纳米材料复习提纲
- 格式:doc
- 大小:20.50 KB
- 文档页数:3
复习提纲一. 概念题1 纳米的概念纳米(nanometer)是长度的一个单位,简写为nm。
1nm=10-3μm=10-6mm=10-9m 1nm等于10个氢原子一个挨一个排起来的长度。
纳米是一个极小达到尺寸,但它又代表人们认识上的一个新层次,从微米进入到纳米。
纳米科技是科技发展的“制高点”,是经济发展的衡量标准。
2 宏观和微观宏观:研究对象尺寸很大,下限有限,上限无限。
微观:指原子、分子,以及原子内部的原子核和电子,微观有上限而无法定义下限。
3 界观体系是研究0.1-100nm范围内,物质的状态、性能、特点及应用,又称为纳米科技。
4 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料,即由粒径尺寸介于1-100nm 之间的超细颗粒组成的固体材料。
①力学或机械性质(声光电磁热)至少有一样发生明显变化②至少有一维尺寸小于100nm③形态结构分为零维、一维、二维(三维为常规材料)5纳米微粒是指颗粒尺寸为纳米量级的超微颗粒,尺度大于原子团簇,小于大分子或具平移对称性的晶体(通常的微粉),一般在1~100 nm之间。
这样小的物体只能用高分辨的电子显微镜观察。
物质颗粒体积效应和表面效应两者之一显著变化者或两者都显著出现的颗粒叫做纳米颗粒或纳米微粒。
6 幻数效应构成原子团簇的原子数目按一定规律分布,形成稳定的团簇结构的集合体,称为幻数。
有限个基本粒子(原子、分子、离子)组成的相对稳定的微粒。
7 团簇是由多个原子组成的小粒子,它们比无机分子大,但比具有平移对称性的块体材料小,其原子结构(键长、键角和对称性等)和电子结构不同于分子,也不同于块体。
尺寸在0.1~1.0nm之间。
8 纳米碳管管状的纳米级石墨晶体,是单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝纳米级管,每层的C是SP2杂化,形成六边形平面的圆柱面。
碳原子按一定规律排列形成的管状物,其直径在1~100nm范围内,分多壁(层)、单壁(层)两大类。
纳米技术复习提纲1.掌握纳米、纳米尺度纳米尺度:1-100nm范围内的几何尺度。
纳米技术:指在纳米尺寸范围内认识和改造自然,研究1-100nm之间的物质组成体系的运动规律和功能特性。
2.掌握纳米材料(定义、含义、分类)纳米材料的定义几何尺寸、组成相或晶粒结构的尺寸控制在1-100纳米范围的具有特殊功能的材料。
两层含义:1.至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;2.尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性。
按结构(维度)分为4类:(1) 0维材料quasi-zero dimensional—三维尺寸为纳米级(100 nm)以下的颗粒状物质。
(2) 1维材料—线径为1—100 nm的纤维(管)。
(3) 2维材料—厚度为1 — 100 nm的薄膜。
(4) 3维纳米材料——纳米相材料。
(5)纳米介孔材料(孔径为纳米级)。
