时间序列与神经网络法相结合的短期风速预测
- 格式:pdf
- 大小:732.90 KB
- 文档页数:5
风电功率预测问题摘要本文对风电场的发电功率进行了分析和研究,并进行尽可能准确地预测,分别以时点与电机组数量为相对单一变量,给出了较为精确的风电场发电功率的预测模型,并根据预测误差和对其他因素的考虑,构建了具有更高精确度的预测模型。
对于问题一,分别采用了时间序列法、卡尔曼滤波法、BP神经网络预测算法三种方法对风电场的发电功率进行预测及误差分析。
通过对三种预测方法的比较,考虑到时间序列模型建模简单,具有较好的短期预测精度,是最常用的线性预测模型;根据某风机的输出功率,首先利用时间序列分析建立一个能反映序列信号变化规律的ARMA模型,从该模型的预测方程入手,直接推导出卡尔曼滤波的状态和量测方程,利用卡尔曼递推模型可以实现风电功率的预测;神经网络模型能较好的应对序列的波动,具有理论丰富和高精度等特点,是常用的非线性模型。
结果算出,神经网络模型应用于风电功率预测能够较好地达到预测效果,因此推荐。
对于问题二,通过问题一中的预测,综合时间序列法、BP神经网络预测算法和卡尔曼滤波法,可以看出四台机组总输出功率(P4)预测的准确率与合格率均小于对A、B、C、D四台风电机组分别预测的输出功率(PA,PB,PC,PD),而对全场58台机组总输出功率(P58)预测的准确率与合格率又小于对四台机组预测的输出功率(P4),即风电机组台数越多,预测得到的输出功率误差越大。
因此我们分析风电机组汇聚给风电功率预测误差带来正面影响,即使预测功率误差增大。
对于问题三,因为风速是影响风电功率的的重要因素,因此采用计及风速的神经网络预测方法。
由于风电功率的波动性很大,并且与风速有很大的相关性,仅仅利用功率本身数据进行预测,使预测效果受到一定的限制,因此设计了在神经网络中加入风速因素,找出风速的最优估计值,然后用模型输出统计模块,减少存在的误差,最后根据风电场的功率曲线计算得到风电场的输出功率,以期提高预测精度。
关键词:风电功率预测、时间序列、卡尔曼滤波、神经网络、风速一:问题重述:根据百度百科,“风”是“跟地面大致平行的空气流动,是由于冷热气压分布不均匀而产生的空气流动现象”。
电力系统Electric System2020年第24期2020 No.24电力系统装备Electric Power System Equipment风能是一种可持续利用且低污染、储量丰富的能源,风能的高效利用一直以来是科研和工程研究领域一直关注的问题。
其中,风电机组偏航系统调节是一种提高风电发电效率的重要方法。
目前,风场常使用实时风向信息对偏航系统调节进行指导,由于风向的不确定性以及其他不利因素,这种调节滞后风向变化,并不能真正做到对于风向变化的实时的偏航系统调节,从而降低了风电机组发电效率。
为了解决这一问题,本文提出使用长短时记忆网络(LSTM )实现对风向的预测,为实现偏航系统高效调节提供参考信息。
风向建模一般采用统计模型和数据驱动模型。
统计学模型一般通过统计处理批量数据来探索历史风向和当前时刻风向的关系。
李莉等[1]提出了一种基于流体力学流场预计算的风速风向预测模型,但预测模型没有良好的时间序列处理能力。
丁藤等[2]提出的改进自回归滑动平均-广义自回归条件异方差模型只能对风速(风向)进行短期甚至超短期预测。
孙驷洲等[3]提出一种基于混沌高斯局部吸引点量子粒子群优化最小二乘支持向量机(LSSVM )的短期风电功率预测模型,但其耗时长,不利于短期风功率及风向预测。
Kavasseri R G 等[4]提出了一种部分自回归滑动平均模型,能够在存在相关性的情况下节俭地捕捉时间序列。
数据驱动包括机器学习与深度学习2种建模方法,可以有效地解决风向建模问题。
郭振海等[5]提出一种基于BP 神经网络的混合风速预测方法,并利用季节指数调整消除实际风速数据集的季节效应。
刘辉等[6]提出了一种结合变分模态分解,奇异谱分析,LSTM 网络和极限学习机的风速多步预测模型,有效的挖掘了时间序列中含有的时间信息。
G.J.O 等[7]提出了一种结合互信息、小波变换、进化粒子群优化和自适应神经模糊推理系统的短期风力发电预测方法,实现了预测精度和计算时间之间的平衡。
时间序列分析算法在天气预报中的应用探讨天气预报对于我们的日常生活、农业生产、交通运输等各个领域都具有至关重要的意义。
随着科技的不断发展,时间序列分析算法在天气预报中的应用越来越广泛,为提高天气预报的准确性和可靠性提供了有力的支持。
时间序列分析算法是一种基于历史数据来预测未来趋势的方法。
在天气预报中,这些历史数据可以包括气温、气压、湿度、风速、风向等气象要素的观测值。
通过对这些数据的分析和建模,时间序列分析算法能够揭示气象要素的变化规律,并据此对未来的天气状况进行预测。
