第二章__结构设计中常用的典型机构
- 格式:ppt
- 大小:3.06 MB
- 文档页数:127
机械原理基本概念总结第一章绪论1、机械原理又称为机械机器理论与机构学。
2、内容:机械原理是研究机构和机器的运动及动力特性,以及机械运动方案设计的一门基础技术学科。
3、机械原理:研究对象是机械,机械是机构和机器的总称。
4、机构的定义:把一个或几个构件的运动变换成其他构件所需的具有确定运动的构件系统。
常用的机构包括连杆机构、凸轮机构、齿轮机构、齿轮系、间歇运动机构。
5、机器的定义:由人为物体组成的具有确定机械运动的装置,完成一定的工作过程,以代替人类的劳动。
实例:缝纫机、洗衣机、各类机床、运输车辆。
6、机器与机构之间的关系——机器是由机构组成的。
例如图示单缸内燃机中就包含了三种常用机构:连杆机构、齿轮机构、凸轮机构。
7、机构的作用:一是用来将一种运动形式(如旋转)变换成另外一种运动形式,二是用来传递动力。
机器的作用:代替或减轻人类劳动,或将一种能量形式转换成另一种形式。
8、机器的类别:动力机器、工作机器、信息机器。
9、机器的组成:控制系统、信息测量和处理系统、动力部分、传动部分及执行机构系统。
10、机械设计的一般进程:机械产品的研制过程包括设计、制造、试验,定型等环节。
机械设计阶段的四个进程:产品规划-方案设计-详细设计-改进设计。
机械运动方案设计的主要内容:①机械运动简图的类型综合;②机械运动简图的尺度综合;3)机电一体化技术在机械运动方案设计中的应用。
11、机械原理的地位和作用:机械原理是研究机构和机械运动简图设计的一门重要技术基础课程,其任务主要是使学生掌握机构学和机械动力学的基本理论、基本知识和基本技能。
培养学生初步拟定机械系统运动方案、分析和设计基本机构的能力。
机械原理主要包括内容:①机构的组成原理和类型综合;②典型机构的设计;③机械系统的设计;④机械动力学。
第二章机构的组成原理和机构类型综合1、构件(link) :独立的运动单元;零件(part) :独立的制造单元。
2、运动副——两个构件直接接触组成的仍能产生某些相对运动的连接。
4.5.4 常见夹紧机构夹紧机构的种类很多,这里只简单介绍其中一些典型装置。
(1)斜楔夹紧机构图 4.52所示是一些斜楔夹紧实例。
斜楔夹紧机构是利用斜面的楔紧作用,将外力传递给工件,完成工件的夹紧。
当楔块的升角α在 6 0 ~10 0 时具有自锁性能。
但自锁的稳定性较差,主要用于夹紧机构中来改变力的方向。
( 2)螺旋夹紧机构螺旋夹紧机构结构简单、容易制造,而且螺旋相当于一个斜楔缠绕在圆柱体的表面形成的;由于其升角小( 3 0 左右)则螺旋机构具有较好的自锁性能,获得的夹紧力大,是应用最广泛的一种夹紧机构。
如图 4.53、4.56所示1)单个螺旋夹紧机构如图4.53(a)(b)中直接用螺钉或螺母夹紧工件的机构。
螺钉头部直接压在工件表面上,可能会损伤工件或带动工件旋转。
为克服这一缺点在其头部加装浮动压块,以增加接触面积,减少损伤。
如图4.54所示夹紧动作慢使这一机构的另一缺点。
通常采用一些快速结构,如快卸垫圈、快换螺母、快速机构等,如图 4.55所示。
2)螺旋压板夹紧机构图4.56是螺旋压板夹紧机构的几种典型结构,其在夹紧机构中广泛的使用。
3)钩形压板夹紧机构图4.57是螺旋钩形压板夹紧机构的一些结构,其特点是结构紧凑,使用灵活、方便。
(3)偏心夹紧机构它是利用偏心间直接或间接夹紧工件的机构。
偏心夹紧分圆偏心和曲线偏心两种,其特点是结构简单、操作方便、夹紧迅速,缺点是夹紧力小,夹紧行程短,用于振动小、切削力不大的场合。
图 4.58是几种典型的偏心夹紧机构的实例,图4.59是圆偏心轮的几种结构。
(4)联动夹紧机构是利用机构的组合完成单件或多件的多点、多向同时夹紧的机构。
它可以实现多件加工、减少辅助时间、提高生产效率、减轻工人的劳动强度等。
1)单件联动夹紧机构利用夹紧机构实现工件的多向、多点夹紧。
如图4.60所示机构实现二力垂直夹紧。
常用机构在汽车中的典型应用
1. 连杆机构
连杆机构广泛应用于汽车发动机中,将活塞的往复运动转换为曲柄的旋转运动,从而驱动曲轴转动。
连杆机构的精确设计和制造对发动机的高效运转至关重要。
2. 凸轮机构
凸轮机构在汽车中应用广泛,如控制进气门和排气门的开闭、操作油泵和燃油泵等。
凸轮轴通过凸轮推动摇臂或推杆,实现间歇运动,是汽车发动机的核心部件之一。
3. 差速器
差速器是汽车传动系统中的关键机构,用于使驱动车轮在转弯时能以不同的速度旋转,避免打滑。
差速器通过行星齿轮机构实现动力的合理分配,确保车辆的操控性和稳定性。
4. 变速器
