第五讲 变桨距风力发电机组
- 格式:pdf
- 大小:492.42 KB
- 文档页数:56
风力发电机组变桨距控制系统的研究风力发电机组变桨距控制系统的研究近年来,随着环境问题的加剧和清洁能源的重要性逐渐凸显,风力发电作为一种潜在的可再生能源广泛应用。
风力发电机组是将风能转化为电能的关键设备,而变桨距控制系统则是提高风力发电效率的重要技术手段之一。
本文将对风力发电机组变桨距控制系统的研究进行探讨,从控制系统的结构、控制策略以及实际运行效果等方面进行分析。
1. 控制系统的结构风力发电机组的变桨距控制系统主要由传感器、执行器、控制器和信号传输部分组成。
传感器用于感知风力、转速以及叶片位置等信息,将这些信息传递给控制器。
控制器根据传感器获取的信息,通过控制策略对执行器发出信号,调节叶片角度,从而实现对风力发电机组的变桨距控制。
2. 控制策略目前,常用的控制策略主要有定角度控制和最大功率控制两种。
定角度控制是通过固定叶片角度来控制风力发电机组的输出功率,通常适用于恒定风速下的风机运行。
而最大功率控制则是根据风速大小实时调整叶片角度,以实现风力发电机组在不同风速下的最佳输出功率。
最大功率控制策略可以提高风力发电机组的效率,适应不同风速环境,并降低对外部条件的敏感性。
3. 实际运行效果根据实际应用情况和研究成果分析,风力发电机组的变桨距控制系统在提高发电效率、保护设备安全方面取得了显著效果。
通过使用最大功率控制策略,风力发电机组可以根据风速变化实时调整叶片角度,充分利用风能,并在恶劣天气条件下及时响应,减轻设备负荷。
同时,变桨距控制系统的应用也大大降低了由于风电机组运行时桨叶受损引起的事故风险,增加了设备的可靠性和安全性。
4. 研究展望尽管风力发电机组变桨距控制系统已取得一定的研究进展,但仍存在一些挑战和待解决的问题。
首先,尽管最大功率控制策略可以提高发电效率,但在不同风速区间的切换问题仍需要进一步优化。
其次,传感器的稳定性和可靠性也是需要关注的焦点,特别是在恶劣环境下的应用。
另外,随着风力发电技术的发展,新型的控制策略和技术工具也需要不断研发和应用,以进一步提高风力发电机组的性能和可靠性。
变桨距风力发电机组变桨与功率控制策略摘要:风力发电系统极容易受到风速、风险及空气密度等影响,为有效的发挥出风能资源获得持续稳定的风力发电,保障风电机组能够正常运行,本文将以分析风能资源特点为出发点,包括风能资源蕴含量大、分布较广、风能能力密度低、对环境污染较小等,主要探究风力发电机组变桨与功率的控制策略,并分析变桨距风电机组桨距调节过程,以此为建设风力发电项目、检修人员提供相应帮助和建议。
关键词:变桨距;风力发电机组;功率控制根据我国电力高发展要求,为实现2060双碳目标,需要大力发展可持续、无污染、环保的新型能源来替代现有的化石能源,其中风力能源作为新型能源的主力军,为促进电力系统发展发挥积极作用。
近几年随着风力发电技术在迅猛发展下,发电量和装机容量不断增加,然而由于风力发电主要特点是极容易受到天气影响变化,若不及时对风能资源加以利用就会消失等。
所以,需利用风电机组叶尖速比、转速以及恒功率等进行优化控制,促使能够在变化莫测的风况下安全运行,并充分发挥利用风能资源。
1.风能资源特点风能和其他资源相比之下存在以下特点:第一,蕴含量大、分布广泛。
根据相关数据资料显示全球风能资源约在1300KW3,可利用风能预估计为200亿KW3,是水能资源的10倍,每年发电量高达38KWh。
在我国风能资源相对丰富,经济开发量预估在10亿KW以上[1]。
第二,风能属于可再生资源。
与石油、煤炭等资源相比风能具有可再生特点,风能主要是太阳能引起的一种过程性能源,能够循环使用的同时不断补充,但风能无法储存,若不能及时将风能进行利用则会消失。
第三,风能对环境污染影响较小。
在利用风能过程中不会造成污染排放,但是在风力建设项目过程中会对植被形成破坏,在风力项目建设结束后可以通过补救措施将植被进行修复,弥补建设项目过程中造成的影响;风机叶片旋转光影会对鸟类歇息有一定影响。
第四,风能能量密度低,不同地区差异大、稳定性差;由于风能资源本身属于空气流动,且空气密度小,使得风能能量密度低;尤其是在部分地区受到地理位置影响,各个地区或统一地区在不同位置方面风功率能量密度差异明显;同时风能也会随着季节、温度、湿度引起风向、密度等变化。
2.风力发电机组控制原理—变桨距控制对象特点a)气动非线性变桨距控制实质是通过改变攻角来控制风力机的驱动转矩,风能利用系数曲线对桨距角和叶尖速比的变化规律具有很强的非线性。
b)工况频繁切换由于自然风速大小随机变化,各风速段机组控制目标不同,导致变速风力发电机组随风速在各个运行工况之间频繁切换。
c)多扰动因素影响风力发电机组性能变化的不确定干扰因素很多,风速的变化(尤其是阵风)对风力发电机组的功率影响最大。
