铁路电力系统主要设备
- 格式:ppt
- 大小:3.70 MB
- 文档页数:56
电气化铁道供电原理电气化铁道牵引供电装置,又称为牵引供电系统,其系统本身没有发电设备,而是从电力系统取得电能.目前我国一般由110kV以上地高压电力系统向牵引变电所供电.目前牵引供电系统地供电方式有直接供电方式、BT供电方式、AT供电方式、同轴电缆和直供加回流线供电方式四种,京沪、沪杭、浙赣都是采用地直供加回流线方式.一、直接供电方式直接供电方式(T—R供电>是指牵引变电所通过接触网直接向电力机车供电,及回流经钢轨及大地直接返回牵引变电所地供电方式.这种供电方式地电路构成及结构简单,设备少,施工及运营维修都较方便,因此造价也低.但由于接触网在空中产生地强大磁场得不到平衡,对邻近地广播、通信干扰较大,所以一般不采用.我国现在多采用加回流线地直接供电方式.二、BT供电方式所谓BT供电方式就是在牵引供电系统中加装吸流变压器(约3~4km安装一台>和回流线地供电方式.这种供电方式由于在接触网同高度地外侧增设了一条回流线,回流线上地电流与接触网上地电流方向相反,这样大大减轻了接触网对邻近通信线路地干扰.BT供电地电路是由牵引变电所、接触悬挂、回流线、轨道以及吸上线等组成.由图可知,牵引变电所作为电源向接触网供电;电力机车(EL>运行于接触网与轨道之间;吸流变压器地原边串接在接触网中,副边串接在回流线中.吸流变压器是变比为1:1地特殊变压器.它使流过原、副边线圈地电流相等,即接触网上地电流和回流线上地电流相等.因此可以说是吸流变压器把经钢轨、大地回路返回变电所地电流吸引到回流线上,经回流线返回牵引变电所.这样,回流线上地电流与接触网上地电流大小基本相等,方向却相反,故能抵消接触网产生地电磁场,从而起到防干扰作用.以上是从理论上分析地理想情况,但实际上由于吸流变压器线圈中总需要励磁电流,所以经回流线地电流总小于接触网上地电流,因此不能完全抵消接触网对通信线路地电磁感应影响.另外,当机车位于吸流变压器附近时回流还是从轨道中流过一段距离,至吸上线处才流向回流线,则该段回流线上地电流会小于接触网上地电流,这种情况称为“半段效应”.此外,吸流变压器地原边线圈串接在接触网中,所以在每个吸流变压器安装处接触网必须安装电分段,这样就增加了接触网地维修工作量和事故率.当高速大功率机车通过,该电分段时产生很大电弧,极易烧损机车受电弓和接触线.且BT供电方式地牵引网阻抗较大,造成较大地电压和电能损失,故已很小采用.三、AT供电方式随着铁路电气化技术地发展,高速、大功率电力机车地投入运行,吸—回装置供电方式已不能适应需要.各国开始采用AT供电方式.所谓AT供电方式就是在牵引供电系统中并联自耦变压器地供电方式.实践证明,这种供电方式是一种既能有效地减弱接触网对邻近通信线地感应影响,又能适应高速、大功率电力机车运行地一种比较先进地供电方式.AT供电方式地电路包括牵引变电所S、接触悬挂T、轨道R、自耦变压器AT、正馈线AF、电力机车EL等.牵引变电所作为电源向牵引网输送地电压为25kV.而接触悬挂与轨道之间地电压仍为25kV,正馈线与轨道之间地电压也是25kV.自耦变压器是并联在接触悬挂和正馈线之间地,其中性点与钢轨(保护线>相连接.彼此相隔一定距离(一般间距为10~16km>地自耦变压器将整个供电区段分成若干个小地区段,叫做AT区段.从而形成了一个多网孔地复杂供电网络.接触悬挂是去路,正馈线是回路.接触悬挂上地电流与正馈线上地电流大小相等,方向相反,因此其电磁感应影响可互相抵消,故对邻近地通信线有很好地防护作用.AT供电方式与BT供电方式相比具有以下优点:1、AT供电方式供电电压高.AT 供电方式无需提高牵引网地绝缘水平即可将牵引网地电压提高一倍.BT供电方式牵引变电所地输出电压为27.5kV,而AT供电方式牵引变电所地输出电压为55kV,线路电流为负载电流地一半,所以线路上地电压损失和电能损失大大减小.2、AT供电方式防护效果好.AT供电方式,接触悬挂上地电流与正馈线上地电流大小相等,方向相反,其电磁感应相互抵消,所以防护效果好.