变速器是汽车传动系统中的重要组成部分,通过行星齿轮机构实现不同的传动比,使发动机在不同工况下工作效率最佳。
手动变速器和自动变速器都广泛应用于汽车中。
5. 转向机构
转向机构是汽车转向系统的核心,通过蜗杆蜗轮机构将方向盘的旋转运动转换为车轮的横向运动,实现车辆的转向操作。
转向机构的设计
直接影响汽车的操控性能。
6. 制动机构
制动机构是汽车的重要安全系统,通过机械或液压等原理使车轮产生制动力。
盘式制动器和鼓式制动器是汽车上常见的制动机构,确保车辆能够安全、可靠地减速和停车。
以上是常用机构在汽车中的一些典型应用,它们协同工作,使汽车能够高效、安全地运行。
机构的设计和制造对汽车的性能和可靠性至关重要。
第一章绪论随着工业自动化程度的提高,工业现场的很多易燃、易爆等高危及重体力劳动场合必将由机器人所代替。
这一方面可以减轻工人的劳动强度,另一方面可以大大提高劳动生产率。
例如,目前在我国的许多中小型汽车生产以及轻工业生产中,往往冲压成型这一工序还需要人工上下料,既费时费力,又影响效率。
为此,我们把上下料机械手作为我们研究的课题。
工业机械手是工业物流自动化中上网重要装置之一,是当今世界新技术革命的一个重要标志。
工业机械手是典型的机电一体化产品。
工业机械手的产生和推广是社会生产和发展的需要,也是现代生产和科技发展的新技术产品。
工业机械手已经在工业生产、资源开发、社会服务、排险救灾以及军事技术等方面发挥着愈来愈大的应用。
工业机械手的应用和推广已经并将获得极大的效益。
例如在机械制造工业、汽车工业等生产中采用电焊、弧焊、喷漆等机械手,可以大大提高劳动生产率,保证产品质量,改善劳动条件。
又如在微电子、医药等生产部门,采用机械手操作,可以消除人对产品的污染、确保产品质量。
机械手可以在有毒、噪音、高温、易燃、易爆等危险有害的环境中代替人长期稳定的工作,从根本上解决了操作者的安全保障问题。
因而在这方面应用和推广机器人技术是十分迫切和必要的。
近代工业机械手的原型可以从本世纪40代算起。
当时适应核技术的发展需要开发了处理放射性材料的主从机械手。
50年代初美国提出了“通用重复操作机器人”的方案,59年研制出第一工业机械手原型。
由于历史条件和技术水平关系,在60年代机械手发展较慢。
进入70年代后,焊接、喷漆机械手相继在工业中应用和推广。
随着电脑技术、控制技术、人工智能的发展、机械手技术得到迅速发展,出现了更为先进的可配视觉、触觉的机器人所应用的机械手。
如美国Unimation公司PUMA系列工业机器人相关的机械手,即使由直流伺服驱动、关节式结构、多cpu微机控制、采用专用语言编程的技术先进的机械手。
到了80、90年代机器人及相关的机械手开始在工业上普及应用。
常用机构的课程设计一、课程目标知识目标:1. 让学生掌握常用机构(如杠杆、滑轮、齿轮、凸轮等)的基本概念和分类;2. 使学生了解各种机构在实际应用中的工作原理和功能;3. 帮助学生理解机构在生活中的重要作用,提高对机械设备的认识和兴趣。
技能目标:1. 培养学生运用所学知识分析和解决实际问题的能力;2. 提高学生动手制作和改进简单机构的能力;3. 培养学生团队合作和沟通协调的能力。
情感态度价值观目标:1. 培养学生对机械设备的热爱,激发创新意识和探索精神;2. 培养学生尊重劳动、珍惜劳动成果的价值观;3. 增强学生的环保意识,培养节能、减排的观念。
课程性质分析:本课程为初中阶段《科学》课程中的机械部分,旨在让学生了解和掌握常用机构的原理和应用,培养学生的动手实践能力和创新意识。
学生特点分析:初中阶段的学生好奇心强,喜欢动手操作,对机械方面的知识有一定的兴趣。
但可能对抽象的理论知识掌握不足,需要通过直观的实验和实例进行教学。
教学要求:1. 结合实际生活中的例子,让学生感受机构在生活中的应用;2. 注重理论与实践相结合,提高学生的动手实践能力;3. 通过小组合作,培养学生的团队协作和沟通能力;4. 鼓励学生提出问题和解决问题,培养创新思维。
二、教学内容1. 杠杆原理及应用:介绍杠杆的分类(一、二、三类)、平衡条件及其在日常生活中的应用实例。
教材章节:第二章第三节《杠杆》2. 滑轮和轮轴:讲解滑轮的分类(定滑轮、动滑轮)和轮轴的工作原理,分析其在实际机械中的应用。
教材章节:第二章第四节《滑轮和轮轴》3. 齿轮传动:阐述齿轮的分类(直齿、斜齿、锥齿等)和传动原理,探讨齿轮传动的优点和适用范围。
教材章节:第二章第五节《齿轮传动》4. 凸轮机构:介绍凸轮的分类(盘形凸轮、移动凸轮等)和运动规律,分析凸轮机构在实际中的应用。
教材章节:第二章第六节《凸轮机构》5. 其他常用机构:简要介绍棘轮、曲柄、摇杆等机构的原理和应用。