纳米材料的发展历程以及各国纳米技术的发展现状
- 格式:ppt
- 大小:4.37 MB
- 文档页数:71
纳米技术的研究现状与发展趋势引言纳米技术是一门涉及材料、物理、化学和生物学等多学科的科学领域。
本文旨在探讨纳米技术的研究现状及其未来发展趋势。
研究现状目前,纳米技术在各个领域都有广泛应用。
在材料领域,纳米材料具有出色的力学性能和化学活性,因此在制造高性能材料方面具有巨大潜力。
在电子领域,纳米电子器件已经取得了重大突破,为下一代电子设备的发展提供了支持。
在医学领域,纳米技术已经成功应用于药物传递和生物成像等方面,为疾病治疗带来了新的希望。
发展趋势纳米技术的发展仍然具有巨大的潜力。
首先,纳米材料的研发将继续推动新材料和产品的创新。
其次,随着纳米电子器件的不断突破,下一代电子设备将更加小型化、高效能。
此外,纳米技术在环境保护和能源领域也将发挥重要作用,例如通过纳米材料的应用实现高效能的太阳能电池和污染物的治理。
结论纳米技术是一项具有前景广阔的学科,其研究和应用影响广泛。
我们相信,随着科学技术的不断进步,纳米技术将在未来取得更多突破,为社会进步和发展做出更大贡献。
参考文献(请勿引用无法证实的内容)- Suri, A., & Nishar, H. (2020). Nanotechnology: Recent Trendsand Future Prospects. Materials Today: Proceedings, 25, 2299-2302.- Li, Y., & Wang, X. (2018). Nanoparticle-based nanotechnologyfor cancer diagnosis and therapy. Journal of Materials Chemistry B,6(23), 3774-3792.- Wong, M. K., & Ding, Y. (2012). Nanotechnology for environmental remediation: materials and applications. Molecules, 17(6), 7258-7282.。
纳米技术的发展历程及现状纳米技术是20世纪90年代出现的一门新兴技术。
它是在0.10~100纳米(即十亿分之一米)尺度的空间内,研究电子、原子和分子运动规律和特性的崭新技术。
由于纳米技术将最终使人类能够按照自己的意愿操纵单个原子和分子,以实现对微观世界的有效控制,所以被认为是对21世纪一系列高新技术的产生和发展有极为重要影响的一门热点学科,被世界各国列为21世纪的关键技术之一,并投入大量的人力物力进行研究开发。
纳米技术的思想是1959年美国物理学家费曼(Feynman R.P.)提出。
到了70年代后半期,有人倡导发展纳米技术,但是当时多数主流科学家对此仍持怀疑态度。
在70年代中期到80年代后期,不少科学家相继在实验室制备得到纳米尺寸的材料,并发现这种材料具有不少奇妙特性。
1990年,当国际商用机器公司(IBM)的科学家运用扫描隧道显微镜将氙原子拼成了该公司商标\"IBM\",这是第一次公开证实在原子水平有可能以单个原子精确生产物质,纳米技术开始成为媒体关注的热点。
1990年7月,在美国巴尔的摩召开的第一届国际纳米科技大会,标志着纳米科技的正式诞生。
纳米科技主要包括纳米生物学、纳米机械学、纳米电子学、纳米材料学以及原子、分子操纵和纳米制造等很多领域。
扫描隧道显微镜(STM)和原子力显微镜(AFM)在其中起着重要作用。
21世纪前20年,是发展纳米技术的关键时期。
由于纳米材料特殊的性能,将纳米科技和纳米材料应用到工业生产的各个领域都能带来产品性能上的改变,或在性能上有较大程度的提高。
利用纳米科技对传统工业,特别是重工业进行改造,将会带来新的机遇,其中存在很大的拓展空间,这已是国外大企业的技术秘密。
英特尔、IBM、SONY、夏普、东芝、丰田、三菱、日立、富士、NEC等具有国际影响的大型企业集团纷纷投入巨资开发自己的纳米技术,并到得了令世人瞩目的研究成果。
纳米技术在经历了从无到有的发展之后,已经初步形成了规模化的产业。
纳米技术的发展现状及未来趋势分析纳米技术是近年来备受瞩目的领域之一,其独特的性质和潜力为人类带来了创新的可能性。
本文将讨论纳米技术的发展现状以及未来的趋势,并探讨其在各个领域中的应用前景。