d)变桨距执行系统的大惯性与非线性常用的液压执行机构和电机执行机构,驱动时呈现出非线性的性质。
随着风力机容量的不断增大,变桨距执行机构自身的原因引入的惯量也越来越大,使动态性能变差,表现出了大惯性对象的特点。
2.风力发电机组控制原理—变桨距控制系统目前并网型风力发电机组的变桨距控制系统根据机组并网前、后的工况主要包含两种工作方式:并网前转速控制和并网后功率控制。
变桨距风力发电机组变桨控制系统图2.2.3 风电场接入电网的有关规定内容1.技术要求规范性引用文件GB/T 12325-2008 电能质量供电电压偏差GB 12326-2008 电能质量电压波动和闪变GB/T 14549-1993 电能质量公用电网谐波GB/T 15945-2008 电能质量电力系统频率偏差GB/T 15543-2008 电能质量三相电压不平衡DL 755-2001 电力系统安全稳定导则SD 325-1989 电力系统电压和无功技术导则GB/T 20320-2006 风力发电机组电能质量测量和评估方法DL/T 1040-2007 电网运行准则3 风电场接入电网的有关规定内容2.部分与具体技术要求1)有功功率2)无功功率3)电压偏差与低电压穿越4)运行频率5)电压波动6)通信与信号12)无功功率风电场应具备协调控制机组和无功补偿装置的能力。
应保证无功功率有一定的调节容量,该容量为风电场额定运行时功率因数0.98(超前)~0.98(滞后)所确定的无功功率容量范围,并实现在其中的动态连续调节。
永磁直驱式变桨距风力发电机组的建模与控制1 引言永磁直驱式风力发电机组是我国风力发电机组的主流机型之一。
永磁风力发电机通过增加极对数,降低发电机转速,从而能够与风力机直接相连,取消了增速齿轮箱。
由于没有传统风力发电系统故障率很高的齿轮箱,直驱式风力发电系统稳定性和效率大大提高,且有效地抑制了噪声,具有比较广泛的市场应用前景。
图1 风力发电系统结构2 永磁直驱式并网型变桨距风力发电机组的结构永磁同步发电机的同步速较低,输出电压较低。
考虑到电网电压较高,电网与电机之间的能量变换装置,必须要有较大幅度的升压能力。
考虑到变压器体积较大,实际系统中,发电机组运送到塔顶成本较高,所以本文采取方法是直流母线侧先升压再进行并网逆变。
本文采用的机组方案如图1所示。
图2 桨距调节控制系统3 风力机的建模风力机建模一般只考虑其风能利用系数而忽略风力机的空气动力学过程。
本文即采用风力机的风能利用系数来建立其仿真模型。
图3 机侧电流内环控制系统风力机仿真模型的建立主要基于以下三个方程:(1)这里Cp-λ曲线采用文献[1]中给出的公式:(2)其中: (3)采用c1=,c2=116,c3=,c4=5,c5=21,c6=。
考虑到是发电机,建模时转矩要取反。
图4 网侧逆变器电流内环控制系统4 控制系统的设计桨距调节控制系统的设计当系统存在显著的不确定因素时,设计高精度的控制系统,必须研究控制系统在不确定情况下的鲁棒性。
PID控制器能够在很宽的运行条件下具有比较好的鲁棒性,并且形式简单,易于操作。
这里采用PID控制器来进行机组在高风速区的桨距调节。
变桨距风力发电系统在低风速区进行最大风能跟踪,节距角为零,即不进行变桨距调节。
图5 网侧逆变器电压外环控制系统风力机和发电机不经过增速齿轮箱而直接联接,传动系统的动态方程如下[4]:(4)式中,J是风轮转动惯量;ω是风轮转动的角速度;B是发电机的摩擦系数;Ta是风轮的气动转矩;Te是发动机获得的电磁转矩。
2023-11-09contents •风力发电机组概述•变桨矩系统概述•变桨矩系统的主要部件•变桨矩系统的控制策略•变桨矩系统的优化与改进建议•变桨矩系统的应用与发展趋势目录01风力发电机组概述风力发电机组是一种将风能转化为电能的系统,由风轮、发电机、塔筒等主要部件组成。
定义具有可再生、清洁、无污染等特点,是绿色能源领域的重要组成部分。
特点风力发电机组的定义与特点风轮叶片在风的驱动下旋转,将风能转化为机械能。
风的捕获机械能的转化电能的输出风轮通过主轴将机械能传递到齿轮箱,再由齿轮箱将机械能转化为电能。
发电机将机械能转化为电能,通过电缆输送到电网。
03风力发电机组的工作原理0201分类根据风力发电机组容量、功率等级、转速等因素,可以分为恒速型、变速型等不同类型。
组成风力发电机组主要由风轮、发电机、塔筒、齿轮箱、控制系统等组成。
风力发电机组的分类与组成02变桨矩系统概述变桨矩系统定义变桨矩系统是一种用于控制风力发电机组功率输出的装置,它可以根据风速和发电机组运行状态,改变桨叶的桨距角,从而控制风能捕获量。
变桨矩系统特点变桨矩系统具有高精度、高可靠性、高效能等特点,它能够实现快速响应、平稳控制,确保风力发电机组在复杂风况下的稳定运行。
变桨矩系统的定义与特点变桨矩系统的作用与重要性变桨矩系统的作用变桨矩系统的主要作用是调节发电机组的功率输出,以适应不同的风速和负荷条件。
