风力发电机组的变桨距复合控制
- 格式:pdf
- 大小:285.64 KB
- 文档页数:4
变桨距调节的工作原理首先,风速测量是变桨距调节的基础。
在风力发电机组中,通常会安装一个或多个风速传感器,用于实时测量周围的风速。
这些风速传感器可以采用多种测量原理,如超声波、热线、风口压力差等。
测得的风速数据会传输给风力发电机组的主控制系统,供桨距控制使用。
桨距控制是变桨距调节的核心部分。
主控制系统会根据风速传感器测得的风速数据,通过对桨距的调节,控制叶片在不同风速下的角度,进而控制发电机的输出功率。
当风速较低时,桨距会被调整为较大的角度,以便最大程度地捕捉到风能;当风速较高时,桨距会被调整为较小的角度,以减小叶片的阻力,保护风力发电机组的安全运行。
桨距的调节通常是通过使用液压或电动机驱动的调节机构来实现的。
在液压调节系统中,主控制系统会根据风速数据发送信号给液压系统,液压系统会通过液压缸或液压马达等执行机构,调节叶片的角度。
而在电动机驱动的调节系统中,主控制系统会直接控制电动机的转速,电动机则通过传动装置来驱动叶片调节机构,实现桨距的调节。
无论采用何种调节机构,都需要通过精确的控制算法来准确地调节桨距角度,以确保发电机组的高效运行。
传动系统是实现桨距调节的关键。
桨距的调节需要通过传动装置将控制力传递给叶片。
传动系统通常由多个齿轮、轴承和传动带等组成,它的设计和制造需要满足高强度、高稳定性和低噪音等要求。
传动系统的稳定性对于保证叶片的桨距调节准确性至关重要,同时还需要耐受风力的冲击和振动等恶劣环境下的工作条件。
总之,变桨距调节通过风速测量、桨距控制和传动系统三个方面的工作原理,实现了风力发电机组叶片角度的自动调节,从而优化了发电机的发电效率。
这种技术的应用不仅提高了风力发电系统的能量利用率,也增强了其在可再生能源领域的竞争力,对于可持续能源的发展具有重要意义。
双馈风力发电机组变桨距控制及低电压穿越技术要点郑超(湖北能源集团新能源发展有限公司 湖北利川 445400)摘要: 由于近年来我国的经济发展速度非常迅速,随之而来的能源问题也变得越来越重要,作为当今人类社会生存和发展当中所存在的主要问题,能源缺乏已经成为了人们所亟待解决的一个重要发展缺陷,通过开发和利用可再生资源,可以在一定程度上缓解人类的能源压力,而开发和利用可再生资源也是当前世界各国开展可持续发展战略的重要方式。
风力发电作为可再生资源当中的一种,由于其自身清洁能源的特点,不仅能够节约不可再生资源,而且也可以降低对周围环境的污染,风力发电系统的效率也非常高,而且功率速度也非常大,通过对双馈风力发电机组控制技术以及风能开发的进一步研究,可以推动我国后续的能源发展。
关键词: 双馈风力发电机组 变桨距控制 低电压穿越 技术要点中图分类号: TM315文献标识码: A文章编号: 1672-3791(2023)10-0043-04Key Points of Variable Pitch Control and Low Voltage Ridethrough of Doubly-fed Induction GeneratorsZHENG Chao(Hubei Energy Group New Energy Development Co., Ltd., Lichuan, Hubei Province, 445400 China)Abstract: Since China's economic development speed has been very fast in recent years, and consequent energy problems have become more and more important. As the main problem in survival and development of human so‐ciety today, energy shortage has become an important development defect