极限的求法总结.ppt
- 格式:ppt
- 大小:1015.63 KB
- 文档页数:75
极限的常用求法及技巧引言极限是描述数列和函数在无限过程中的变化趋势的重要概念。
极限的方法是微积分中的基本方法,它是人们从有限认识无限,从近似认识精确,从量变认识质变的一种数学方法,极限理论的出现是微积分史上的里程碑,它使微积分理论更加蓬勃地发展起来。
极限如此重要,但是运算题目多,而且技巧性强,灵活多变。
极限被称为微积分学习的第一个难关,为此,本文对极限的求法做了一些归纳总结,我们学过的极限有许多种类型:数列极限、函数极限、积分和的极限(定积分),其中函数极限又分为自变量趋近于有限值的和自变量趋近于无穷的两大类,如果再详细分下去,还有自变量从定点的某一侧趋于这一点的所谓单边极限和双边极限,x 趋于正无穷,x 趋于负无穷。
函数的极限等等。
本文只对有关数列的极限以及函数的极限进行了比较全面和深入的介绍.我们在解决极限及相关问题时,可以根据题目的不同选择一种或多种方法综合求解,尤其是要发现数列极限与函数极限在求解方法上的区别与联系,以做到能够举一反三,触类旁通。
1数列极限的常用求法及技巧数列极限理论是微积分的基础,它贯穿于微积分学的始终,是微积分学的重要研究方法。
数列极限是极限理论的重要组成部分,而数列极限的求法可以通过定义法,两边夹方法,单调有界法,施笃兹公式法,等方法进行求解.本章节就着重介绍数列极限的一些求法。
1.1利用定义求数列极限利用定义法即利用数列极限的定义 设{}n a 为数列。
若对任给的正数N ,使得n 大于N 时有ε<-a a n则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作,lim n a n a =∞→或)(,∞→∞→n a n读作当n 趋于无穷大时,{}n a 的极限等于a 或n a 趋于a 例证明2322n lim -∞→n n 解 由于)3n 93n 9323222≥≤-=--(nn n 因此,对于任给的ε>0,只要ε<n9,便有 ε<--33322n n即当n ε9>时,(2)试成立。