纳米技术指的是处理尺寸在纳米级别的物质和结构的科学与技术。
随着现代科学的发展,人们对纳米世界的探索取得了重大突破。
目前,纳米技术已经应用于物理、化学、生物学、材料学等众多领域。
在材料学中,纳米技术被用于制备高性能的纳米材料,例如纳米颗粒、纳米薄膜和纳米管材料,这些材料具有强大的力学、电学、光学和热学性能。
在电子学领域,纳米技术被用于制备微小的纳米电子元件,如纳米线、纳米管和纳米晶体管。
这些纳米电子元件具有出色的导电性能和尺寸可调性,为电子器件的制造提供了新的途径。
在生物学领域,纳米技术被广泛应用于生物传感、基因工程和药物递送等方面。
通过利用纳米材料的特殊性质,科学家们可以设计出高灵敏度的纳米生物传感器,用于检测微量的生物标志物,例如蛋白质和DNA。
此外,纳米技术还可以用于精确控制药物的递送,以提高药物的效力和减少副作用。
通过将药物封装在纳米粒子中,可以实现药物的靶向传递,减少对健康细胞的损害,提高治疗效果。
纳米技术对环境保护和能源领域的贡献也不可忽视。
纳米材料具有较高的反应活性和表面积,可以用于吸附和催化处理有害物质。
例如,纳米颗粒被广泛应用于水处理中,可以有效去除水中的重金属和有机污染物。
此外,纳米技术还可以用于提高太阳能电池和燃料电池的效率。
通过利用纳米结构的光学和电学性能,可以增强能源转换效率,促进可再生能源的发展。
未来纳米技术的发展还将面临一些挑战和机遇。
首先,纳米材料的安全性和环境影响需要得到充分的评估和研究。
虽然纳米技术给人类带来了巨大的好处,但同时也带来了一些潜在的风险,例如对生物体和环境的毒性。
因此,科学家们需要加强对纳米材料的安全性评估,并制定相关的规范和标准,以确保其可持续发展。
其次,纳米技术的商业化和产业化也面临一些难题。
简述纳米材料的发展历程纳米材料问世至今已有20多年的历史,大致已经完成了材料创新、性能开发阶段,现在正步人完善工艺和全面应用阶段。
“纳米复合聚氨酯合成革材料的功能化”和“纳米材料在真空绝热板材中的应用”2项合作项目取得较大进展。
具有负离子释放功能且释放量可达2000以上的聚氨酯合成革符合生态环保合成革战略升级方向,日前正待开展中试放大研究。
该产品的成功研发及进一步产业化将可辐射带动300多家同行企业的产品升级换代。
联盟制备出的纳米复合绝热芯材导热系数可控制为低达4.4mW/mK。
该产品已经在企业实现了中试生产,正在建设规模化生产线。
联盟将重点研究开发阻燃型高效真空绝热板及其在建筑外墙保温领域的应用研发和产业化,该技术的开发将进一步促进我国建筑节能环保技术水平的提升,带动安徽纳米材料产业进入高速发展期。
纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。
纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。
由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。
并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。
纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。
纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。
当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。
世界主要国家纳米技术、材料科学发展动向分析进入21世纪后,为实现社会可持续发展,应对降低环境负荷、采用节能省资源工艺、推进资源再生利用、服务医疗保健事业、建设安全舒适老龄社会等各种巨大的社会需求和挑战,科学技术的创新和进步肩负着艰巨的任务。
纳米技术、材料科学作为一个综合性战略性的科学技术领域可以直面上述众多的社会经济难题,出色地完成有关的使命。
今天,材料技术已经发展到进入纳米领域的组织控制技术,波及亚纳米尺度的高分辨能力电子显微镜,扫描型探针显微镜等的高精度计测、基于第一原理电子状态计算的物质结构和功能的预测、基于模拟或仿造的以解析技术为支柱的共同的基础科学技术。
纳米科技涉及诸多学科领域,包括物理学、化学、生物学、医学、材料科学、信息科学、能源科学、先进制造科学等,是高度交叉的综合性学科,它也体现了前沿科学和高技术的融合。