that needs to be solved urgently by people. Through the development and utilization of renewable resources, the energy pressure of human can be alle‐viated to a certain extent, and the development and utilization of renewable resources is also an important way for countries around the world to carry out sustainable development strategies. As a kind of renewable resources, wind power can not only save non-renewable resources, but also reduce the pollution to the surrounding environment because of its own characteristics of clean energy. The efficiency of the wind power generation system is very high, and power speed is also very fast. Through further research on the control technology for doubly-fed induction generators and the development of wind energy, China's subsequent energy development can be promoted.Key Words: Doubly-fed induction generator; Variable pitch control; Low voltage ride through; Technical points由于风能自身的随机性和突发性,所以在针对风能的开发利用过程中,需要加强对于发电机组的重视程度,因为风能作为一种不确定因素能源,对于风力发电机组在执行变桨距的控制过程中会造成一定的不良影响,所以通过加强对于变桨距控制器的深入了解,可以进一步保证整个风力发电系统稳定输出,并且保持风力发电的正常运行。
风力发电机组变桨距控制系统的研究风力发电机组变桨距控制系统的研究近年来,随着环境问题的加剧和清洁能源的重要性逐渐凸显,风力发电作为一种潜在的可再生能源广泛应用。
风力发电机组是将风能转化为电能的关键设备,而变桨距控制系统则是提高风力发电效率的重要技术手段之一。
本文将对风力发电机组变桨距控制系统的研究进行探讨,从控制系统的结构、控制策略以及实际运行效果等方面进行分析。
1. 控制系统的结构风力发电机组的变桨距控制系统主要由传感器、执行器、控制器和信号传输部分组成。
传感器用于感知风力、转速以及叶片位置等信息,将这些信息传递给控制器。
控制器根据传感器获取的信息,通过控制策略对执行器发出信号,调节叶片角度,从而实现对风力发电机组的变桨距控制。
2. 控制策略目前,常用的控制策略主要有定角度控制和最大功率控制两种。
定角度控制是通过固定叶片角度来控制风力发电机组的输出功率,通常适用于恒定风速下的风机运行。
而最大功率控制则是根据风速大小实时调整叶片角度,以实现风力发电机组在不同风速下的最佳输出功率。
最大功率控制策略可以提高风力发电机组的效率,适应不同风速环境,并降低对外部条件的敏感性。
3. 实际运行效果根据实际应用情况和研究成果分析,风力发电机组的变桨距控制系统在提高发电效率、保护设备安全方面取得了显著效果。
通过使用最大功率控制策略,风力发电机组可以根据风速变化实时调整叶片角度,充分利用风能,并在恶劣天气条件下及时响应,减轻设备负荷。
