极限的求法总结
- 格式:ppt
- 大小:826.50 KB
- 文档页数:75
千里之行,始于足下。
极限求解方法总结极限是高等数学中的重要概念,是数学分析和微积分的基础。
在实际问题中,往往需要通过求解极限来得到数学模型的一些重要结果。
本文将对极限求解的方法进行总结与归纳。
1. 基本极限公式:在求解极限问题时,我们首先要生疏一些基本的极限公式,这些公式可以挂念我们快速求解极限问题。
常用的基本极限公式有:- 数列极限:常数数列、等差数列、等比数列、级数等。
- 函数极限:幂函数、指数函数、对数函数、三角函数等。
2. 替换法:替换法是求解极限问题时常用的一种方法。
通过将极限问题中的变量进行替换,使得计算变得更加简洁。
常用的替换法有以下几种:- 分子分母同时除以最高次数的项;- 用无穷小量代替无穷大量;- 用无穷小量的幂代替无穷小量。
3. 夹逼准则:夹逼准则是求解极限问题的一种重要方法。
通过找到一个上界和一个下界,使得极限问题的解被夹在这两个界之间,可以确定极限的存在性和取值。
常用的夹逼准则有以下几种:- 当函数在某一点四周趋于同一个极限;- 当两个函数的极限分别为一正一负,但两个函数的确定值函数的极限相等。
4. 施瓦茨不等式:第1页/共3页锲而不舍,金石可镂。
施瓦茨不等式是求解极限问题中常用的一种方法。
它可以用来估量两个函数的内积,从而得到某些函数的极限。
施瓦茨不等式的形式如下:\\[|\\int_{a}^{b}f(x)g(x)dx|\\leq\\sqrt{\\int_{a}^{b}f^2(x)dx}\\s qrt{\\int_{a}^{b}g^2(x)dx}\\]5. 利用基本不等式:在求解极限问题时,我们可以利用一些基本的不等式来推导和求解极限问题。
常用的基本不等式有以下几个:- 平均值不等式:对于两个正数a和b,平均值不等式可以表示为\\[(a+b)/2≥\\sqrt{ab}\\]- 柯西不等式:对于两个数列或者两个函数,柯西不等式可以表示为\\[\\sum a_kb_k≤(\\sum a_k^2)^{1/2}(\\sum b_k^2)^{1/2}\\]6. 等价无穷小替换法:在求解极限问题时,假如消灭了不适合直接求解的形式,可以尝试使用等价无穷小替换法。
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
求函数的极限值的方法总结在数学中,函数的极限值是指函数在某一特定区间上取得的最大值或最小值。
求解函数的极限值是数学分析中经常遇到的问题之一,下面将总结一些常用的方法来求解函数的极限值。
一、导数法对于给定的函数,可以通过求导数来判断函数在某一点附近的单调性和极值情况。
导数表示了函数在某一点处的变化率,通过求导数可以获得函数的驻点(导数为零的点)以及极值点。
一般来说,当函数从单调递增变为单调递减时,即导数由正变负,函数的极大值出现;当函数从单调递减变为单调递增时,即导数由负变正,函数的极小值出现。
所以,通过求导数可以找到函数的极值点,然后通过比较极值点和边界点的函数值,即可确定函数的极限值。
二、二阶导数法在某些特殊情况下,求函数的二阶导数可以提供更加准确的信息来确定函数的极限值。
当函数的二阶导数恒为正时,表示函数处于凸型,此时函数可能有极小值但没有极大值;当函数的二阶导数恒为负时,表示函数处于凹型,此时函数可能有极大值但没有极小值。
通过对二阶导数进行符号判断,可以帮助确定函数的极限值。
三、极限值存在性判定对于一些特殊的函数,通过判定函数的极限值是否存在可以快速确定函数的极限值。
当函数在某一区间上连续且存在最大最小值时,函数的极限值也会存在。
因此,可以通过求解函数在区间端点的函数值,并比较这些函数值来确定函数的极限值。
四、拉格朗日乘数法拉格朗日乘数法是一种通过引入约束条件来求解极值的方法,特别适用于求解带有约束条件的函数的极值。
通过构造拉格朗日函数,将原始问题转化为无约束的极值问题,然后通过求解极值问题来确定函数的极限值。
五、切线法切线法是一种直观而有效的求解函数极值的方法。
通过观察函数图像,在极值附近找到一条切线,使得切线与函数图像的接触点的函数值最大或最小。
通过近似切线与函数图像的接触点,可以获得函数的极值的近似值。