按组成分类:纳米金属、纳米无机非金属、纳米高分子材料、复合纳米材料按晶体状态分类:纳米晶体、纳米非晶体按材料物性分类:纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料按应用分类:纳米电子材料、纳米光电子材料、纳米生物医学材料、纳米敏感材料、纳米储能材料3.了解纳米材料的四种特性当物质小到1~100nm (10-9~10-7m)时,由于其巨大的表面及界面效应, 晶界原子达到15-50%,物质的很多性能发生质变, 呈现出许多既不同于宏观物体, 也不同于单个孤立原子的现象。
量子尺寸效应、小尺寸效应、表面与界面效应、宏观量子隧道效应、介电限域效应量子尺寸效应:随着粒子中原子数的减少,金属Fermi能级附近的电子能级由连续状态分裂为分立状态,能级的平均间距与粒子中的电子数成反比,在能级间距大于热能、磁能、静电能、光子能量以及超导态的凝聚能时,就会产生与宏观物体不同的所谓量子效应(Quantum Effect),被科学界称做Kubo效应。
纳米材料复习题纳米材料复习题一、纳米材料的定义和特点纳米材料是指在至少一维尺度上具有纳米级别尺寸的材料。
其特点包括:1. 尺寸效应:纳米材料的尺寸与其物理、化学性质密切相关。
例如,纳米颗粒的表面积相对较大,导致其具有更高的活性和反应性。
2. 量子效应:纳米材料的电子结构受到量子效应的影响,其光学、电学、磁学等性质与宏观材料有所不同。
3. 界面效应:纳米材料的界面处存在着相互作用和相变,这些效应对其性能和应用具有重要影响。
二、纳米材料的制备方法1. 碳纳米管的制备:碳纳米管可以通过电弧放电、化学气相沉积、热解等方法制备。
2. 金属纳米颗粒的合成:金属纳米颗粒可以通过化学还原、溶胶凝胶法、热分解等方法制备。
3. 量子点的制备:量子点可以通过溶液法、气相法、热分解法等方法制备。
4. 纳米薄膜的制备:纳米薄膜可以通过物理气相沉积、化学气相沉积、溶液法等方法制备。
三、纳米材料的应用领域1. 纳米电子学:纳米材料在电子器件中的应用具有重要意义。
例如,纳米晶体管可以实现更高的电子迁移率和更小的功耗。
2. 纳米医学:纳米材料在医学领域的应用包括药物传递、生物成像和癌症治疗等。
纳米颗粒可以作为药物载体,实现精确的靶向治疗。
3. 纳米能源:纳米材料在能源领域的应用包括太阳能电池、燃料电池和储能材料等。
纳米结构可以提高能量转换效率和储存密度。
4. 纳米传感器:纳米材料可以制备成高灵敏度的传感器,用于检测环境中的化学物质、生物分子和物理参数等。
四、纳米材料的挑战和前景1. 安全性问题:纳米材料的生物毒性和环境风险需要重视。
在纳米材料的应用过程中,需要对其安全性进行评估和监测。
2. 大规模制备:纳米材料的大规模制备是一个挑战。
目前,研究人员正在探索高效、低成本的纳米材料制备方法。
3. 多功能性:纳米材料的多功能性使其在各个领域具有广泛的应用前景。
未来,纳米材料的研究将更加注重材料的设计和功能的定制。
总结:纳米材料作为一种新兴的材料,具有独特的特点和广泛的应用前景。
第一章概述1.简述纳米材料的四个效应。
(1)小尺寸效应(2)表面与界面效应(3)量子尺寸效应(4)宏观量子隧道效应2.纳米材料的分类(按维数来分)(1)零维(2)一维(3)二维第二章补充1.金属材料的分类?2.实际应用金属材料的形态?3.合金的分类及每种合金的特点(1)混合物合金(2)固溶体合金(3)金属间化合物合金4.铁系合金分类及每一种是怎么形成的、含碳量高低及塑性、硬度、强度等(P120)5.硅酸盐水泥的三个过程(水化、凝结和硬化)(P144)6.玻璃的形态及组分构成(对网络结构的作用)形态:?组分构成(1)形成体(2)中间体(3)改性剂7.什么是陶瓷(成分及经历什么过程形成)P1518.陶瓷的一般结构与基本性质P1519.普通陶瓷的三大原材料(各自的特点)长石黏土石英特点:?10.结构陶瓷中氧化铝陶瓷、碳化硅陶瓷、氮化硅陶瓷、氮化硼陶瓷的主晶相及晶型。