常见的时间序列分析算法包括移动平均法、指数平滑法和自回归移动平均(ARMA)模型等。
移动平均法是一种简单而直观的方法,它通过计算一定时间窗口内数据的平均值来平滑数据,从而去除噪声和短期波动,突出长期趋势。
然而,这种方法对于季节性和周期性变化的捕捉能力相对较弱。
指数平滑法在移动平均法的基础上进行了改进,它赋予近期数据更高的权重,使得预测结果更能反映数据的最新变化。
指数平滑法可以分为一次指数平滑、二次指数平滑和三次指数平滑等,适用于不同类型的数据特征和预测需求。
自回归移动平均(ARMA)模型则是一种更为复杂和精确的时间序列分析方法。
它将时间序列视为由一个自回归(AR)部分和一个移动平均(MA)部分组成。
AR 部分表示当前值与过去值之间的线性关系,MA 部分则用于描述随机干扰对序列的影响。
通过对历史数据的拟合和参数估计,ARMA 模型能够生成较为准确的预测结果,但同时也需要更多的计算资源和数据量支持。
在实际应用中,时间序列分析算法在天气预报中发挥着重要作用。
例如,在气温预测方面,通过对历史气温数据的分析,可以发现气温的季节性变化规律以及长期趋势。
利用时间序列分析算法,可以预测未来一段时间内的气温走势,为人们的出行、衣物选择和能源消耗提供参考。
对于降水的预测,时间序列分析算法同样具有一定的价值。
虽然降水的发生具有较大的随机性,但通过对降水数据的长期观察和分析,仍然可以发现一些潜在的规律。
《风电场风电功率预测方法研究》篇一一、引言随着全球对可再生能源的日益重视和清洁能源需求的增加,风电作为一种绿色、可再生的能源,正逐渐成为能源结构中的重要组成部分。
然而,由于风能的间歇性和不确定性,风电场的风电功率预测成为了提高风电利用率和并网安全的关键问题。
本文旨在探讨风电场风电功率预测的方法及其应用。
二、风电功率预测的意义与重要性1. 优化电网调度:通过准确的预测风电功率,电力公司可以更有效地调度其他电源,减少备用容量的浪费,实现电力系统的优化运行。
2. 提高风电利用率:准确的预测有助于提高风电场的运行效率,减少因风力波动导致的弃风现象,从而最大化利用风能资源。
3. 降低运维成本:预测有助于提前发现并处理潜在的设备问题,降低因设备故障带来的损失。
三、风电功率预测的主要方法1. 物理模型法:基于风速、风向、大气压力等物理因素构建数学模型进行预测。
该方法考虑了风能的物理特性,但受限于气象数据的准确性和实时性。
2. 统计学习法:利用历史数据和统计方法进行预测。
包括时间序列分析、机器学习算法等。
该方法对历史数据要求较高,但在数据处理和模式识别方面有显著优势。
3. 混合预测法:结合物理模型法和统计学习法的优点,同时考虑风能的物理特性和历史数据信息,以提高预测的准确度。
四、具体应用方法及实例分析1. 时间序列分析法:该方法利用历史风电功率数据建立时间序列模型,通过分析时间序列的规律性来预测未来的风电功率。
例如,基于ARIMA模型的短期风电功率预测。
2. 机器学习算法:利用神经网络、支持向量机等机器学习算法进行预测。
如深度学习模型在风电功率预测中的应用,通过对大量历史数据进行训练,建立复杂的非线性关系模型,提高预测精度。
3. 混合模型应用:结合物理模型法和统计学习法的混合模型在风电功率预测中的应用。
例如,结合风速物理模型和神经网络算法的混合模型,既能考虑风能的物理特性,又能充分利用历史数据的规律性。
五、挑战与未来展望尽管现有的风电功率预测方法取得了一定的成果,但仍面临一些挑战:1. 数据质量问题:气象数据的准确性和实时性对预测结果有重要影响。
专利名称:基于时间序列和神经网络法的风电功率预测方法专利类型:发明专利
发明人:武乃虎,冯江霞,贠志皓,麻常辉,张磊,蒋哲
申请号:CN201210413575.7
申请日:20121025
公开号:CN102880810A
公开日:
20130116
专利内容由知识产权出版社提供
摘要:本发明公开了一种基于时间序列和神经网络法的风电功率预测方法,具体步骤为:步骤一:建立时间序列模型;步骤二:建立神经网络模型并对神经网络初始化;步骤三:建立风速预测模型:根据风速的原始数据经数据差分处理,基于时间序列法建立风速预测模型;步骤四:根据风速的预测模型及风速-功率转换关系,预测风电功率;步骤五:建立风电功率预测模型:基于风速的预测模型及风速-功率转换关系,建立风电功率的预测模型,利用风速预测模型获得的风速预测值作为风电功率预测模型的输入值,获得风电功率预测值,有效减少由于风速与风电功率之间的非线性关系带来的预测误差,适于风电功率的短期预测。
申请人:山东电力集团公司电力科学研究院,国家电网公司
地址:250002 山东省济南市市中区二环南路1号
国籍:CN
代理机构:济南圣达知识产权代理有限公司
代理人:张勇
更多信息请下载全文后查看。