纳米材料科学技术的进步,使得各种要素技术可以组合应用(包括与其它知识、技术的组合创造新的知识和功能、与不同领域融合产生新的技术领域),形成新的物质结构、发现新的物质功能、开发新的应用材料。
纳米技术和材料领域的特殊性,使得它们的研究开发迅速推进,技术潮流澎湃向前,展现了广阔的应用前景。
世界主要国家都十分重视纳米技术、材料科学,纷纷制定国家计划,积极进行投资,大力推进研究开发。
美国美国是较早开始实施国家纳米技术计划的国家。
美国国家纳米技术计划始于2001年,迄今已投资270亿美元。
2018年以后,虽然其预算有减少的趋势,但对以纳米技术签名倡议为首的5个项目构成的计划组成范围已作了战略性预算分配。
根据摩尔定律,一直在推进高性能化的半导体也已触到微型化的界限,而在不依赖摩尔定律的情况下继续追求新的半导体高性能化的"电子复兴计划"则开始起动。
量子计算机研究开发迅速推进,追求量子技术整体发展的新的可能性的"国家量子计划"也开始实施。
这些都是美国政府政策支持的重点。
纳米技术及其开展现状随着生物、环境控制、医学、航空、航天、准确制导弹药、灵巧武器、先进情报传感器以及数据通讯等的不断开展,在构造装置微小型化方面不断提出更新、更高的要求。
目前,纳米技术开展十分迅猛,它使人类在改造自然方面进入一个新的层次。
它将开发物质潜在的信息和构造能力,使单位体积物质存储和处理信息的能力实现质的飞跃,从而给国民经济和军事能力带来深远的影响。
纳米技术是指纳米级(<10纳米)的材料、设计、制造、测量和控制技术。
随着纳米技术的开展。
开创了纳米电子学、纳米材料学、纳米生物学、纳米机械学、纳米制造学、纳米显微学及纳米测量等等新的高技术群。
纳米技术是面向21世纪的一项重要技术,有着广阔的军民两用前景。
美国、日本及西欧等国家均投入了大量的人力、物力进展开发,并己在航空、航天、医疗及民用产品等方面得到了一定应用。
1微型机电系统( microelectron—mechanical systems,MEMS)10年前,人们意识到用半导体批量制造技术可以生产许多宏观机械系统的微米尺度的样机后,就在小型机械制造领域开场了新的研究,这导致了微型机电系统(MEMS)的出现,如微米尺度的各类传感器以及各种阀门等。
MEMS主要的民用领域是:医学、电于工业和航空、航天。
如用静电驱动的微型电机控制计算机及通讯系统。
在环境、医学应用中,微型传感器可以测量各种化学物质的流量、压力和浓度。
在军事主要有以下:有害化学战剂报警传感器、敌我识别、灵巧蒙皮、分布式战场传感器网络、微机器人电子失能系统、昆虫平台等应用。
2专用集成微型仪器( application specific integratedmicro-instrument,ASIM)微型工程包括具有毫米、微米、纳米尺度构造的传感器和动作器的设计、材料合成、微型机械加工、装配、总成和封装问题。
利用这项技术可以把传感器、动作器和数据处理采集装置集成在一块普通的基片上。
微型机电系统与微电子技术的综合集成,导致了专用集成微型仪器(ASIM)的出现。
纳米科技的现状与发展趋势随着科技的进步和人类对科学的深入研究,纳米科技越来越成为各个领域的热门话题。
纳米技术是一门跨学科的科学,它涉及物理学、化学、生物学、材料学等多个学科领域,其研究对象是尺寸在1-100纳米之间的物质,这些物质具有与传统材料不同的特性和性质。
纳米科技的广泛应用正在改变世界,使人们的生活更加便利和高效。
目前,纳米科技在许多领域都有应用,如医疗、新能源、环保、信息技术、材料学等。
近年来,纳米技术在医疗领域中的应用越来越广泛。
纳米技术在癌症治疗中的应用已经在一些国家得到广泛探讨和应用,纳米材料可以精确到达癌细胞,避免了药物对正常细胞的损伤。
此外,纳米传感器的出现,可以帮助人们及时监测病情,为病人提供更好的医疗服务。
纳米材料的研究在新能源领域中也得到了广泛应用。
例如,全电池使用纳米材料制成,可以充电更快、有效存储更多的能量,同时使电池更加轻巧,这些电池的研究成果有望在未来的生活中得到广泛应用。
此外,纳米材料的研究在环保领域中也有广泛的应用。
比如,纳米吸附材料可以提高废水处理效能、纳米光触媒净化空气、使用纳米材料替代传统材料可以有效降低环境污染。
纳米科技的发展趋势也引起了人们的高度关注。
纳米科技的发展将具有重大的影响,推动新材料的发展、改进能源利用方式、革新制造工艺、提升传感器的精度等。