P156~P157(1)氧化铝陶瓷(2)碳化硅陶瓷(3)氮化硅陶瓷(4)氮化硼陶瓷11.复合材料的特点?(1)(2)(3)12.复合材料的组成(两部分,分别包括那些种类)(1)基体——连续相金属材料陶瓷材料聚合物材料(2)增强材料——分散相颗粒晶须纤维13.复合材料的复合原理混合法则第三章制备1.纳米材料制备技术的分类(按照纳米材料的制备方法分及纳米材料制备的体系状态分)制备方法:(1)化学法(2)物理法(3)综合法制备体系(1)气相法(2)液相法(3)固相法2.零维纳米材料的物理制备方法包括惰性气体沉淀法、机械粉碎法、非晶晶化法、氢等电弧离子体法(1)惰性气体沉淀法(2)机械粉碎法(3)非晶晶化法(4)氢等电弧离子体法3.氢电弧等离子体法中氢气的作用。
(1)释放大量热,使金属蒸发(2)降低金属表面张力4.化学沉淀法的原理和分类(细分)原理特点分类(1)直接沉淀法(2)共沉淀法(3)均相沉淀法(4)水解沉淀法5.微乳法的原理???6.一维纳米材料制备技术中气-固(VS)生长机理(过程)及该法常用来制备什么材料。
一纳米材料的概念1、纳米材料广义:在一维、二维、三维的空间中始终处于1〜lOOnm范围的晶体或非晶体物质。
其性质完全不同于常规材料,而具有特殊性。
狭义:具有纳米结构的材料。
纳米材料与传统材料的主要差别:尺寸差异性能差异强度、韧性、比热、导电率、扩散率等完全不同于或大大优于常规的体相材料。
2、纳米尺度临界尺寸:当颗粒的大小减小到某一尺寸时,材料的性能突变,与同样组分构成的常规材料性质不同,这个尺寸就是临界尺寸。
同一种纳米材料具有的不同性质所发生突变的临界尺寸不同;而同一种性能的不同纳米材料其临界尺寸也有很大差异。
3、纳米结构基本单元构成纳米结构块体、薄膜、多层膜以及纳米结构材料的基本单元有:团簇,纳米微粒、纳米管、纳米棒、纳米线、纳米纤维、纳米带、纳米环、纳米螺旋和同轴纳米电缆等。
它们至少一维尺寸非常小。
①团簇原子团簇是指几个至几百个原子的聚集体(粒径小于或等于lnm)o如Fen,Cu n S m, C n H m(n 和m都是整数)和碳簇(富勒烯C6o,C70等)等。
它介于单个原子与固体之间。
形状多样化:线状、层状、管状、洋葱状、骨架状、球状等。
原子团簇分类:A 一元原子团簇,如:Nan, Nin,C60, C70B 二元团簇,如:lnnPm,AgnSmC多元团簇,如:Vn(C6H6)mD原子簇化合物,是原子团簇与其它分子以配位键结合形成的化合(例如,某些含Fe-S团簇的蛋白质分子)。
②纳米微粒纳米微粒是指颗粒尺寸为纳米量级的超细微粒,它的尺度大于原子簇,小于通常的微粉。
尺寸一般在1〜lOOnm之间,纳米颗粒所含原子数范围在103-107个,也称它为超微粒子。
上田良二给纳米颗粒的定义是:用电子显微镜才能看到的颗粒称为纳米微粒。
通常,分散性好的纳米粒子在良溶剂中不会沉淀,而且有透光性。
③纳米棒、纳米带和纳米线纳米棒:长径比(长度与直径的比率),J、,截面为圆形。
一般小于20。
纳米线:长径比大,截面为圆形。
复习提纲1纳米的概念:纳米(nanometer)是长度的一个单位,简写为nm olnm=10-3 u m=10-6min=10-9mlnm等于10个氢原子一字紧密排起来的长度。