它可以通过改变桨叶的桨距角,控制风能捕获量,从而降低载荷、提高发电效率。
变桨矩系统的重要性由于风力发电机组面临的风况复杂多变,因此变桨矩系统的应用对于确保发电机组的稳定运行至关重要。
它不仅可以提高风能利用率,降低载荷,还可以延长发电机组的使用寿命。
变桨矩系统的组成变桨矩系统通常由变桨电机、减速箱、轴承、传感器等组成。
其中,变桨电机是驱动桨叶变桨的核心部件,减速箱用于将电机的转速降低到适合桨叶旋转的速度,轴承用于支撑桨叶并确保其灵活旋转,传感器则用于监测变桨系统的运行状态。
2023-11-10CATALOGUE 目录•风力发电机组简介•变桨距控制策略的基本理论•变桨距控制策略的实现方法•变桨距控制策略的优化方法•变桨距控制策略在实际中的应用及案例分析01风力发电机组简介风力发电机组的基本构造风力发电机组的核心部件,由叶片和轮毂组成,用于捕捉风能并将其转化为机械能。
风轮齿轮箱发电机塔筒连接风轮和发电机的重要部件,将风轮的转速提升到发电机所需的速度。
将机械能转化为电能的重要部件,由定子和转子组成。
支撑风轮和发电机的高耸结构,通常由钢铁或混凝土制成。
风力发电机组通过旋转的风轮捕捉风的动能,并将其转化为机械能。
风的捕捉机械能的转化电能的产生机械能通过齿轮箱的传递,将转速提升到发电机所需的速度。
发电机将机械能转化为电能,通过电缆输送到电网。
03风力发电机组的运行原理0201按风向分类水平轴风力发电机组和垂直轴风力发电机组。
水平轴风力发电机组的风轮轴与地面平行,而垂直轴风力发电机组的风轮轴与地面垂直。
风力发电机组的分类按容量分类小型、中型和大型风力发电机组。
小型风力发电机组的功率通常在几百瓦到几千瓦之间,中型风力发电机组的功率在几兆瓦到几十兆瓦之间,而大型风力发电机组的功率通常在几百兆瓦到几兆瓦之间。
按运行原理分类恒速风力发电机组和变速风力发电机组。
恒速风力发电机组的风轮转速保持不变,而变速风力发电机组的风轮转速可以根据风速进行调整。
02变桨距控制策略的基本理论变桨距控制是一种用于调节风力发电机组功率输出的技术,通过改变桨叶的桨距角实现对风能捕获的优化控制。
在风速较高时,通过减小桨距角增加风能捕获,以提升发电机组的功率输出;在风速较低时,通过增大桨距角减小风能捕获,以避免过度捕获风能导致发电机组振动和疲劳损坏。
变桨距控制的概念和意义变桨距控制系统的基本结构变桨距控制系统主要由传感器、控制器和执行器组成。
传感器负责监测风速、风向和发电机组运行状态;控制器根据传感器信号和预设的控制逻辑对执行器进行指令输出;执行器根据指令调整桨叶的桨距角。
风力发电机变桨距控制技术研究随着全球对可再生能源的需求不断增加,风力发电作为一种清洁、可持续的能源形式,逐渐受到人们的关注。
而风力发电机的变桨距控制技术的研究与应用,对于提高风力发电机的效率和稳定性具有重要意义。
风力发电机的变桨距控制技术是指根据风力发电机所接收的风速信号,通过控制变桨距来调整叶片的角度,以实现最佳功率捕获。
变桨距控制技术可以根据实时风速变化,调整叶片的角度,使其在不同风速下都能运行在最佳工作状态,从而提高风力发电机的发电效率。
风力发电机的变桨距控制技术主要包括传感器、控制器和执行器三个部分。
传感器用于感知风速信号并将其转化为电信号,控制器通过对风速信号的处理和分析,得出最佳的变桨距控制策略,最后通过执行器来实现叶片角度的调整。
在风力发电机的变桨距控制技术研究中,需考虑以下几个方面。
首先,需选择合适的传感器来准确感知风速信号,以确保控制器的准确性。
其次,需要在控制器中设计合理的算法,以根据实时风速变化来调整叶片的角度。
同时,还需考虑到不同风速下的功率输出特性和风力发电机的安全性能,以确保变桨距控制技术的可靠性和稳定性。
此外,风力发电机的变桨距控制技术还面临一些挑战。
例如,风速信号的准确性和稳定性对于变桨距控制的精度和效果至关重要。
此外,变桨距控制技术的实施成本也是一个重要的考虑因素。
因此,研究人员需要不断改进传感器和控制器的技术,并降低成本,以实现风力发电机变桨距控制技术的普及和应用。
综上所述,风力发电机的变桨距控制技术是提高风力发电机效率和稳定性的重要手段。
通过合理选择传感器、设计优化的控制算法,并考虑到功率输出特性和安全性能,可以实现风力发电机在不同风速下的最佳工作状态。
未来,随着技术的进一步发展和成本的降低,风力发电机变桨距控制技术有望在风力发电行业中得到更广泛的应用。
风力发电机组变桨距风力发电机组变桨距:随着国家新能源发展战略的提出和实施,我国风电产业进入跨越式发展的阶段。
本文从分析我国风力发电的现状出发,在总结分析风力发电技术发展的基础上,对我国风电发展过程中存在的主要问题进行了探讨分析,提出了相关建议。
关键词:风力发电;现状;技术发展能源、环境是当今人类生存和发展所要解决的紧迫问题。