同时,变桨距控制系统的应用也大大降低了由于风电机组运行时桨叶受损引起的事故风险,增加了设备的可靠性和安全性。
4. 研究展望尽管风力发电机组变桨距控制系统已取得一定的研究进展,但仍存在一些挑战和待解决的问题。
首先,尽管最大功率控制策略可以提高发电效率,但在不同风速区间的切换问题仍需要进一步优化。
其次,传感器的稳定性和可靠性也是需要关注的焦点,特别是在恶劣环境下的应用。
另外,随着风力发电技术的发展,新型的控制策略和技术工具也需要不断研发和应用,以进一步提高风力发电机组的性能和可靠性。
2.风力发电机组控制原理—变桨距控制对象特点a)气动非线性变桨距控制实质是通过改变攻角来控制风力机的驱动转矩,风能利用系数曲线对桨距角和叶尖速比的变化规律具有很强的非线性。
b)工况频繁切换由于自然风速大小随机变化,各风速段机组控制目标不同,导致变速风力发电机组随风速在各个运行工况之间频繁切换。
c)多扰动因素影响风力发电机组性能变化的不确定干扰因素很多,风速的变化(尤其是阵风)对风力发电机组的功率影响最大。
d)变桨距执行系统的大惯性与非线性常用的液压执行机构和电机执行机构,驱动时呈现出非线性的性质。
随着风力机容量的不断增大,变桨距执行机构自身的原因引入的惯量也越来越大,使动态性能变差,表现出了大惯性对象的特点。
2.风力发电机组控制原理—变桨距控制系统目前并网型风力发电机组的变桨距控制系统根据机组并网前、后的工况主要包含两种工作方式:并网前转速控制和并网后功率控制。
变桨距风力发电机组变桨控制系统图2.2.3 风电场接入电网的有关规定内容1.技术要求规范性引用文件GB/T 12325-2008 电能质量供电电压偏差GB 12326-2008 电能质量电压波动和闪变GB/T 14549-1993 电能质量公用电网谐波GB/T 15945-2008 电能质量电力系统频率偏差GB/T 15543-2008 电能质量三相电压不平衡DL 755-2001 电力系统安全稳定导则SD 325-1989 电力系统电压和无功技术导则GB/T 20320-2006 风力发电机组电能质量测量和评估方法DL/T 1040-2007 电网运行准则3 风电场接入电网的有关规定内容2.部分与具体技术要求1)有功功率2)无功功率3)电压偏差与低电压穿越4)运行频率5)电压波动6)通信与信号12)无功功率风电场应具备协调控制机组和无功补偿装置的能力。
应保证无功功率有一定的调节容量,该容量为风电场额定运行时功率因数0.98(超前)~0.98(滞后)所确定的无功功率容量范围,并实现在其中的动态连续调节。
变桨距机组的控制技术本文对变桨距风力发电机组控制系统的特点以及控制策略分别进行详细介绍。
一、变桨距机组控制系统的特点从空气动力学角度考虑,当风速过高时,只有通过调整桨叶节距,改变气流对叶片的攻角,从而改变风力发电机组获得的空气动力转矩,才能使功率输出保持稳定。
同时,风力机在启动过程中也需要通过改变节距来获得足够的启动转矩。
采用变桨距机构的风力发电机组可使桨叶和整机的受力状况大为改善,这对大型风力发电机组的总体设计十分有利。
目前已有多种型号的变桨距600kW级风力发电机组进入市场。
其中较为成功的有丹麦VESTAS的V39/V42-600kW机组和美国Zand的Z 40-600kW机组。
从今后的发展趋势看,在大型风力发电机组中将会普遍采用变桨距技术。
变桨距风力发电机组又分为主动变桨距控制与被动变桨距控制。
主动变桨距控制可以在大于额定风速时限制功率,这种控制的实现是通过将每个叶片的部分或全部相对于叶片轴方向进行旋转以减小攻角,同时也减小了升力系数。
被动变桨距控制是一种令人关注的可替代主动变桨距限制功率的方式,其思路是将叶片或叶片的轮毂设计成在叶片载荷的作用下扭转,以便在高风速下获得所需的节距角。
但因为所必需的叶片随风速变换而扭转的变化量一般并不与叶片相应的载荷变化相匹配,所以很难实现。
对于独立运行的风力发电机组,发电量的最大化不是主要目标,被动变桨距控制方案有时候被采用,但是这一概念在并网运行的风力发电机组中尚未应用。