纳米是一个极小达到尺寸,但它又代表人们认识上的一个新层次,从微米进入到纳米。
2宏观和微观:宏观:研究对象尺寸很大,下限有限,上限无限。
微观:指分子、原子及其内部的原子核(夸克、亲子、希格斯-波色子)和电子,微观冇上限而无法定义下限。
3界观体系:界观体系就是宏观和微观Z间的纳米体系。
4纳米材料:是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基木单元构成的材料,即由粒径尺寸介于1 —100nm之间的超细颗粒组成的固体材料。
狭义来讲:纳米材料是有关原子团簇、纳米颗粒、纳米线、纳米薄膜、纳米碳管和纳米固体材料的总称。
广义:纳米材料是晶粒或晶界等显微构造能达到纳米尺寸水平的材料。
纳米材料是组成相或晶粒在任一维上尺寸小于100nm的材料。
也叫超分子材料。
5纳米微粒:是指颗粒尺寸为纳米量级的超微颗粒,尺度大于原子团簇,小于通常的微粉,一般指颗粒度在riOOnm Z间粒了的聚合体,是处于该几何尺寸的各种粒子聚合体的总称。
6幻数效应:构成原子团簇的原子数口按一定规律分布,形成稳定的团簇结构的集合体,称为幻数。
7团簇:是由多个原子组成的小粒子,它们比无机分子大,但比具冇平移对称性的块体材料小,其原了结构(键长、键角和对称性等)和电了结构不同于分子,也不同于块体。
8纳米碳管:纳米碳管(NTs)是管状的纳米级右墨品体。
9什么情况卜•不能够用电阻加热法制备纳米金屈粒了;10光敏剂11沉淀法12溶胶-凝胶法:13化学气相沉积法14气相分解法制备纳米粒子对原料性质的要求及反应15激光诱导气相化学反应原理13微乳液14薄膜15荷叶效应16纳米复合材料17纳米固体材料结构的研究方法18小尺寸效应19二简述1纳米粒子的基本单元结构分类2纳米科技研究的内容3纳米科技诞生的标志4简述世界上何时如何首次实现了单个原子的移动和排列5纳米材料的不同发展阶段研究的侧重点分别是什么6纳米科技的作用7纳米材料在高科技屮的地位8表面效应产生的原因分析9纳米催化剂的作用及优点10高密度纳米磁性记录材料应满足的条件?11纳米隐身材料12 C60的结构13为什么富勒烯的命名存在争议?14 C60发现的重要意义15原了团簇的性质16为什么C60溶液口J以作为光学限幅器17碳有哪些同素异型体?各有什么样的特点?18如何制备出单臂纳米碳管?19单壁纳米碳管的类型及特点20纳米碳管优异的物理性能21气体冷凝法的主要步骤22影响纳米微粒粒径的因素23粉体粒径的控制方法24气相化学反应法(化学气相沉积)25激光制备超细微粒的基木原理26影响溶胶-凝胶法制备纳米薄膜的主要因索冇哪些?27纳米固体材料的结构分类28界面组元的特点29简述纳米材料的结构缺陷30纳米固体材料界面结构的研究方法31纳米材料与宏观材料的区别?32纳米复合材料在,填料与基体的作用三.论述1纳米科技研究对人类发展将产生哪些重要贡献?2为什么对纳米人们会产生有关安全性的争论?3纳米固体材料的特性4量了尺寸效应5原子团簇6机械粉碎法制备纳米粒子存在什么限制?影响机械粉碎极限的主要因素有哪些?7科技成果的滥用和纳米产品的奢侈应用8为什么说纳米科学技术将逐步改变世界?。