常规能源以煤、石油、天然气为主,它不仅资源有限,而且造成了严重的大气污染。
因此,对可再生能源的开发利用,特别是对风能的开发利用,已受到世界各国的高度重视。
风电是可再生、无污染、能量大、前景广的能源,大力发展风电这一清洁能源已成为世界各国的战略选择。
我国风能储量很大、分布面广,开发利用潜力巨大。
近年来我国风电产业及技术水平发展迅猛,但同时也暴露出一些问题。
总结我国风电现状及其技术发展,对进一步推动风电产业及技术的健康可持续发展具有重要的参考价值。
1我国风力发电的现状202*年2月,我国国家立法机关通过了《可再生能源法》,明确指出风能、太阳能、水能、生物质能及海洋能等为可再生能源,确立了可再生能源开发利用在能源发展中的优先地位。
202*年12月,我国政府向世界承诺到202X年单位国内生产总值二氧化碳排放比202*年下降40%~45%,把应对气和变化纳入经济社会发展规划,大力发展包括风电在内的可再生能源与核能,争取到202X年非化石能源占一次能源消费比重达到15%左右。
论文大全网编辑。
随着新能源产业成为国家战略新兴产业规划的出台,风电产业迅猛发展,有望成为我国国民经济增长的一个新亮点。
我国自上世纪80年代中期引进55kW容量等级的风电机投入商业化运行开始,经过二十几年的发展,我国的风电市场已经获得了长足的发展。
到202*年底,我国风电总装机容量达到2601万kW,位居世界第二,202*年新增装机容量1300万kW,占世界新增装机容量的36%,居世界首位[1,2]。
可以看出,我国风电产业正步入一个跨越式发展的阶段,预计202*年我国累计装机容量有望突破4000万kW。
摘要本文主要介绍了风力发电机组的变桨距系统,其中,主要是液压系统由电器控制用来推动机械机构对桨叶进行变距。
能源问题是目前人类所面临的重大课题之一。
当今我们正处在新旧能源交替发阶段,以前的旧式能源,如煤炭、石油等不可再生资源已经越来越少,已经不能满足目前人类的生产生活需要,这就需要我们找到可以替代他们的新资源。
风能作为绿色资源,早在几千年前就为人类所利用。
时至今日,风能在多种可再生资源中是技术上最成熟,最具竞争力的可开发资源。
国外600KW以下的机组已经大量生产,故障率从80年代初的50%下降到当前的2%以下。
目前MW级机组的份额明显增大,2003年的机组平均单机容量达到1.2MW。
以前的风力机主要是通过偏航来调整转速,可是这种方法对风能的充分利用十分不利,而且响应速度很慢,所以风力机的变距机构具有很高的开发价值。
液压系统的响应速度快,力——质量比大,控制精度高,可控性能好。
故本设计采用液压系统,用比例阀控制液压缸可以对液压缸进行时时控制。
液压缸推动同步盘经由连杆把运动传递给偏心盘进而实现变桨距。
本设计融合了机-电-液一体化的设计理念,寻求更为有效的设计理论和方法来实现桨叶的快速变距。
该系统实现了设计目标,具有较高的自动化程度,运行稳定可靠,性能价格比较高,非常适合于现代化生产实际的需要。
因此,该产品的推广具有十分广阔的前景。
关键词:风力发电机液压系统能源新资源Abstracthis paper mainly introduced the wind power machine set changes the oar to be apart from the system, among them, mainly is hydraulic system to be use by the electric appliances control to push the machine organization to the oar the leaf carries on change to be apart from.The energy problem is one of the important topics that mankind face currently. Nowadays we are being placed in the new old energy alternation hair stage, the old type energy of the past, if coal, petroleum...etc. can't the reborn resources is less and less already, have already can't satisfy the mankind's production life needs currently, this needs us to find out new resources that can act for them. The wind energy is the green resources, as early