未来几年,纳米技术的快速发展将会改变传统产业的格局。
众多企业和国家都在加大对纳米科技的研究和投入,纳米科技将在多个领域中得到广泛的应用,为推动各行业的发展和人类的生活带来更多机遇和福利。
据相关机构预测,到2025年,全球纳米技术市场规模有望突破1万亿美元。
但是,纳米科技的发展也可能存在着一些问题。
一是对纳米材料的毒性的不确定性。
纳米材料的毒性是纳米科技发展过程中面临的一个主要难题,目前对于纳米材料的毒性评估还缺乏科学标准,这使得纳米材料的应用受到了限制。
此外,随着纳米技术的应用面越来越广泛,伦理问题也将越来越受到关注。
纳米材料的研究进展以及应用现状1.绪论从概念来说,纳米材料是由无数个晶体组成的,它的大小尺寸在1~100纳米范围内的一种固体材料。
主要包括晶态、非晶态的金属、陶瓷等材料组成。
因为它的大小尺寸已经接近电子的相干长度,它有着特殊的性质。
这些特殊性质所表现出来的有导电、导热、光学、磁性等。
目前国内、国际的科学家都在研究纳米材料,试图打造一种全新的新技术材料,将来为人类创造更大的价值。
纳米科学技术也引起了科学家的重视,在当代的科学界有着举足轻重的地位。
纳米技术的范围包括纳米加工技术、纳米测量技术,纳米材料技术等。
其中纳米材料技术主要应用于材料的生产,主要包括航天材料、生物技术材料,超声波材料等等。
从1861年开始,因为胶体化学的建立,人们开始了对直径为1~100纳米粒子的研究工作。
然而真正意义上的研究工作可以追溯到20世纪30年代的日本为了战争的胜利进行了“沉烟实验”,由于当时科技水平落后研究失败。
2.纳米材料的应用现状研究表明在纺织和化纤制品中添加纳米微粒,不仅可以除去异味和消毒。
还使得衣服不易出现折叠的痕迹。
很多衣服都是纤维材料制成的,通常衣服上都会出现静电现象,在衣服中加入金属纳米微粒就可消除静电现象。
利用纳米材料,冰箱可以消毒。
利用纳米材料做的无菌餐具、无菌食品包装用品已经可以在商场买到了。
另外利用纳米粉末,可以快速使废水彻底变清水,完全达到饮用标准。
这个技术可以提高水的重复使用率,可以运用到化学工业中。
比如污水处理厂、化肥厂等,一方面使得水资源可以再次利用,另一方面节约资源。
纳米技术还可以应用到食品加工领域,有益健康。
纳米技术运用到建筑的装修领域,可以使墙面涂料的耐洗刷性可提高11倍。
玻璃和瓷砖表面涂上纳米材料,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。
这样就可以节约成本,提高装修公司的经济效益。
使用纳米微粒的建筑材料,可以高效快速吸收对人体有害的紫外线。
纳米材料可以提高汽车、轮船,飞机性能指标。
纳米科学发展史摘要:纳米科学是研究于纳米尺寸(1~100nm)时,物质和设备的设计方法、组成、特性以及应用的应用科学。
“纳米科学”最初的设想来自于著名物理学家费曼1959年在加州理工大学的一次演讲。
经过半个多世纪的发展,特别是上世纪末期,随着测量与表征技术的显著提高,纳米科学技术得到了飞速的发展,已经成为一门集前沿性、交叉性和多学科特征的新兴研究领域,其理论基础、研究对象涉及物理学、化学、材料学、机械学、微电子学、生物学和医学等多个不同的学科。
关键字:纳米科学,纳米技术,发展,应用1.纳米科学发展简史1959年,著名物理学家、诺贝尔奖获得者理查德·费曼在美国加州理工学院召开的美国物理学会年会上预言:如果人们可以在更小尺度上制备并控制材料的性质,将会打开一个崭新的世界。
这一预言被科学界视为纳米材料萌芽的标志。
1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。
70年代美国康奈尔大学格兰维斯特和布赫曼利用气相凝集的手段制备纳米颗粒,开始了人工合成纳米材料。
1982年,研究纳米的重要工具-扫描隧道显微镜被发明。
1989年德国教授格雷特利用惰性气体凝集的方法制备出纳米颗粒,从理论及性能上全面研究了相关材料的试样,提出了纳米晶体材料的概念,成为纳米材料的创始人。
1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举行。
1991年,碳纳米管被发现,它的质量只有同体积钢的六分之一,强度却是钢的十倍。
1992年开始,两年一届的世界纳米材料会议分别在墨西哥、德国、美国夏威夷、瑞典举行。