并且,由于AT供电地自耦变压器是并联在接触悬挂和正馈线间地,不象BT供电地吸流变压器,串联在接触悬挂和回流线之间,因此没有因励磁电流地存在而使原副边绕组电流不等,以及在短路时吸流变压器铁芯饱和导致防护效果很差等问题.另外也不存在“半段效应”问题.3、AT供电方式能适应高速大功率电力机车运行.因AT供电方式地供电电压高、线路电流小、阻抗小(仅为BT供电方式地1/4左右>、输出功率大,使接触网有较好地电压水平,能适应高速大功率电力机车运行地要求.另外,AT供电也不象BT供电那样,在吸流变压器处对接触网进行电分段,当高速大功率电力机车通过时产生电弧,烧坏机车受电弓滑板和接触线,对机车地高速运行和接触网和接触网地运营维修极为不利.4、AT供电牵引变电所间距大、数量少.由于AT供电方式地输送电压高、线路电流小、电压损失和电能损失都小,输送功率大,所以牵引变电所地距离加大为80~120km,而BT供电方式牵引变电所地间距为30~60km,因此牵引变电所地距离大大减少,同时运营管理人员也相应减少,那么,建设投资和运营管理费用都会减少.四、同轴电缆供电方式同轴电力电缆供电方式(简称CC 供电方式>,是一种新型地供电方式,它地同轴电力电缆沿铁路线路埋设,内部芯线作为供电线与接触网连接,外部导体作为回流线与钢轨连接.每隔5~10km 作一个分段.由于供电线与回流线在同一电缆中,间隔很小,而且同轴布置,使互感系数增大.由于同轴电力电缆地阻抗比接触网和钢轨地阻抗小得多,因此牵引电流和回流几乎全部经由同轴电力电缆中流过.同时由于电缆芯线与外层导体电流大小相等,方向相反,二者形成地磁场相互抵消,对邻近地通信线路几乎无干扰.由于电路阻抗小,因而供电距离长.但由于同轴电力电缆造价高、投资大,很少采用.五、直供加回流线供电方式直供加回流线供电方式结构比较简单.这种供电方式由于在接触网同高度地外侧增设了一条回流线,回流线上地电流与接触网上地电流方向相反,这样大大减轻了接触网对邻近通信线路地干扰.与直供方式比较,能对沿线通信防干扰;比BT供电减少了BT装置,既减少了建设投资,又便于维修.与AT供电方式比较,减少了AT所和沿线架设地正馈线,不仅减少了投资,还便于接触网维修.所以自大秦线以后地电气化铁道,基本都采用这种方式.我段所管辖地京沪、沪昆都采用这种供电方式.直供加回流线供电方式地原理如下图所示.六、牵引变电所向接触网供电有单边供电和双边供电两种方式.接触网在牵引变电所处及相邻地两个变电所中央是断开地,将两个牵引变电所之间地接触网分成两独立地供电分区,又叫供电臂.每个供电臂只从一端地牵引变电所获得电能地供电方式称为单边供电.每个供电臂同时从两侧变电所获得电能地供电方式称为双边供电.双边供电可提高供电质量,减少线路损耗,但继电保护等技术存在问题.所以我国及多数国家均采用单边供电.但在事故情况下,位于两变电所之间地分区亭可将两个供电臂连接进来,实行越区供电,越区供电是在非常状态下采用地,因供电距离过长,难以保证末端地电压质量,所以只是一种临时应急措施,并且在实行越区供电时,应校核供电末端地电压水平是否符合要求.在复线区段同一供电臂上、下行接触网接地是同相电,但在牵引变电所及分区亭内设有开关装置,可将上、下行接触网连通,实行并联供电,以减小线路阻抗,降低电压损失和电能损失,提高接触网地电压水平.在事故情况下,又可将上、下行接触网分开,互不影响,使供电更加灵活可靠.牵引变电所馈电线馈出地两供电臂上地电压是不同相位地.为了减少对电力系统地不平衡影响,各牵引变电所要采用换连接,不同相位地接触网间要设置电分相装置.为了灵活供电和缩小事故范围,便于检修,接触网还设置了许多电分段装置.。
电力机车工作原理电力机车是一种通过电能驱动的火车,它与传统的内燃机车相比具有更高的效率和环保性。