六、数值法数值法是一种通过计算机进行数值逼近的方法来求解函数的极限值。
通过将函数离散化,并在离散点上进行计算,可以得到函数在这些离散点上的函数值,然后通过比较这些函数值来确定函数的极限值。
极限的六种求法1、代入法作者:教资备考群(865061525)之管理员,—━☆知浅づ如果自变量所趋近的值,能使函数有意义,就可以直接代入函数表达式中。
注:能使函数有意义,就是这个自变量在函数的定义域内。
【例】limx→2 x2x3 + 1− 2x + 3=( )。
2解:x2 − 2x + 3 = (x − 1)+ 2 ≥ 2 ≠ 0可见该函数的定义域是x3 + 1 R,所以可以直接将8 + 1x = 2 代入x3 + 1 。
x2 − 2x + 3limx→2 x2− 2x + 3 = limx→24 − 4 + 3= 3。
2、约公因子法如果自变量所趋近的值,使得函数没有意义。
可以考虑约公因子,将其约去。
因此经常运用因式分解。
【例】limx→3x2−x− 6x−3=( ) 。
解:这里发现,该函数的定义域为{x|x ≠ 3}。
如果x → 3,会使得函数没有意义。
因此考虑约公因子。
lim x→3x2−x−6x− 3= limx→3(x− 3)(x + 2)x− 3= lim(x + 2) = 5。
x→30 ⎩ x x x3、最高次幂法当函数是分式形式,且分子、分母都是多项式时,可以使用最高次幂法求极限。
它的原理,就是分子分母同时除以自变量的最高次幂。
这样自变量趋近于无穷大时, 那些比最高次幂低的项,直接就变为 0 了。
最高次幂法也俗称抓大头。
a⎧ ,n = m , a x m + a x m−1 + ⋯ + a⎪b 0lim 0 1 m = x→∞ b 0x n + b 1x n−1 + ⋯ + b n ⎨0,n > m , ⎪∞,n < m 。
【 例 】10x 4 + 6x 3 − x 2 + 3( ) 。
1 limx→∞2x 4 − x 2 − 9x=首先,观察到函数是个分式的形式。
其次,分子跟分母的最高次幂都是 4;最后,求极限直接用最高次幂法,原式 = 10= 5。
2那么,不妨拿这个例子,验证一下最高次幂法的原理。
函数极限的求法及技巧总结函数极限是高等数学的一个重要概念,它在微积分、实分析等许多领域都有着广泛的应用。
在计算函数极限时,需要掌握一些求法和技巧。
本篇文章将对此进行总结。
1. 直接代入法直接代入法是最基本也是最简单的一种方法,它适用于可以直接将自变量代入函数中计算得到结果的情况。
例如,当求函数f(x) = x² + 3x + 2在x = 1处的极限时,我们可以直接将x = 1代入函数中,得到f(1) = 1² + 3×1 + 2 = 6。
因此,f(x)在x = 1处的极限为6。
2. 分式化简法分式化简法是一种常用的求极限的方法,它适用于形如“分式”的函数。
3. 夹逼定理夹逼定理是一种常用的求极限的方法,它适用于当我们无法通过代入或化简等方法直接求出函数极限时。
夹逼定理的思想是:若存在函数g(x)和h(x),满足 g(x) ≤ f(x) ≤ h(x)且limx→a g(x) = limx→a h(x) = L,那么limx→a f(x) = L。
4. 洛必达法则其中,f'(x)和g'(x)分别表示f(x)和g(x)的导数。
例如,当求函数f(x) = (e^x - 1) / x在x = 0处的极限时,我们可以将f(x)表达为g(x) / h(x)的形式,即g(x) = e^x - 1,h(x) = x,然后计算g'(x)和h'(x),得到 g'(x) = e^x,h'(x) = 1。
因此,根据洛必达法则,我们得到limx→0 f(x) = limx→0 [e^x / 1] = 1。
5. 泰勒展开法泰勒展开法是一种常用的求函数极限的方法,它适用于当函数在极限点左右存在二阶及以上的导数时。
泰勒展开法的思想是:当limx→a f(x)存在时,可以将函数f(x)在a附近进行泰勒展开,得到f(x) = f(a) + f'(a)×(x - a) + f''(a)×(x - a)² / 2 + …… + Rn(x),其中Rn(x)为余项。