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T .22.已知数列{}n a 中,13a =,满足)2(1221≥-+=-n a a nn n 。