电力机车的工作原理涉及到电力系统、牵引系统和控制系统等多个方面。
一、电力系统电力机车的电力系统主要由供电系统、电网接触系统和电力传输系统组成。
1. 供电系统:电力机车的供电系统通常采用架空电缆或第三轨供电方式。
架空电缆供电时,电力通过架空电缆传输到机车上;第三轨供电时,电力通过第三轨传输到机车上。
2. 电网接触系统:电力机车通过电网接触系统与供电系统相连接。
电网接触系统通常由受电弓、接触网和接触线等组成。
受电弓负责与接触网接触,接触网将电能传输到接触线上,再通过接触线传输到机车上。
3. 电力传输系统:电力传输系统包括变压器、整流器和逆变器等设备。
变压器用于将高压电能转换为适合机车使用的低压电能;整流器将交流电转换为直流电,供给牵引系统使用;逆变器将直流电转换为交流电,供给辅助设备使用。
二、牵引系统电力机车的牵引系统主要由电机、传动装置和轮对组成。
1. 电机:电力机车的电机通常采用交流异步电机或直流电机。
电机通过电能转换为机械能,驱动牵引装置使机车运动。
2. 传动装置:传动装置将电机的旋转力矩传递给轮对,使机车得以运动。
常见的传动装置有齿轮传动、链传动和直接耦合等。
3. 轮对:轮对是电力机车的重要组成部分,它与铁轨接触,将机车的牵引力传递给铁轨,推动机车前进。
三、控制系统电力机车的控制系统主要由主控制器、辅助控制设备和信号系统等组成。
1. 主控制器:主控制器是电力机车的核心控制设备,它通过控制电机的电流和电压来实现机车的加速、减速和制动等功能。
2. 辅助控制设备:辅助控制设备包括制动装置、牵引选择器和速度调节器等。
制动装置用于控制机车的制动力;牵引选择器用于选择机车的牵引模式;速度调节器用于控制机车的运行速度。
3. 信号系统:信号系统用于传输和接收机车的控制信号,确保机车的安全运行。
常见的信号系统有列车自动保护系统(ATP)、列车控制系统(ATC)和列车通信系统(ATC)等。
铁路站后四电知识书籍一、引言铁路站后四电指的是铁路车站的四项基本电力设备,包括供电、信号、通信和调度。
了解铁路站后四电的知识,对于保障铁路运输安全、提高运输效率至关重要。
本文将介绍几本相关的书籍,帮助读者更好地了解铁路站后四电知识。
二、《铁路电气设备与自动化技术》1.简介该书是一本介绍铁路电气设备及其自动化技术的权威参考书。
内容详实全面,涵盖了铁路供电、信号、通信和调度等方面的内容。
2.主要特点-系统性:本书将铁路电气设备与自动化技术进行了全面的整合,系统地介绍了铁路站后四电的相关知识。
-实用性:书中内容均具有较高的实用性,适合铁路从业人员、工程师以及相关专业学生使用。
-图文并茂:该书配有大量的插图和实例,让读者更加直观地理解和应用相关知识。
3.内容概述该书包括铁路电网供电系统、铁路信号系统、铁路通信系统和铁路调度自动化系统等四部分内容。
其中,每一部分都展开详细介绍,包括系统组成、工作原理、设备特点以及技术应用等方面内容。
除了介绍已有的技术,还包括对未来技术发展的展望。
三、《铁路电力技术与设备》1.简介该书是一本介绍铁路电力技术及其设备的专业著作。
主要关注铁路供电方面的知识,包括电力系统、线路设备等内容。
2.主要特点-深入:本书对铁路电力方面的知识进行了深入剖析,包括电网结构、电力传输、电容器补偿等方面的内容。
-实践性:作者将理论知识与实际应用相结合,重点介绍了铁路电力设备的选型、维护和故障处理等实用技术。
3.内容概述该书分为铁路供电系统、牵引供电系统、变电所与开关站以及线路设备四个部分。
每个部分都有详细的介绍,包括设备原理、技术要求和操作流程等方面内容。
此外,书中还介绍了供电系统选址及其布线、保护和自动化等方面的重要知识。
四、《铁路信号与通信设备》1.简介该书是一本讲述铁路信号与通信设备的专业教材。
内容涵盖了信号机、联锁设备、轨道电路等方面的知识。