as and several thousand year ages are as the behavior type make use of. Up to now, the wind energy is the technique in variety can reborn resources up the most mature, have most the competition ability and can develop the resources.The machine set of the foreign 600 KW the following has already mass-produced, the breakdown rate descends current 2% from 50% of the beginning of 80's the following. Currently the quota of the MW class machine set is obvious to enlarge; an equally single machine capacity of machine of 2003 attains the 1.2 Maws.The wind force machine of the past mainly is to pass to be partial to the sail to adjust to turn soon, but this kind of method is very disadvantageous to the full exploitation of the wind energy, and respond to the speed very slow, so the wind force machine changes to be apart from the organization to have the very high development value.The liquid presses the system to respond to the speed quick, the dint- quantity compare greatly, control the accuracy is high, can control the function good. Past origin design adoption the liquid presses the system, control the liquid to press the urn and can press the urn to carry on to the liquid to control always with the comparison valve. The liquid presses an urn of dish with synchronous push through connect the pole to deliver the sport to lack of impartiality the dish to then carry out to change the oar to be apart from.This design blended the machine- electricity- the design principle that the liquid integral whole turn, look for the more valid design theories and methods to carry out the oar the quickly change of the leaf be apart from. That system carries out to design the target, having the higher automation degree, circulating the stable credibility; the function price is higher, very suitable for the modernization produces the actual demand. Therefore, the expansion of that product has the very vast foreground.the wind power machine hydraulic system energy new rescouce第1章引言现代化的机械设备的控制技术手段是多种多样的,电器方法、机械方法、液压方法、电气液压方法以及气动方法等等,均可以用来实现自动控制。