1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文名字、1990年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”之后,中科北京真空物理实验室操纵原子成功写出“中国”二字。
1997年,美国科学家首次成功地用单电子移动单电子,利用这种技术可望在20年后研制成功速度和存储容量比现有计算机提高成千上万倍的量子计算机。
纳米科学发展史摘要:纳米科学是研究于纳米尺(1~100nm)时,物质和设备的设计方法、组成、特性以及应用的应用科学。
“纳米科学”最初的设想来自于著名物理学家费曼1959年在加州理工大学的一次演讲。
经过半个多世纪的发展,特别是上世纪末期,随着测量与表征技术的显著提高,纳米科学技术得到了飞速的发展,已经成为一门集前沿性、交叉性和多学科特征的新兴研究领域,其理论基础、研究对象涉及物理学、化学、材料学、机械学、微电子学、生物学和医学等多个不同的学科。
关键字:纳米科学,纳米技术,发展,应用。
1、纳米科学发展简史1959年,著名物理学家、诺贝尔奖获得者理查德·费曼在美国加州理工学院召开的美国物理学会年会上预言:如果人们可以在更小尺度上制备并控制材料的性质,将会打开一个崭新的世界。
这一预言被科学界视为纳米材料萌芽的标志。
1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。
70年代美国康奈尔大学格兰维斯特和布赫曼利用气相凝集的手段制备纳米颗粒,开始了人工合成纳米材料。
1982年,研究纳米的重要工具-扫描隧道显微镜被发明。
1989年德国教授格雷特利用惰性气体凝集的方法制备出纳米颗粒,从理论及性能上全面研究了相关材料的试样,提出了纳米晶体材料的概念,成为纳米材料的创始人。
1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举行。
1991年,碳纳米管被发现,它的质量只有同体积钢的六分之一,强度却是钢的十倍。
1992年开始,两年一届的世界纳米材料会议分别在墨西哥、德国、美国夏威夷、瑞典举行。
1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文名字。
1990年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”之后,中科北京真空物理实验室操纵原子成功写出“中国”二字。
1997年,美国科学家首次成功地用单电子移动单电子,利用这种技术可望在20年后研制成功速度和存储容量比现有计算机提高成千上万倍的量子计算机。
纳米材料国内外研究进展一、前言从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)[1]。
自20世纪80年代初, 德国科学家 Gleiter[2]提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。
纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。
从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。
通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。
从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)[3]。
纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。
二、国内外研究现状1984年德国科学家Gleiter首先制成了金属纳米材料, 同年在柏林召开了第二届国际纳米粒子和等离子簇会议, 使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议, 标志着纳米科技的正式诞生;l994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。
近年来,世界各国先后对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列人近期高科技开发项目。