《纳米科学与技术》复习提纲第一章纳米科学与技术概论1・、什么是纳米?2. 纳米科技的三个定义是什么?3・纳米科技包括哪八个学科?哪三个属于基础学科?哪两个属于支撑领域?哪三个是纳米科技领域的制高点,是衡量一个国家发展纳米技术水平的标志?4. 纳米科技包括哪三个方面的研究内容?5. 可从哪三个角度提出纳米技术的概念?纳米技术的合理定义是什么?6. 纳米技术的两种研究方式是什么?7. 纳米科技研究与开发的五个突破点是什么?8. 世界各国在纳米科技方面的研究概况.9. 熟悉四个研究实例.10. 我国在纳米科技领域的研究概况.第二章材料科学与工程基础1. 材料的定义是什么?2. 通常称固体材料的四大家族是指哪四类材料?其分类依据是什么?3・根据内部原子的排列情况可将材料分为哪两种类型?根据热力学状态可将材料分为哪两种类型?根据三维尺寸特点可将材料分为哪三种类型?根据性能特征可将材料分为哪三种类型?4.结构材料的定义是什么?5・、功能材料的定义是什么?6. 智能材料的定义是什么?7. 简述材料的发展历程・&材料科学与工程的定义是什么?9.材料科学与工程的四要素是什么?10・材料的成份与结构包括哪些内容?11・材料性质包括哪些内容?12. 材料加工的含义是什么?13・什么是材料的效能?什么是材料的性能?两者有何差别?14. 材料科学与工程总体的发展趋势是什么?15・金刚石薄膜有何特点?可用于哪些领域?第三章新材料技术与纳米材料1?现代人类文明的三大支柱是什么?材料在其中起什么作用?2. 新材料的定义是什么?3. 就新材料而言,目前比较活跃的研究领域有哪些?(要求至少能列出三个)4)新材料有何特点?5•何谓高技术?新材料与高新技术的发展有何关系?6J在讨论未来新材料与材料科学技术的发展趋势时常涉及下列九个方面的内容,要求熟悉其中三个方面的发展趋势.高性能新型结构材料的发展电子信息功能材料的发展能源功能材料的发展生物功能材料的发展生态环境材料的发展智能材料的发展纳米材料的发展材料设计方法的发展材料制备与表征技术的发展第四章纳米材料的主要制备方法和奇异特性1. 制备纳米材料的主要方法有哪些?要求能较详细地描述其中的3种方法•2. 纳米材料所具有的四种效应是什么?3. 纳米材料有何奇异性能?(要求能列出5〜8种)4. 纳米材料在衣、食.住、行和医疗保健五个方面有何应用?5. 我国在纳米材料基础方面取得了哪些研究成果?(至少可列出三个)6. 我国在纳米功能材料方面取得了哪些研究成果?(至少可列出三个)7. 我国在纳米材料实验室成果的转化方面取得了哪些成果?(至少可列出一个)第五章碳纳米管的制备方法1・、什么叫碳纳米管?2. )碳纳米管有何结构特点?3. 〉目前主要釆用哪些方法制备碳纳米管?4・,' 何谓石墨电弧法?釆用石墨电弧法制备碳纳米管时,有哪几种生长机制?5••何谓催化裂解法?采用催化裂解法制备时,碳纳米管是如何生长的?催化剂颗粒的大小对管径有何影响?6. 何谓单层碳纳米管?何谓多层碳纳米管?7)目前有哪三种批量制备碳纳米管的方法?哪一种的产业化前景最好?为什么?第六章碳纳米管的特性及应用1. 碳纳米管具有哪些优异的特性?2. 碳纳米管在高强度碳纤维材料方面有何应用?3、碳纳米管在复合材料方面有何应用?4、碳纳米管在纳米电子器件方面有何应用?5?碳纳米管在催化纤维和膜工业方面有何应用?6. 碳纳米管在吸波材料方面有何应用?7. 碳纳米管在导热材料方面有何应用?第七章纳米二维材料的制备、性能与应用现状1.根据纳米材料中基本单元在三维空间的几何尺寸特征,可将纳米材料分为哪几种类型?2.根据纳米材料使用时宏观尺寸在三维空间中的特征,可将纳米材料分为哪几种类型?3.何谓纳米涂层材料?何谓纳米薄膜材料?4.有哪几种类型的纳米涂层材料?各有何特点?5.纳米涂层材料有何作用?可应用于哪些场合?6.未来纳米涂层材料的三个研究开发方向是什么?何谓纳米薄膜材料?&纳米薄膜材料可分为哪几种类型?9」何谓纳米超点阵薄膜?这种薄膜有何优缺点?可应用于哪些场合? 10・何谓纳米单相薄膜和纳米复相薄膜?可用于哪些场合?。