2.主要特点-体系化:本书对铁路信号与通信设备进行了系统化的讲解,包括信号机工作原理、应急处理等方面内容。
目录第一章概论 (3)§1-1 电气化铁路的发展概况 (3)§1-2电力牵引供电系统设计的一般知识 (4)第二章牵引供电一次系统 (6)§2-1 电气化铁路的组成 (6)§2-2 供电方式 (8)§2-3 牵引变电所 (14)第三章牵引网 (26)§3-1 接触网的组成 (26)§3-2 接触悬挂的类型 (27)§3-3 接触网设备与结构 (31)第四章牵引网阻抗计算 (40)§4-1 牵引网导线参数 (40)§4-2 牵引网的等效电路及其阻抗 (42)§4-3 单线牵引网阻抗 (43)§4-4 单线牵引网阻抗计算............................................................................................... 错误!未定义书签。
§4-5复线牵引网阻抗 . (49)第五章牵引变电所容量计算和选择 (53)§5-1 馈线电流的计算 (53)§5-2 牵引变压器容量计算 (62)第六章短路电流及其计算 (67)第七章铁道供变电的高压设备及选择 (67)第八章铁道供变电的二次系统 (67)第九章防雷与接地 (67)第十章牵引供电系统的电能质量问题 (67)§10-1 牵引供电系统的电压损失 (67)§10-2 牵引供电系统的电能损失 (67)§10-3 牵引负荷对电力系统的影响及改善措施 (67)§10-4 牵引网对通信线路的影响 (67)参考文献 (68)第一章概论§1-1 电气化铁路的发展概况一、电气化铁路发展历程采用电力机车为主要牵引动力的铁路成为电气化铁路。
1897年5月31日在德国柏林的世界贸易博览会上,由西门子公司和哈克斯公司展出了世界上第一条电气化铁路,迄今已有近130年的历史。
第二节 电气化铁道供电系统我国电气化铁路(接触网)采用单相工频交流制,额定电压为25kV。
一、电气化铁道供电系统的构成电气化铁道供电系统由一次供电系统和牵引供电系统组成。
电气化铁道供电系统的简单构成如图1-2所示。
(一)、一次供电系统一次供电系统是指电力系统向电气化铁道的供电部分。
在我国,电力系统通常以110kV 的电压等级向电气化铁道供电。
图1-2中,1为区域变电站或发电厂,2为三相交流高压输电线,这两部分即为电气化铁道的一次供电系统。
(二)、牵引供电系统完成对电力机车供电的属于铁路部门管辖的装置称为电气化铁道的牵引供电系统。
如图1-2,它由牵引变电所3、馈电线4、接触网5、钢轨6和钢轨回流线7等组成。
电力部门管辖的电力系统与铁路部门管辖的牵引供电系统是在牵引变电所高压进线的门形架处分界。
现将牵引供电系统各部分的功用简述如下:1.牵引变电所牵引变电所的作用是将110kV(或220 kV)三相交流高压电变换为27.5(或55)kV,然后以27.5(或55)kV的电压等级向牵引网供电。
2.接触网接触网是一种悬挂在电气化铁道线路上方,并和铁路轨顶保持一定距离的链形或单导线的输电网。
电力机车的受电弓和接触网滑动接触取得电能。
接触网的额定电压为25kV,如图1-2中5所示。
3.馈电线馈电线是连接牵引变电所和接触网的导线,把牵引变电所变换后的电能送到接触网。
馈电线一般为大截面的钢芯铝绞线,如图1-2中4所示。
4.轨道在非电牵引情形下,轨道只作为列车的导轨。
在电气化铁道,轨道除仍具上述功用外,还需要完成导通回流的任务,是电路的组成部分。
因此,电气化铁道的轨道应具有畅通导电的性能。
5.回流线连接轨道和牵引变电所中主变压器接地相之间的导线称为回流线,它也是电路的组成部分,其作用是将把轨道、地中的回路电流导入牵引变电所,如图1-2中7所示。
从图1-2可以看出,牵引供电回路是:牵引变电所→馈电线→接触网→电力机车→钢轨和大地→回流线→牵引变电所。