2004年度纳米科技研发预算近8.5亿美元,2005年预算已达到10亿美元,而且在美国该年度预算的优先选择领域中,纳米名列第二位。
现在美国对纳米技术的投资约占世界总量的二分之一[4]。
自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料, 至今已有 30多年的历史, 但真正成为材料科学和凝聚态物理研究的前沿热点是在 80年代中期以后。
纳米技术的发展纳米技术是一种新型的技术手段,它可以制造出物质的分子、原子甚至更小的微观结构,因此具有许多具有应用前景的特点,例如提高材料性能、制备新型高效能源设备、新型的医学材料和分子机器等等。
纳米技术从上世纪90年代开始兴起,如今已经取得了大量的突破和跨越,正处于迅速发展和应用的时期。
纳米技术的发展可以追溯到古代时期,例如我国古代就有研究制备纳米材料的记录。
然而,真正系统性开展纳米技术研究的时间是在20世纪60年代,当时科学家发现,纳米颗粒的物理、化学和材料特性与传统材料有很大的不同,例如热力学性能、光学性能和机械性能等方面都具有迥然不同的特点,这些特点引起科学家们极大的兴趣。
因此,在大量研究的基础上,纳米技术迅速发展起来。
到了20世纪90年代,在生物、医药、材料、电子、光电、信息等众多领域,纳米技术的应用受到了广泛关注。
具体地说,在生物学方面,纳米技术可以制造出纳米粒子,用于药物载体,以实现对肿瘤等病变组织的有针对性治疗。
在医药方面,纳米技术可以制造出高效的诊断设备,例如纳米粒子荧光探针,可以提高胃肠道癌症的早期诊断。
在材料方面,纳米技术可以制造出高强度、高硬度、低密度的不锈钢和超强陶瓷材料,可以广泛应用于航天、运输、电子等领域。
在电子、信息、光电等方面,纳米技术可以制造出微型晶体管、纳米线、超高分辨率显示器等等高端器件,可以将电子技术推向一个全新的高峰。
除了在应用方面的发展,在纳米技术的基础研究方面也取得了很多突破。
例如,纳米技术可以研究材料的纳米级拓扑结构和表面化学特性,从而探索和发现新的物质性质和相态行为;纳米技术可以制备出人工拓扑物质,从而研究和发展拓扑物流电子器件;纳米技术可以利用自组装技术,从前所未有的角度研究生物分子的结构、功能和变异机制等等。
尽管纳米技术目前发展迅速,但它仍然面临许多挑战和困难。
例如,在纳米材料制备方面,纳米颗粒的精确制造和控制技术仍然存在一些问题;在纳米器件制备方面,如何制备出稳定、长寿命、可靠性高的纳米器件是一个重大难题。
纳米材料发展史专业---------姓名——————学号_________一、什么是纳米材料纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。
因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。
纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。
纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。
由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。
并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。
二.纳米材料的发展历程1959年12月29日理查德•费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲。
虽然没有使用“”纳米这个词,但他实际上介绍了纳米技术的基本概念。
1974年日本教授谷口纪男(Norio Taniguchi)在一篇题为:“论纳米技术的基本概念“的科技论文中给出了新的名词——纳米(Nano)。
1981年格尔德•宾宁(Gerd Binnig)和海因里希•罗雷尔Heinrich Rohrer发明了扫描隧道显微镜,它使科学家第一次可以观察并操纵单个原子。
1985年赖斯大学的研究人员发现了富勒烯(fullerenes)(更为人熟知的名称是“布基球(buckyballs),由著名未来学家,多面网格球顶的发明人巴克明斯特•富勒(R. Buckminster Fuller)命名,它可以被用来制造碳纳米管,是如今使用最广泛的纳米材料之一。