变桨距控制主要是通过改变翼型迎角变化,从而使翼型升力变化来进行调节的。
变桨距控制多用于大型风力发电机组。
变桨距控制是通过叶片和轮毂之间的轴承机构转动叶片减小迎角,由此来减小翼型的升力,以达到减小作用在风轮叶片上的扭矩和功率的目的。
变桨距调节时叶片迎角可相对气流连续地变化,以便得到风轮功率输出达到希望的范围。
在90°迎角时是叶片的顺桨位置。
在风力发电机组正常运行时,叶片向小迎角方向变化从而限制功率,一般变桨距范围为90°~100°。
2023-11-10CATALOGUE 目录•风力发电机组简介•变桨距控制策略的基本理论•变桨距控制策略的实现方法•变桨距控制策略的优化方法•变桨距控制策略在实际中的应用及案例分析01风力发电机组简介风力发电机组的基本构造风力发电机组的核心部件,由叶片和轮毂组成,用于捕捉风能并将其转化为机械能。
风轮齿轮箱发电机塔筒连接风轮和发电机的重要部件,将风轮的转速提升到发电机所需的速度。
将机械能转化为电能的重要部件,由定子和转子组成。
支撑风轮和发电机的高耸结构,通常由钢铁或混凝土制成。
风力发电机组通过旋转的风轮捕捉风的动能,并将其转化为机械能。
风的捕捉机械能的转化电能的产生机械能通过齿轮箱的传递,将转速提升到发电机所需的速度。
发电机将机械能转化为电能,通过电缆输送到电网。
03风力发电机组的运行原理0201按风向分类水平轴风力发电机组和垂直轴风力发电机组。
水平轴风力发电机组的风轮轴与地面平行,而垂直轴风力发电机组的风轮轴与地面垂直。
风力发电机组的分类按容量分类小型、中型和大型风力发电机组。
小型风力发电机组的功率通常在几百瓦到几千瓦之间,中型风力发电机组的功率在几兆瓦到几十兆瓦之间,而大型风力发电机组的功率通常在几百兆瓦到几兆瓦之间。
按运行原理分类恒速风力发电机组和变速风力发电机组。
恒速风力发电机组的风轮转速保持不变,而变速风力发电机组的风轮转速可以根据风速进行调整。
02变桨距控制策略的基本理论变桨距控制是一种用于调节风力发电机组功率输出的技术,通过改变桨叶的桨距角实现对风能捕获的优化控制。
在风速较高时,通过减小桨距角增加风能捕获,以提升发电机组的功率输出;在风速较低时,通过增大桨距角减小风能捕获,以避免过度捕获风能导致发电机组振动和疲劳损坏。
变桨距控制的概念和意义变桨距控制系统的基本结构变桨距控制系统主要由传感器、控制器和执行器组成。
传感器负责监测风速、风向和发电机组运行状态;控制器根据传感器信号和预设的控制逻辑对执行器进行指令输出;执行器根据指令调整桨叶的桨距角。
风力发电机变桨距控制技术研究随着全球对可再生能源的需求不断增加,风力发电作为一种清洁、可持续的能源形式,逐渐受到人们的关注。
而风力发电机的变桨距控制技术的研究与应用,对于提高风力发电机的效率和稳定性具有重要意义。
风力发电机的变桨距控制技术是指根据风力发电机所接收的风速信号,通过控制变桨距来调整叶片的角度,以实现最佳功率捕获。
变桨距控制技术可以根据实时风速变化,调整叶片的角度,使其在不同风速下都能运行在最佳工作状态,从而提高风力发电机的发电效率。
风力发电机的变桨距控制技术主要包括传感器、控制器和执行器三个部分。
传感器用于感知风速信号并将其转化为电信号,控制器通过对风速信号的处理和分析,得出最佳的变桨距控制策略,最后通过执行器来实现叶片角度的调整。
在风力发电机的变桨距控制技术研究中,需考虑以下几个方面。
首先,需选择合适的传感器来准确感知风速信号,以确保控制器的准确性。
其次,需要在控制器中设计合理的算法,以根据实时风速变化来调整叶片的角度。
同时,还需考虑到不同风速下的功率输出特性和风力发电机的安全性能,以确保变桨距控制技术的可靠性和稳定性。
此外,风力发电机的变桨距控制技术还面临一些挑战。
例如,风速信号的准确性和稳定性对于变桨距控制的精度和效果至关重要。
此外,变桨距控制技术的实施成本也是一个重要的考虑因素。
因此,研究人员需要不断改进传感器和控制器的技术,并降低成本,以实现风力发电机变桨距控制技术的普及和应用。