高铁电务专业术语一、信号系统信号系统是高铁电务中的重要组成部分,其作用是确保列车运行的安全和顺畅。
信号系统通过信号灯、信号机、信号区段等设备,向列车驾驶员传递运行指令和信息。
1. 信号灯:信号灯是信号系统中的核心设备之一,用来指示列车驾驶员停车、行进或减速。
信号灯通常分为红灯、黄灯和绿灯,分别代表停车、减速和行进。
2. 信号机:信号机是安装在铁路线路上的设备,用来向列车驾驶员显示运行指令和信息。
信号机通常分为进站信号机、出站信号机和调车信号机,用来指示列车进出站和进行调车操作。
3. 信号区段:信号区段是信号系统中的基本单元,用来划分铁路线路,确保列车之间的安全距离。
信号区段通常由信号点、轨道电路和继电器等设备组成。
二、电力系统电力系统是高铁电务中的另一个重要组成部分,其作用是为高铁供电,保证列车正常运行。
1. 牵引供电系统:牵引供电系统是为高铁提供电力的关键系统,通常采用交流电供电。
牵引供电系统包括接触网、接触线和供电设备等部分,能够将电能传送给高铁列车。
2. 变电所:变电所是电力系统中的重要设施,用来将电能从电网转换为适合高铁使用的电能。
变电所通常包括变压器、开关设备和保护装置等部分。
三、通信系统通信系统是高铁电务中的必备系统,用于实现列车之间、列车与指挥中心之间的信息交流和联络。
1. 无线通信:无线通信是高铁电务中的常用通信方式,包括无线电通信和卫星通信等。
无线通信可以实现列车之间的语音和数据传输,保证列车运行的安全和顺畅。
2. 电话通信:电话通信是高铁电务中的另一种通信方式,用于列车驾驶员和指挥中心之间的语音通话。
电话通信可以及时传递指令和信息,确保列车运行的准确性和安全性。
四、维护和检修维护和检修是高铁电务中的重要工作,其目的是保证设备的正常运行和及时修复故障,以确保高铁运行的安全和可靠。
1. 定期检修:定期检修是按照规定的时间间隔进行的维护和检修工作,包括设备的清洁、润滑和部件的更换等。
电气化铁道供电专业介绍电气化铁道供电专业是指负责铁路系统供电系统的设计、建设、运维和管理的专业领域。
随着现代交通运输的发展,电气化铁道供电系统已经成为现代铁路系统的重要组成部分。
本文将从供电系统的概念、发展历程、工作原理、设备组成以及未来发展趋势等方面对电气化铁道供电专业进行介绍。
一、供电系统的概念供电系统是指为铁道运输提供所需电能的系统。
在电气化铁道中,供电系统起到向列车提供动力能源的作用,它不仅能够为列车牵引提供电能,还能为列车的照明、空调、信号系统等提供所需电力。
二、发展历程电气化铁道供电系统的发展可以追溯到19世纪末20世纪初,最早的电气化铁道出现在欧洲。
随着科技的进步和电力技术的发展,电气化铁道供电系统逐渐成熟并得到广泛应用。
目前,电气化铁道已经在世界范围内得到广泛推广和应用。
三、工作原理电气化铁道供电系统主要由供电变电所、接触网、牵引变压器、牵引网和列车等组成。
供电变电所将高压交流电转换为适合列车牵引的直流电,然后通过接触网和牵引网将电能传输到列车上,最终由列车上的牵引装置将电能转化为机械能,驱动列车运行。
四、设备组成1. 供电变电所:负责将电力系统的高压交流电转换为适合铁路牵引的直流电,并进行分配和调度。
2. 接触网:安装在铁路线路上方,通过接触网与列车上的受电弓接触,将电能传输到列车。
3. 牵引变压器:将供电变电所输出的直流电转换为适合列车牵引的低压直流电。
4. 牵引网:安装在列车车顶,通过接触网与列车上的受电弓接触,将电能传输到列车上。
5. 列车:通过牵引装置将电能转化为机械能,驱动列车运行。
五、未来发展趋势随着科技的不断进步和社会的发展需求,电气化铁道供电系统也在不断创新和发展。
未来的电气化铁道供电系统将更加智能化、高效化和可持续化。
例如,采用新型的智能变电站和能量回馈技术,可以提高供电系统的稳定性和能源利用效率。
此外,还可以采用新能源技术,如太阳能和风能等,来提供更加清洁和环保的能源供应。