第一章纳米技术的基本概念1 什么是纳米?什么是纳米技术?纳米=10^-9米,大约等于十个氢原子并列一直线的长度。
纳米科学技术(Nano-ST)是20世纪80年代末期诞生并正在崛起的新科技,它的基本涵义是在纳米尺寸(0.1nm∽100nm)范围内认识和改造自然,通过直接操作和安排原子、分子创造新物质。
纳米科技是研究由尺寸0.1∽100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。
纳米技术:是20世纪80年代末期兴起的新技术,其基本含意是在纳米尺寸范围内认识和改造自然,通过直接操纵和安排原子、分子而获得新结构和新材料的技术。
2 按照材料维度分,纳米材料可以分成几维?三维空间中,至少有一维处于纳米尺度(介于1~100 nm之间)范围内的材料,都可归属于纳米材料范畴。
按维数的不同,纳米材料可分类为:零维—一维—(直线运动)二维—(平面运动)三维—纳米晶体(纳米分子筛)度中的三维中自由活动3 纳米技术涉及的研究领域有哪些?纳米材料、纳米器件和纳米尺度的检测与表征其中纳米材料是纳米科技的基础;纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志;纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础。
4 纳米材料涉及哪些基本效应?产生的原因是什么?小尺寸效应:当微粒分割到达一定程度时,其性质将会发生根本性的变化。
量子效应:电子能级由准连续变为离散能级的现象。
界面效应:纳米材料由于大量的原子存在于晶界和局部的原子结构不同于大块晶体材料,使纳米材料的自由能增加,纳米材料处于不稳定状态。
表面效应:纳米微粒尺寸小,表面能高,位于表面的原子或分子所占的比例非常大。
四个特点:尺寸小、比表面积大、表面能高、表面原子比例大5 为什么金属纳米粉呈现黑色?这是小尺寸效应的表现,当金属粒径小到光波波长以下,金属的反射率极低,故呈现黑色。
6 STM、AFM工作原理是什么?STM扫描隧道显微镜就是根据量子力学中的隧道效应与原理,通过探测固体表面原子中的电子的隧道电流来分辨固体表面形貌的新型显微装置。
《纳米材料与技术》期末复习第一章:纳米科学技术的发展历史——1、1959年12月,美国物理学家费曼在加州理工学院召开的美物理学会会议上作了一次富有想象力的演说“最底层大有发展空间”,费曼的幻想点燃纳米科技之火。
2、1981年比尼格与罗勒尔独创了看得见原子的扫描隧道显微镜(STM)。
3、1989年在美国加州的IBM试验内,依格勒博士采纳低温、超高真空条件下的STM操纵着一个个氙原子,实现了人类另一个幻想——干脆操纵单个原子。
4、1991年,日本的饭岛澄男教授在电弧法制备C60时,发觉氩气直流电弧放电后的阴极碳棒上发觉了管状结构的碳原子簇,直径约几纳米,长约几微米碳纳米管。
5、1990年在美国东海岸的巴尔的摩召开其次届国际STM会议的期间,召开了第一届国际纳米科学技术会议,该会议标记纳米科学技术的诞生。