综上所述,风力发电机的变桨距控制技术是提高风力发电机效率和稳定性的重要手段。
通过合理选择传感器、设计优化的控制算法,并考虑到功率输出特性和安全性能,可以实现风力发电机在不同风速下的最佳工作状态。
未来,随着技术的进一步发展和成本的降低,风力发电机变桨距控制技术有望在风力发电行业中得到更广泛的应用。
《风力发电变桨距自抗扰控制技术研究及其参数整定》篇一一、引言随着可再生能源的持续发展和全球环保意识的增强,风力发电已成为当前最受关注的清洁能源之一。
风力发电系统中的变桨距控制技术,对于提高风电机组的运行效率和稳定性,具有至关重要的作用。
本文将深入探讨风力发电变桨距自抗扰控制技术的相关研究,并对其参数整定进行详细分析。
二、风力发电变桨距控制技术概述风力发电的变桨距控制技术是通过调整风电机组叶片的桨距角,以实现对风能的捕获和输出功率的控制。
这种控制方式能够在风速变化时,保持发电机组的稳定运行,同时避免过载和机械应力对机组造成的损害。
自抗扰控制技术是一种先进的控制策略,其核心思想是通过对系统内外扰动的实时观测和补偿,实现系统的稳定控制。
三、自抗扰控制技术在变桨距系统中的应用自抗扰控制技术在风力发电变桨距系统中的应用,可以有效提高系统的抗干扰能力和动态响应性能。
通过实时观测和补偿系统内外扰动,自抗扰控制技术能够使变桨距系统在风速变化、负载扰动等情况下,保持稳定的运行状态。
此外,自抗扰控制技术还能有效抑制系统过载和机械应力,延长风电机组的使用寿命。
四、参数整定在自抗扰控制技术中的应用参数整定是自抗扰控制技术中至关重要的环节。
通过对系统参数的合理整定,可以使自抗扰控制器更好地适应风力发电变桨距系统的运行环境。
参数整定的主要目标是找到一组最优的控制器参数,使系统在各种运行条件下都能保持良好的动态性能和稳定性。
这通常需要通过对系统进行大量的实验和仿真,分析不同参数对系统性能的影响,从而找到最优的参数组合。
五、风力发电变桨距自抗扰控制技术的参数整定方法针对风力发电变桨距自抗扰控制技术的参数整定,可以采用以下几种方法:1. 试验法:通过在真实的风场环境下进行试验,观察系统在不同参数下的运行状态和性能指标,从而找到最优的参数组合。
这种方法虽然直观有效,但需要耗费大量的时间和资源。
2. 仿真法:利用仿真软件对风力发电变桨距系统进行建模和仿真,通过改变控制器参数,观察系统性能的变化,从而找到最优的参数组合。
风力发电系统变桨距的控制风力发电是一种可再生的清洁能源,越来越受到世界各地的重视和广泛应用。
在风力发电系统中,变桨距的控制是实现高效能量转换和保证系统安全运行的关键因素之一。
变桨距是指风力发电机组中的桨叶与风向之间的角度,也是调节风力发电机组输出功率的重要手段。
通过调整变桨距,可以使桨叶在不同风速下获得最佳的工作状态,从而实现最高的发电效率。
同时,变桨距的控制还可以根据风速变化,及时调整桨叶的角度,以避免过大的风力对系统造成损害。
在风力发电系统中,变桨距的控制主要通过控制系统实现。
控制系统根据风速的变化,通过传感器采集实时的风速信息,并将其与预设的风速范围进行比较。
当风速超过预设范围时,控制系统会自动调整桨叶的角度,以减小桨叶受力面积,降低风力对系统的影响。
相反,当风速过低时,控制系统会使桨叶保持较大的角度,以保证风力发电机组能够正常工作。
为了提高变桨距的控制精度和响应速度,现代风力发电系统通常采用先进的控制算法和高性能的控制器。
其中,模糊控制、PID控制和最优控制是常用的方法。
模糊控制基于经验规则,通过模糊逻辑和模糊推理来实现对变桨距的精确控制。
PID控制则根据当前误差、误差变化率和误差累积量来调整控制器的输出,以实现系统的稳定控制。
最优控制则通过数学模型和优化算法,寻找最佳的控制策略,以实现系统性能的最优化。
总之,风力发电系统中变桨距的控制对于提高发电效率和保证系统安全运行至关重要。
通过合理选择控制方法和优化控制算法,可以实现变桨距的精确控制,并最大限度地发挥风力发电系统的能量转换能力。
未来,随着科技的不断进步和控制技术的不断创新,风力发电系统的变桨距控制将更加智能化和高效化,为可持续发展提供更多清洁能源。
变浆距风力发电机组的控制系统【摘要】风能作为一种可再生能源受到全球越来越多的关注,本文就变桨距风力发电机组的控制系统进行了分析,发现采用新型控制系统后,保持了发电机功率的稳定输出,减少了风机不稳定功率对电网的影响。
【关键词】额定功率;变距控制;速度控制;功率控制21世纪,风力发电机组的可靠性已经不是问题。
与定桨距风力发电机组相比,变桨距风力发电机组具有在额定功率点以上输出功率平稳的特点。
所以变桨距机组适合于额定风速以上风速较多的地区,这样发电量的提高比较明显。
1变桨距风力发电机组的控制系统新型变桨距控制系统框图如图1所示。
在发电机并入电网前,发电机转速由速度控制器A根据发电机转速反馈信号直接控制;发电机并入电网后,速度控制器B与功率控制器起作用。
功率控制器的任务主要是根据发电机转速给出相应的功率曲线,调整发电机转差率,并确定速度控制器B的速度给定。
2变距控制变距控制系统是一个随动系统,其控制过程如图2所示。
变桨距控制器是一个非线性比例控制器,它可以补偿比例阀的死带和极限。
变距系统的执行机构是液压系统,节距控制器的输出信号经D/A转换后变成电压信号控制比例阀,驱动液压缸活塞,推动变桨距机构,使桨叶节距角变化。
活塞的位移反馈信号由位移传感器测量,经转换后输入比较器。
3速度控制变桨距风力发电机组的速度控制包括两个部分,即:速度控制A和B。
3.1速度控制A(发电机脱网状态)转速控制系统A在风力发电机组进入待机状态或从待机状态重新起动时投入工作,在这些过程中通过对节距角的控制,转速以一定的变化率上升。
控制器也用于在同步转速时的控制。
当发电机转速在同步转速±10r/min内持续1s发电机将切入电网。
发电机转速通过主轴上的感应传感器测量,每个周期信号被送到微处理器作进一步的处理,以产生新的控制信号。
3.2速度控制B(发电机并网状态)发电机并入电网后,速度控制系统B起作用。
速度控制系统B受发电机转速和风速的双重控制。
《风力发电变桨距自抗扰控制技术研究及其参数整定》篇一一、引言随着全球能源结构的转型,风力发电作为清洁、可再生的能源形式,越来越受到人们的重视。
在风力发电系统中,变桨距控制技术是提高风电机组性能和可靠性的关键技术之一。
本文将研究风力发电变桨距自抗扰控制技术,探讨其参数整定方法,以提高风电机组的发电效率和稳定性。
二、风力发电变桨距控制技术概述风力发电变桨距控制技术是通过调整风电机组叶片的桨距角,实现对风能的捕获和输出功率的控制。
在风速变化较大的情况下,通过调整桨距角,可以保证风电机组的稳定运行,同时避免过载和机械损伤。
自抗扰控制技术是一种先进的控制方法,具有较好的鲁棒性和抗干扰能力,适用于风力发电变桨距控制。
三、自抗扰控制技术研究自抗扰控制技术通过引入扩张状态观测器和非线性状态误差反馈,实现对系统状态的实时观测和误差的快速补偿。
在风力发电变桨距控制中,自抗扰控制技术可以根据风速和发电机输出功率的变化,实时调整桨距角,使风电机组保持最优的工作状态。
同时,自抗扰控制技术还可以有效抑制系统中的扰动和噪声,提高系统的稳定性和可靠性。
四、参数整定方法研究参数整定是自抗扰控制技术中的重要环节,直接影响着控制效果和系统性能。
针对风力发电变桨距自抗扰控制系统,本文提出了一种基于遗传算法的参数整定方法。
该方法通过优化控制器的参数,使系统在各种工况下都能保持较好的性能。
具体步骤包括:1. 建立风力发电变桨距自抗扰控制系统的数学模型;2. 设计遗传算法的适应度函数,以反映系统性能的优劣;3. 通过遗传算法对控制器参数进行优化,得到最优的参数组合;4. 将优化后的参数应用到实际系统中,验证其有效性。
五、实验结果与分析为了验证自抗扰控制在风力发电变桨距控制中的有效性及参数整定方法的准确性,本文进行了仿真实验和实际系统实验。
实验结果表明,采用自抗扰控制的变桨距系统在风速变化的情况下能够快速调整桨距角,保持发电机输出功率的稳定。