其次章:1、纳米材料的分类:按功能分为半导体纳米材料、光敏型纳米材料、增加型纳米材料和磁性纳米材料;按属性分为金属纳米材料、氧化物纳米材料、硫化物纳米材料、碳(硅)化合物纳米材料、氮(磷)等化合物纳米材料、含氧酸盐纳米材料、复合纳米材料。
按形态分为纳米点、纳米线、纳米纤维和纳米块状材料。
2、纳米材料的四个基本效应:小尺寸效应、量子尺寸效应、表面效应、宏观量子隧道效应。
1)量子尺寸效应与纳米材料性质a.导电的金属在制成超微粒子时就可以变成半导体或绝缘体;绝缘体氧化物相反。
b.磁化率的大小与颗粒中电子是奇数还是偶数有关。
c.比热亦会发生反常变更,与颗粒中电子是奇数还是偶数有关。
d.光谱线会产生向短波长方向的移动。
e.催化活性与原子数目有奇数的联系,多一个原子活性高,少一个原子活性很低。
2)小尺寸效应的主要影响:a.金属纳米相材料的电阻增大与临界尺寸现象(电子平均自由程)动量b.宽频带强汲取性质(光波波长)c.激子增加汲取现象(激子半径)d.磁有序态向磁无序态的转变(超顺磁性)(各向异性能)e.超导相向正常相的转变(超导相干长度)f.磁性纳米颗粒的高矫顽力(单畴临界尺寸)3)表面效应及其影响:表面化学反应活性(可参加反应)、催化活性、纳米材料的(不)稳定性、铁磁质的居里温度降低、熔点降低、烧结温度降低、晶化温度降低、纳米材料的超塑性和超延展性、介电材料的高介电常数(界面极化)、汲取光谱的红移现象。
纳米化学复习提纲一.纳米:尺寸或大小的度量单位千米f米厘米毫米微米f纳米(IO® m)二.原子团簇:是指几个至几百个原子的聚集体,其粒径小于或等于1 nm原子团簇既不同于具有特定形状的分了也不同于以弱结合力结合的松散的分子团簇。
它的形状可是多种多样的,但它们尚未形成规整的晶体。
所以又不像晶体那样具有很强的周期性。
除惰性气体外,他们都可以看成是以化学键紧密结合在一起的聚集体。
三.纳米材料的广义划分:0D■零维纳米材料:纳米颗粒,原了团簇1D-—维纳米材料:纳米棒,纳米线,纳米带,纳米管等2D■二维纳米材料:纳米片,纳米薄膜,超晶格四.纳米结构的基本单元团簇(clusters)人造原子(artificial atoms)纳米颗粒量子点(零维纳米材料,OD, QDs)纳米管(NTs),纳米棒(NRs),纳米线(NWs)(一维纳米材料,1D)纳米孑L洞(nanopores, mesoporous)超结构纳米阵列(nanoarrays)同轴纳米电缆(nanocables)五.纳米微粒的基本特性:1.电子能级的不连续性:当材料尺寸小到一定程度时,在纳米颗粒中原子个数是有限的,此时能级之间的间隔不容忽视,也就是说纳米材料的电子能级是不连续的.2.量了尺寸效应:当粒了的尺寸下降到某个值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道能级,能隙变宽现象。
3.小尺寸效应:当超细微粒的尺寸,与光波的波长,德布罗意波长以及超导态的相干波长和透射深度等物理尺寸相当或更小时,晶体物理周期性的边界条件被破坏,非晶态纳米颗粒的微粒表面层附近原子密度减小,导致声,光,电,磁,热,力学等性质呈现新的小尺寸效应.4.表面效应:随着颗粒直径变小,表面能高,比表面积将会显著增大,表面原了所占的百分数将会显著地增加。
5.宏观量子隧道效应:微观粒子具有贯穿势垒的能力称为隧道效应。
复习提纲
一. 概念题
1 纳米的概念:纳米(nanometer)是长度的一个单位,简写为nm。
1nm=10-3μm=10-6mm=10-9m
1nm等于10个氢原子一字紧密排起来的长度。
纳米是一个极小达到尺寸,但它又代表人们认识上的一个新层次,从微米进入到纳米。
2 宏观和微观:宏观:研究对象尺寸很大,下限有限,上限无限。
微观:指分子、原子及其内部的原子核(夸克、亲子、希格斯-波色子)和电子,微观有上限而无法定义下限。
3 界观体系:界观体系就是宏观和微观之间的纳米体系。
4 纳米材料:是指在三维空间中至少有一维处于纳米尺度范围或由它们作
为基本单元构成的材料,即由粒径尺寸介于1-100nm之间的超细颗粒组成的固体材料。
狭义来讲:纳米材料是有关原子团簇、纳米颗粒、纳米线、纳米薄膜、纳米碳管和纳米固体材料的总称。
广义:纳米材料是晶粒或晶界等显微构造能达到纳米尺寸水平的材料。
纳米材料是组成相或晶粒在任一维上尺寸小于100nm的材料。
也叫超分子材料。
5纳米微粒:是指颗粒尺寸为纳米量级的超微颗粒,尺度大于原子团簇,小于通常的微粉,一般指颗粒度在1~100nm之间粒子的聚合体,是处于该几何尺寸的各种粒子聚合体的总称。
6 幻数效应:构成原子团簇的原子数目按一定规律分布,形成稳定的团簇
结构的集合体,称为幻数。
7 团簇:是由多个原子组成的小粒子,它们比无机分子大,但比具有平移
对称性的块体材料小,其原子结构(键长、键角和对称性等)和电子结构不同于分子,也不同于块体。
8 纳米碳管:纳米碳管(NTs)是管状的纳米级石墨晶体。
9 什么情况下不能够用电阻加热法制备纳米金属粒子;
10光敏剂
11 沉淀法
12溶胶-凝胶法:
13 化学气相沉积法
14 气相分解法制备纳米粒子对原料性质的要求及反应
15 激光诱导气相化学反应原理
13微乳液
14 薄膜
15荷叶效应
16 纳米复合材料
17纳米固体材料结构的研究方法
18 小尺寸效应
19
二. 简述
1纳米粒子的基本单元结构分类
2纳米科技研究的内容
3纳米科技诞生的标志
4 简述世界上何时如何首次实现了单个原子的移动和排列
5 纳米材料的不同发展阶段研究的侧重点分别是什么
6 纳米科技的作用
7 纳米材料在高科技中的地位
8表面效应产生的原因分析
9 纳米催化剂的作用及优点
10 高密度纳米磁性记录材料应满足的条件?
11 纳米隐身材料
12 C60的结构
13 为什么富勒烯的命名存在争议?
14 C60发现的重要意义
15 原子团簇的性质
16 为什么C60溶液可以作为光学限幅器
17 碳有哪些同素异型体?各有什么样的特点?
18 如何制备出单臂纳米碳管?
19 单壁纳米碳管的类型及特点
20 纳米碳管优异的物理性能
21 气体冷凝法的主要步骤
22 影响纳米微粒粒径的因素
23粉体粒径的控制方法
24 气相化学反应法(化学气相沉积)
25 激光制备超细微粒的基本原理
26影响溶胶-凝胶法制备纳米薄膜的主要因素有哪些?
27纳米固体材料的结构分类
28界面组元的特点
29简述纳米材料的结构缺陷
30纳米固体材料界面结构的研究方法
31纳米材料与宏观材料的区别?
32 纳米复合材料在,填料与基体的作用
三. 论述
1 纳米科技研究对人类发展将产生哪些重要贡献?
2 为什么对纳米人们会产生有关安全性的争论?
3 纳米固体材料的特性
4 量子尺寸效应
5 原子团簇
6 机械粉碎法制备纳米粒子存在什么限制?影响机械粉碎极限的主要因素
有哪些?
7 科技成果的滥用和纳米产品的奢侈应用
8 为什么说纳米科学技术将逐步改变世界?。